
HPC-Forge

A Software Development Infrastructure

Roberto Gori 2

Agenda

� Introduction

� The portal

� The services:

� Subversion

� Trac

� Hudson

� WebDAV

Roberto Gori 3

Software development process

� A software development process
is a structure imposed on the
development of a software product.
Synonyms include software life cycle
and software process. There are
several models for such processes,
each describing approaches to a
variety of tasks or activities that take
place during the process.

Roberto Gori 4

Software development process

� Software development activities
� Planning
� Implementation, testing and

documenting
� Deployment and maintenance

� Models
� Iterative processes
� XP: Extreme Programming
� Waterfall processes
� Other models

Roberto Gori 5

the waterfall model

Roberto Gori 6

What’s HPC-Forge?

HPC-Forge is a software development
infrastructure: a collection of services
to support the software development
process:

� Source control management: A system that
provides a central place where the team members
can store and access their entire source code
base.

� Requirements management: A system used for
recording and tracking product feature requests.

Roberto Gori 7

What’s HPC-Forge?
� Bug-tracking: A system used to record and track errors and

feature requests.
� Automated build: A system that builds the application every night

by automatically executing the required build procedure steps at
the scheduled time, without any human intervention.

� Automated testing: The tools that team developers and testers
use to verify software and to detect and prevent software
problems, such as functionality errors, reliability problems,
performance problems, or security vulnerabilities..

� Regression testing: Any tool or combination of tools that can
automatically run all of your existing tests on your entire code base
on a regular basis (preferably nightly, as part of the automated
build). Its purpose is to help you identify when code modifications
cause previously working functionality to regress, or fail. For
example, the regression system may be a script that runs one or
more automated testing tools in batch mode.

� Data repository: A storage area (upload/download) to provide
access to 'publish' releases, documentation, test data …

Roberto Gori 8

Which services?

� Source control management:Subversion
(http://subversion.tigris.org)

� Requirements management,
Bug-tracking:Trac
(http://trac.edgewall.org)

� Automated build an testing:
Hudson (http://hudson-ci.org/)

� Data repository: WebDAV

� A web-based interface (portal):
to access and create service instances, to manage
users and their permissions.

Roberto Gori 9

HPC-Forge Architecture

Roberto Gori 10

HPC-Forge’s organization
1. HPC-Forge is a software development infrastructure oriented to

projects.
2. The infrastrucure has an administrator (the “system administrator”) to

manage everything: projects, service instances, users, permissions, …
3. A project can get one or more service instances.
4. Every project has one or more administrator (the “project

administrators”) to setup the project itself and it’s service instances.
5. Every service istance has one or more administrator (the “instance

administrators”) to setup the instance itself, it’s users and their
permissions.

6. The users can access the service instances following the rules
established by the instance administrator and typical of the service.

7. The access can be anonymous for guests or authenticated for
registered users. Authentication is in single-sign-on mode.

8. Every registered user has his personal information and one or more
accounts.

9. Resources are in auto-provisiong. Every authenticated user can
create projects and service instances by itself.

Roberto Gori 11

HPC-Forge’s organization

Roberto Gori 12

HPC-Forge’s organization

xInstance setup and user management

xProject setup and instances creation

xxxProject creation

x

(authenticated)

x

(authenticated)

x

(authenticated)

x

(anonymous)

Services access

xxxlogin/logout

xxxPersonam information and password change

xregistration

xxxxGeneral information

Instance
administrators

Project
administrators

usersguestFunction/role

xInstance setup and user management

xProject setup and instances creation

xxxProject creation

x

(authenticated)

x

(authenticated)

x

(authenticated)

x

(anonymous)

Services access

xxxlogin/logout

xxxPersonam information and password change

xregistration

xxxxGeneral information

Instance
administrators

Project
administrators

usersguestFunction/role

Roberto Gori 13

The HPC-Forge’s portal

Roberto Gori 14

Surfing at HPC-Forge

� Service instances can be accessed
throughout two paths:
� By service collections:

clicking on the link of a service at the
home page. You will get a list of
instances of that service.

� By project collections:
clickingt on the “Projects” link. You will
get a list of instances of that project
grouped by service type.

Roberto Gori 15

Service instances by service type

The user can access a
certain instance (in this
case a Trac project) by
clicking on the
corresponding link

Roberto Gori 16

Service instances of a project

The user can access a

certain instance by clicking
on the corresponding link

Roberto Gori 17

Creating projects

Only authenticatd
users can create
project through the
“Add” menù of the
“Projects” page

Roberto Gori 18

Creating service instances

Only project
administrators can
create service instances
through the “Add”
menù of a project page.

