I2th Summer

‘ School on
' SCIENTIFIC
VISUALIZATION

Introduction to Scientific
Computing and Visualization

in Python
Alice Invernizzi- a.invernizzi@cineca.it

SuperComputing Applications and Innovation Department

\

CINECA

Summer
School on

INDEX w ' VISUAUZATION

Introduction

Speeding Up Python: Numpy array data structures

IPython for interactive computation

Visualizing 2D Data with matplotlib

Brief introduction to 3D Visualization with Mayavi

CINECA \

Summer
School on

\ VISUALIZATION

* Python is a powerful, flexible, open-source language that is easy
to learn, easy to use and has powerful libraries for data
manipulation.

* Python has been used in scientific computing and highly
quantitative domains such as finance, oil and gas, physics and
sighal processing...

. http://www.python.org/about/success/#scientific

* What are the key elements that ensure usability of this language
in science?

* Python provides easy-to-use tools for data structuring,
manipulation, query, analysis and visualization

“

http://www.python.org/about/success/

Summer
School on

VISUALIZATION

“The purpose of computation is insight, not numbers”

Richard Hamming, Numerical Analysis for Scientists and Engineer

From Scientific Data To Scientific Visualization

Y &
- o ; - <) ,r, L J
; o LY
b g - AP Lo
N 4 . Y ..4__4 -" JI
’)] ¢
> -~ j - - 2
, - ~¥, s
o= | T vy ;
o - T = o
] - i o3 -
£ N | E " ~.
PN T i " - ! =y P~ —

To understand the meaning of the numbers we
compute, we often need postprocessing, statistical
analysis and graphical visualization of our data.

CINECA

Summer
School on

\ VISUALIZATION

The scientist’s needs
*Get data (simulation, experiment control)

*Manipulate and process data. urllib?2
*Visualize results... to understand what we are doing!

*Communicate results: produce figures for reports or csv,

publications, write presentations. beautifulsoup

Python has all desirable tools for satisfying Scientific
Computing users...

numpy, Sci
*IPython, an advanced Python shell for interactive by by

computing matplot
‘Numpy : provides powerful numerical arrays 1lib,
objects, and routines to manipulate them chaco
*Scipy : high-level data processing routines.

S o ; mayaviz
Optimization, regression, interpolation

*Matplotlib : 2-D visualization, “publication-ready”
plot

*Mayavi : 3-D visualization

“

LaTeX
cherrypy

Summer
n School on

u SCIENTIFIC
VISUALIZATION

Numpy

an efficient multi-dimensional container for
generic data

CINECA

11

Summer
School on

VISUALIZATION

How slow is Python?
Let’s add on one to a million numbers.

~
C:\Users\invernizzi>python -m timeit -c

"[i+1l for i in range(1000000)]"

10 loops, best of 3: 59.3 msec per loop y

Why Python is slow?

*Dynamic typing requires a lot of metadata around variable.
*Python uses heavy frame objects during iteration

Solution:

*Make an object that has a single type and continuous storage.
‘Implement common functionality into that object to iterate in C

CINECA

Summer
School on

VISUALIZATION

Speeding Up Python:
Let’s add on one to a million numbers, using numpy library

~
C:\Users\invernizzi>python -m timeit -s
"import numpy" -c¢ "numpy.arange (1000000)+1"
100 loops, best of 3: 2.91 msec per loop Y

Why Python is fast?

*Homogenous data type object: every item takes up the same size
block of memory .

*Function that operates on ndarray in an element by element
fashion

*Vectorize wrapper for a function
*build-in function are implemented in compiled C code.

CINECA

Summer
School on

VISUALIZATION

B = NVIDIA p—
~“‘/> - ié?u %‘P - i -.
& A CUDA. & scikits;image

Fyopenct PyCUDA

ISM | StatsModlels
. | Statistics ivi Prtlon

pandas wiimi % | @ matplotlib
GO
OpenCV

NumPy _/

“Life is too short to write C++ code*

E\ David Beazley - EuroScipy 2012 Bruxelles

Summer
School on

\ VISUALIZATION

Features:

*A powerful N-dimensional array object

*Broadcasting function

*Tools for integrating C/C++ and Fortran code

*Useful linear algebra, Fourier transform and random number
capabilities.

*Ufuncs, function that operates on ndarrays in an element-by-
element fashion

History:

*Based originally on Numeric by Jim Hugunin

*Also based on NumArray by Perry Greenfield

*Written both by Trevis Oliphant to bring both features set together.

CINECA \.

Summer
School on

Numpy VISUALIZATION

Addintional utilities all names exported to
numpy
fft Discrete Fourier FFT derived from
transforms Numeric
distutils Enhanced build and improvements built on
distribution standard distutils
f2py Automatic wrapping of a useful utility needed
Fortran code by SciPy

Summer
School on

\ VISUALIZATION

Array Creation

>>> import numpy as np

>>> a = np.array([0,1,2,3])

>>> g

array ([0, 1, 2, 3])
>>a=array([0,1,2],dtype=float)
array([0., 1., 2.1)

>>> a=np.arange (10)

>>> g

array ([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> a=np.linspace(0,10,10)

>>> g

array ([O. , 1.11111111, 2.22222222, 3.33333333,
4.44444444, 5.5555555¢, 6.66666667, 7.77777778,
8.88888889, 10. 1)

>>> a=array([[1,2,3]1,[4,5,61])

>>> a

array ([[1, 2, 31,

[4, 5, 6]])

CINECA \.