They become also
administrators of the
new instances.

Roberto Gori 19

Administer users

Only service instance
administrators can
administer users.

Roberto Gori 20

Register yourself

� Click on the
register link

� Fill the form

� You will receive
an e-mail with a
temporary
password to login
and change it.

Roberto Gori 21

Why Revision Control?

� Provides a place to store your code

� Reduce clutter

� Independent of individual accounts

� Historical record of what was done
over time

� Safety net

� Synchronization between
developers

Roberto Gori 22

Why Use Subversion?

� Functional superset of CVS

� Directory versioning (rename and
moves)

� Atomic Commits

� File meta-data

� True client-server model

� Cross-platform, open-source

Roberto Gori 23

Subversion Architecture

� Each working copy has a .svn directory
� Similar to the CVS’s CVS directory

� Stores metadata about each file

� Local or Network Repository

� Network access over HTTP or SSH

� Encrypted authentication
� Cleartext password stored in ~/.subversion

� Fine-grained authorization

� Command line client is svn

Roberto Gori 24

CVS vs SVN

� Most CVS commands exist in SVN

� Checkout, commit, update, status…

� Arguments position matters in CVS
$ cvs -d /cvsroot update -d

� Not so in SVN
$ svn log -r 123 foo.c

$ svn log foo.c -r 123

Roberto Gori 25

Revisions (1)

� Revision numbers are applied to an object to
identify a unique version of that object.

� CVS
� Revision numbers are per file.

� No connection between two files with the same revision
number.

� A commit only modifies the version number of the files
that were modified.
� foo.c rev 1.2 and bar.c rev 1.10.

� After commit of bar.c:
� foo.c rev 1.2 and bar.c rev 1.11.

Roberto Gori 26

Revisions (2)

� Revision numbers are applied to an object to
identify a unique version of that object.

� SVN
� Revision numbers are global across the whole

repository.
� Snapshot in time of the whole repository.
� A commit modifies the version number of all the files.

� foo.c rev 25 and bar.c rev 25.

� After commit of bar.c:
� foo.c rev 26 and bar.c rev 26.

� foo.c rev 25 and 26 are identical.

Roberto Gori 27

Basic Work Cycle (1)

� Checkout a working copy

� Update a working copy

� Make changes

� Examine your changes

� Commit your changes

Roberto Gori 28

Basic Work Cycle (2)
� Checkout a working copy

$ svn checkout \

> https://hpc-forge.cineca.it/svn/TEST/foo

$ cd foo

� Update a working copy
� Update all files

$ svn update

� Update to an older revision
$ svn update -r 45

� Update an older revision of bar.c
$ svn update -r 23 bar.c

$ svn update -r 1

A changepwd.form

D trunk

D branches

Updated to revision 1.

Roberto Gori 29

Basic Work Cycle (3)
� Update output

� U foo

� File foo was (U)pdated (pulled from repository)
� A foo

� File foo was (A)dded to your working copy
� D foo

� File foo was (D)eleted from your working copy
� R foo

� File foo was (R)eplaced, that is it was deleted and a new file
with the same name was added.

� G foo

� File foo received new changes and was also changed in your
working copy. The changes did not collide and so were
mer(G)ed.

� C foo

� File foo received (C)onflicting changes from the server. The
overlap needs to be resolved by you.

Roberto Gori 30

Basic Work Cycle (4)

� Make changes
� Add new files and directories

$ touch README.txt

$ svn mkdir Presentations

$ touch Presentations/simple.txt

$ svn add Presentations/simple.txt README.txt

� Delete files
$ svn rm foo

� Rename files
$ svn mv README.txt README_OLD.txt

� Copy files and directories
$ svn cp Presentations Presentation_new

Roberto Gori 31

Basic Work Cycle (5)

� Examine your changes
� svn status: list of changed files

? arcanum.pdf File is not managed by svn

M howto.tex File has local content modifications

A howto.toc File is scheduled for addition

D Makefile File scheduled for deletion

� Even more details with -v
� Revision numbers
� Who made last modification

� Status of repository with -u
� Shows changes in repository as well

Roberto Gori 32

Basic Work Cycle (6)

� Examine your changes
� svn diff: shows your modifications

� In your local working copy
$ svn diff

� Between a repository revision and your local
copy
$ svn diff -r 34 foo.c

� Between two repository revisions
$ svn diff -r 2:5 foo.c

� Revert your changes
$ svn revert foo.c

Roberto Gori 33

Basic Work Cycle (7)

� Commit your changes
$ svn commit

� Will open an editor to type in change
log

� Alternatively, short logs can be input
inline
$ svn commit -m "my short log"

� Logs can be retrieved for a file or a
tree
$ svn log foo.c

Roberto Gori 34

Conflict Resolution
� Look for "C" when you update
� Better than CVS:

� Conflict markers are placed in the file to display the overlap (just like
CVS).

� Three tmp files are created. these are the original three files that
could not be merged.

� SVN will not allow you to commit files with conflicts.

� Solutions to resolve
� Hand-merge the files
� copy one of the tmp files on top of your working copy
� svn revert to toss out your changes

� Once resolved, you need to tell svn about it
$ svn resolve foo.c

Roberto Gori 35

File & Directory Properties (1)

� Each file and directory has a list of
properties associated with it

� Arbitrary properties & values
� Subversion defines some properties:

svn:ignore

svn:eol-style

svn:mime-type

svn:executable

svn:keywords

� Listing properties
$ svn proplist README.txt

Properties on 'README.txt':

svn:mime-type

svn:eol-style

Roberto Gori 36

File & Directory Properties (2)

� Getting a property value
$ svn propget svn:mime-type README.txt

� Setting a property

$ svn propset svn:eol-style native README.txt

Roberto Gori 37

Dealing with binary files

� Subversion is optimized for dealing with text
files (source code, LaTeX documents, etc)

� But, it can deal with binary files
� Will not diff nor merge

� Will not change EOL nor apply keywords

� SVN has a binary detection algorithm, but it
sometimes fails (PDF have a text header)
� Need to set svn:mime-type property manually to

application/octet-stream

Roberto Gori 38

Repository Organization

� Per-project directories

� Three subdirectories per project:

� trunk, tags, branches

� Trunk is for main development

� Tags is for read-only snapshots

� Branches is a work area

Roberto Gori 39

Working with Branches

� Create a new branch (NOTE. Replace TEST
by the module that you want to work with)
$ svn cp https://hpc-forge.cineca.it/svn/TEST/trunk \

https://hpc-forge.cineca.it/svn/TEST/branches/my-branch

Commited revision 6

� Move to branch
$ svn switch https://hpc-
forge.cineca.it/svn/TEST/branches/my-branch

� Make Changes...
� Back to the main trunk

$ svn switch https://hpc-forge.cineca.it/svn/TEST/trunk .

� Merge branch into trunk
$ svn merge \

https://hpc-forge.cineca.it/svn/TEST/branches/my-branch .

Roberto Gori 40

Best Practices

� Commit early, commit often

� Commit logical changesets

� Track merges manually
� When committing the result of a merge, write

a descriptive log
Merged revisions 3490:4120 of /branches/foobranch to /trunk

� Be patient with large files and repositories

� Know when to create branches

� Trunk should be stable

Roberto Gori 41

popular Subversion clients
� svn

� This is the standard command-line client for Subversion. It is
free, runs on any platform, and comes packaged with the
standard Subversion download.

� TortoiseSVN
� TortoiseSVN is a free client for Windows users who prefer

graphical interfaces. It works as an extension of the standard
Windows Explorer interface.

� IDE Plug-ins
� Several IDEs includes clients. Subclipse adds all the features

of Subversion into Eclipse so that you do not have to
download Subversion separately.

� RapidSVN
� is a graphical SVN client available for many platforms

Roberto Gori 42

Subversion at HPC-Forge

https://hpc-forge.cineca.it/svn

├───svn
├───repos01
├───repos02
└───repos03

Anonymous access to a repository is
denied by default but can be enabled
throughout the “path based” permissions.

Repositories can be accessed via https:

svn checkout https://hpc-forge.cineca.it/svn/repos1/src

Roberto Gori 43

path-based access control
This file is an example authorization file for svnserve.
Its format is identical to that of mod_authz_svn

authorization
files.
As shown below each section defines authorizations

for the path and
(optional) repository specified by the section name.
The authorizations follow. An authorization line can

refer to:
- a single user,
- a group of users defined in a special [groups]

section,
- an alias defined in a special [aliases] section,
- all authenticated users, using the '$authenticated'

token,
- only anonymous users, using the '$anonymous'

token,
- anyone, using the '*' wildcard.
###
A match can be inverted by prefixing the rule with

'~'. Rules can
grant read ('r') access, read-write ('rw') access, or no

access
('').

[aliases]
joe = /C=XZ/ST=Dessert/L=Snake City/O=Snake

Oil, Ltd./OU=Research Institute/CN=Joe
Average

[groups]
harry_and_sally = harry,sally
harry_sally_and_joe = harry,sally,&joe

[/foo/bar]
harry = rw
&joe = r
* =

[repository:/baz/fuz]
@harry_and_sally = rw
* = r

Roberto Gori 44

For More Information

� Subversion project home

� http://subversion.tigris.org

� Subversion online book

� http://svnbook.red-bean.com

� Subversion QuickRef
� http://subversion.tigris.org/files/documents/15/177/svn

-ref.ps

Roberto Gori 45

What is Trac?

� Lightweight web based project
management framework

� Open Source - Modified BSD License

� Developed at
http://trac.edgewall.com

� Widely used by a variety of Open
Source projects

Roberto Gori 46

Roberto Gori 47

Roberto Gori 48

Roberto Gori 49

Why Trac?

� Provides an integrated approach
to managing a software
development project or team

� Key features -
� Ticketing for tasks and bug tracking
� Documentation via searchable simple to use Wiki
� Version control with strong support for
Subversion

� All sections can reference each other

� Simple to install, configure, manage and
use

Roberto Gori 50

Trac Front Page

Roberto Gori 51

Trac Timeline

Roberto Gori 52

Trac Roadmap

Roberto Gori 53

Trac Tickets

� Capture all of your work items.

� Reasonably standard set of fields
� Type - e.g. defect, enhancement or task

� Component - The project module or subsystem

� Priority - The importance of this bug, task etc.

� Milestone – Based on Roadmap entries

� Assigned to - Principal person responsible for ticket

� Summary – Single line brief description of the ticket

� Description – Make use of TracWiki syntax

Roberto Gori 54

Trac New Ticket

Roberto Gori 55

Trac New Ticket

Roberto Gori 56

Trac Completed Ticket

Roberto Gori 57

Version Control

� Doesn't have an integrated version
control tool.

� Leverage's Subversion

� Support for other Version Control tools
in development
http://trac.edgewall.org/wiki/VersioningSy
stemBackend

� Excellent web based browser and diff
tool for Subversion

Roberto Gori 58

Trac – User Management

� Work out how you want to organise
your team(s)

� Try to start with a clean set of
permissions

� Assign permissions to groups, and then
assign your team to the groups

� Covered in detail at
http://trac.edgewall.org/wiki/TracPermissio
ns

Roberto Gori 59

User permissions

Roberto Gori 60

Ticket Types and Components

� Default Types are development focused

� Defect, enhancement and task

� Default Components are simple
examples and should be replaced

� Components allow auto assignment of
new tickets to team members

� Effective use means simple reports can
be easily generated

Roberto Gori 61

Using Trac Effectively
� TracLinks allows seamless linking between tickets, the
wiki and subversion

� Wiki pages should use CamelCase where possible or
[wiki:Page] where this isn't appropriate

� Tickets can be referenced via #number or
[ticket:number] e.g. #27 or [ticket:27]

� Subversion change sets can be referenced by revision
number e.g. r21 or [changeset:21]

� You can link to a specific location with your Subversion
repository via source:/path e.g.

[source:/trunk/project/documentation/Readme]

Roberto Gori 62

TracLinks Examples

� A new ticket 91 with the following
description:
Build additional Apache virtual server for the

WebApplication team based off environment developed for

ProjectPurple in #57

� Documentation is auto referenced into the Wiki
� Keep track of the details on ProjectPurple
� References to contacts for the WebApplication team.

� The Apache configuration should be kept
under version control with an appropriate
commit message.
Apache configuration for additional ProjectPurple virtual

instance – see ticket #91 and #57

Roberto Gori 63

Subversion post-commit hook

� Highly recommend development teams to
utilise the trac-post-commit-hook add-on

� Installation details covered in the Trac FAQ
http://trac.edgewall.org/wiki/TracFaq

� Auto-updates Trac tickets by using a
simple syntax in Subversion commit
messages

� closes #ticket – Marks ticket closed with
comment

� refs #ticket – Just adds comment to ticket

Roberto Gori 64

Sub Tickets

� Break out larger tasks into logical
items of work

� No inbuilt method of generating sub-tickets

� MasterTicketsPlugin from TracHacks website -
� Adds a custom field to all tickets that can point at a parent

� Parent and child can see connection

� Parent cannot be closed until all children are also closed

� Easy to define a manual process for handling sub-tickets,
but plug-in simplifies process

Roberto Gori 65

Tag milestones on release

� Tag each release in subversion as part
of closing a Roadmap milestone

� Tags are cheap in Subversion – use
them

� Make sure all changes are committed to Subversion

� Create a Subversion tag based on your release
svn copy http://trac.ourcompany.org/svn/MyProject/trunk \

� http://trac.ourcompany.org/svn/MyProject/tags/release-1 \

� -m "First Release milestone"

� Link milestone description to revision
Release tagged in r81

� Close the milestone and re-assign any open tickets

Roberto Gori 66

WikiMacros

� Covered in detail in integrated
documentation

� [[PageOutline]]
� Table of contents of a wiki page based on headings.

� A must have once a wiki entry exceeds a page

� [[Image]]
� Provides control when embedding images

� InterTrac and InterWiki
� Rapid links to other sources such as MythTV Trac or
Wikipedia, e.g. [mythtv:ticket]

Roberto Gori 67

Don't go plug-in crazy

� Lots of cool stuff on TracHacks
� Do you really need the plug-in?

� How well supported is it?

� Will it work in the next release of Trac?

� Make sure you test in a sandbox
environment

� Same rules apply to adding additional
Macros

Roberto Gori 68

Links and References

� Edgewall

� http://www.edgewall.org/

� http://trac.edgewall.org/

� TracHacks

� http://trac-hacks.org/wiki/TracHacks

Roberto Gori 69

Trac at HPC-Forge

https://hpc-forge.cineca.it/trac

├───trac
├───project01
├───project02
└───project03

Anonymous access to a project is denied by
default but can be enabled through the admin
panel of Trac.
Fine grained permissions can be specified on
any kind of Trac resources, even at the level of
specific versions of such resources.
Every project can handles more than one
repository.

Roberto Gori 70

What is Hudson?

� Hudson is an open source “continuous

� integration” (CI) server. A CI server can do

� various tasks like

� ●check-out source code

� ●build and test the project

� ●publish the results

� ●communicate the results to team members

� and much more ..

Roberto Gori 71

Configuring the Job
If the job is for building a project sources, we must provide
a Source Code Management information from where the
sources can be downloads. By default only CVS and
Subversion are supported. But plugins are available for
other SCM such as Clearcase, Git, perforce, mercurial, VSS,
accirev, tfs etc.

Roberto Gori 72

Configuring the Job Continued..
Next we must specify when the build should get triggered. An obvious
choice for software project can be when somebody checked into SCM.

In the following
example, SCM is
polled for every 5
minutes to see if
any new checkin
has happened.
Optionally it is
possible to make
the current project
to build after other
projects are built.

Roberto Gori 73

Configuring the Job Continued...

� Another important option is to tell Hudson whom
to send e-mail when the builds become unstable.

There are several other options
● Deploy War after build
● Invoke post batch jobs after build completes
● Archive the artifacts associated with build
● Update relevant JIRA Issue
● Plot build data
to name a few.

Roberto Gori 74

Hudson is ready to Build
� That's all. Hudson is ready for Continuous integration.

Automatically builds will get triggered when ever someone
checked in to the SCM.

When a build is
successful it is indicated
by a blue ball. A red
ball denotes a failed
build.

Unstable (Ex. Failed
test) builds are
indicated by Yellow
ball.

If the ball is
blinking, then it
represents an
ongoing build.

Roberto Gori 75

Hudson Main Dashboard

Hudson Main Dashboard provides a summary view of all the projects (jobs).
Hudson also provide a way to tag the jobs to different views, so that it
makes it easier to list the view by milestone or by other criteria.

Roberto Gori 76

Build Stability

Highly Stable

Slightly Unstable

Unstable

Highly Stable

Roberto Gori 77

Project Relationship

When you have projects that depend on each other,Hudson can track
which build of the
upstream project is used by which build of the downstream project

The project relationship is accomplished by the conditions
● The upstream project records the fingerprints of its build artifacts
● The downstream project notes the fingerprints of the upstream jar files it
uses

Roberto Gori 78

Fingerprints

The fingerprint of a file is simply a MD5 checksum. Hudson maintains a
database of md5sum. For each md5sum, hudson maps it to a project and
corresponding build. These files are stored at
$HUDSON_HOME/fingerprints.

Project Relationship is maintained by
● jar files that your Upstream project produces.
● jar files that your dependent (downstream) project rely on.

Suppose there are two projects TOP and BOTTOM project and assume
TOP depends on BOTTOM. You are working on the BOTTOM project. The
TOP team reported that bottom.jar that they are using causes an NPE,
which you thought you fixed in BOTTOM #32. Hudson can tell you which
TOP builds are using (or not using) your bottom.jar #32 via fingerprints.

Roberto Gori 79

Project Dashboard

The Dashboard for
particular project provides
view for:
● Last Successful Build Info
● Latest Test Result
● Monitoring Disk Usage
● Actions like configuring
the job etc
● Test Result Trend
● Recent changes that
caused the build

Various views in the
project dashboard
depends on various
plugins installed.

Roberto Gori 80

Build Dashboard

The Dashboard for a
particular Build provides
view for
● Artifacts corresponding
to this Build
● Changes that caused
this Build
● Test Results
● Build console output

Roberto Gori 81

Distributed Building

Hudson supports the "master/slave" mode
for distributed building.
Additional workload of building projects are
delegated to multiple "slave" nodes
Provides different environments needed for
builds/tests (Unix/Windows/Linux/Mac)
Master is an installation of Hudson. It
serves all HTTP requests, and it also builds
projects on its own.
Slaves are computers that are set up to
build projects for a
master. Hudson runs a separate program
called slave agent on slaves. Master
starts these slave agents on demand.

Roberto Gori 82

Popular Competitive Offerings
� Apache Continuum — continuous integration server

supporting Apache Maven and Apache Ant (open source)
� Bamboo — commercial continuous integration server by

Atlassian Software Systems
� CruiseControl — Java-based framework for a continuous

build process (open source)
� TeamCity — commercial continuous-integration server by

JetBrains.
� Team Foundation Server — commercial continuous

integration server and source code repository by Microsoft
� Tinderbox — Mozilla-based product (open source)
� Rational Team Concert — commercial software

development collaboration platform by IBM

Roberto Gori 83

Hudson at HPC-Forge

Anonymous access to a project is denied by default but can be enabled
through the administration panel.
A project can be linked to a specific slave; a login before job running is
the best practice.

Roberto Gori 84

What’s WebDAV
1. WebDAV is an abbreviation of Web-based Distributed

Authoring and Versioning, which refers to both an IETF
working group and the set of extensions to the HTTP
protocol that the group defined, which allows users to
collaboratively edit and manage files on remote web
servers.

2. Its aim is to provide the functionality to create and
manage documents on a web server. The obvious use for
this is for authoring and publishing the documents that a
web server serves, but it can also be utilized for general
web-based file storage that is accessible from anywhere.
Support for WebDAV is provided by most modern
operating systems, and with the right client and a fast
network it can be almost as easy to use files on a WebDAV
server as those stored in local directories.

Roberto Gori 85

WebDAV contents

� Our use for WebDAV is to store:

� 'publish' releases and files for download;

� non-wiki documents;

� images to be included in wiki pages
without using attachments.

Roberto Gori 86

Common WebDAV clients

available both as a web based service
requiring no software installation, and
as a downloadable application

XXX

Free FTP client
software with support
for FTP/S, SFTP and

WebDAV protocols

AnyClient

Linux filesystem driver that allows
you to mount a WebDAV share

X
WebDAV filesystem
implementation

davfs2

GUI file explorer program able to
perform tree operations on a
WebDAV share

X
File-explorer

WebDAV extension

Microsoft
Web
Folders

Java GUI tool for exploring WebDAV
shares

XXX
Standalone WebDAV
application

DAV
Explorer

Command-line WebDAV client
supporting file transfer, tree, and
locking operations

XX
Standalone WebDAV

application
cadaver

DescriptionLinuxMacWindowsTypeSoftware

Roberto Gori 87

WebDAV at HPC-Forge
https://hpc-forge.cineca.it/files

├───files
├───project01
│ ├───images
│ ├───private
│ ├───public
└───project02
│ ├───images
│ ├─── private
│ ├───public

Images and public are accessible anonymously. Just private
requires authentication. Directory structure can’t be modified.

Roberto Gori 88

Suggested Reading

� Managing Software Development with
Trac and Subversion: Simple project
management for software
development.

� Continuos Integration with Hudson

� Version control with Subversion