Summer
School on

Numeric Array VISUALIZATION

Array Creation

array (object, dtype=None, copy=1l,order=None, subok=0,ndmin=0)
arange ([start,]stop[, step=1],dtype=None)

ones (shape, dtype=None, order="'C")

zeros (shape,dtype=float, order="'C")

identity (n,dtype=‘1")

linspace (start, stop, num=50, endpoint=True, retstep=False)
empty (shape, dtype=None, order =‘C’)

eye(N, M=None, k=0, dtype=float)

CINECA \

Summer
School on

VISUALIZATION

Numeric Array

Array Shape

0
CINECA

>>>a=array([[1,2,3],[4,5,611])

>>> a.itemsize

4

>>> a.shape

(2, 3)

>>>a.reshape (6)

array([1,2,3,4,5,6])

>>> a.resize ((3,4))

>>> a

array([[1, 2, 3, 4]
[5, 6, 0, 0]

>>> a.size
12

>>> a.mean ()
1.75

>>> a.max ()
6

>>> a.min ()

a.reshape(6)

a.reshape((3,4))

Summer
School on

\ VISUALIZATION

Array Slicing

4 D

>>> a[4d:,4:]
array ([[44, 45],
[54, 55]11])

>>> al:,2]
array([2,12,22,32,42,52])

>>> a[2::2,::2]
array ([[20, 22, 24],

\\\\\[40, 42, 4411]) A////

CINECA \.

Summer
School on

VISUALIZATION

Unary/Binary Operation

y-

CINECA \

>>> a=array((1,2,3,4)) \\\\
>>> a

array([1, 2, 3, 4])

>>> a+=1

>>> a

array([2, 3, 4, 5])

>>> a*3

array([6, 9, 12, 15])

>>> b=array([[1,2,3,4],[5,6,7,8]])

>>> b

array([[1, 2, 3, 4],
[5, 6, 7, 8]1])

>>> b+a

array([[7, 11, 15, 19],
[11, 15, 19, 23]])

Summer
School on

\ VISUALIZATION

Ufunc: is a function that performs elementwise operations on data in ndarrays

>>> a

array([2, 3, 4, 5])

>>> pow(a,2)

\array([4, 9, 16, 25])

TRIGONOMETRIC OTHERS

sin(x) sinh (x) exp (x) log(x)

cos (x) cosh (x) loglO (x) sqrt (x)

arccos (x) absolute (x) conjugate (x)
negative (x) ceil (x)

arccosh (x) floor (x) fabs (x)

arctan (x) arctanh (x) hypot (x,vy) fmod (x,vy)

arcsin(x) arcsinh (x) maximum(x,y) minimum(x,y)

arctan2 (x,y)

;;;;:—-‘~\h-p

Summer
School on

VISUALIZATION

This example solves Laplace’'s equation over a 2-d rectangular grid using using an

iterative finite difference scheme: AU =0

//;I;SS Grid:
"""A simple grid class that stores the details and

solution of the computational grid."""

ymin=0.0, ymax=1.0):

class LaplaceSolver:

schemes to solve the problem.""™
def numericTimeStep (self, dt=0.01):

\\\\\ def slowTimeStep (self, dt=0.01) :

def init (self, nx=10, ny=10, xmin=0.0, xmax=1.0,

"""A simple Laplacian solver that can use different

~

/

CINECA \ Full code: laplace_benchmark.py

Speeding Up Python with Numpy

Pure Python Computational Core

School on

VISUALIZATION

Summer

/ def slowTimeStep (self, dt=0.01):
g = self.grid

nx, ny = g.u.shape

err += diff*diff
return numpy.sqgrt (err)

"

dx2, dy2 = g.dx**2, g.dy**2
dnr inv = 0.5/ (dx2 + dy2)
u = g.u
err = 0.0
for i in range(l, nx-1):
for j in range(l, ny-1):
tmp = uli, J]
uli,j] = ((ulfi-1, J] + ufli+l, J])*dy2 +(uli,
+ uli,j+1])*dx2) *dnr inv
diff = uf[i,3J] - tmp

~

J-1]

/

CINECA \

Summer
School on

Speeding Up Python with Numpy VISUALIZATION

Numpy Python Computational Core

//;;; numericTimeStep (self, dt=0.0): \\\\\

"""Takes a time step using a NumPy expression."""
g = self.grid

dx2, dy2 = g.dx**2, g.dy**2

dnr inv = 0.5/ (dx2 + dy2)

u = g.u

g.old u = u.copy() # needed to compute the error.

The actual iteration
ufl:-1, 1:-1] = ((u[0:-2, 1:-1] + uf[2:, 1:-1])*dy2 +
(ul[l:-1,0:-2] + ull:-1, 2:])*dx2)*dnr inv

\\\\¥ return g.computeError () /////
CINECA \

Summer

School on
Speeding Up Python with Numpy VISUALIZATION

srun
C:/Users/invernizzi/Documents/CORSI/2013/SCUOLA VISUALIZZA

ZIONe/Esempi/laplace benchmark.py

Solving Equation
Doing 100 iterations on a 500x500 grid
Elapsed Time SlowTimeStep 100.920565005 s
1
Elapsed Time NumericTimeStep 0.771977486264 s 130 X Faster !!

The entire for i and j loops have been replaced in NumericTimeStep by a
single NumPy expression. NumPy expressions operate elementwise.

The beauty of the expression is that its completely done in C. This makes the
computation *much* faster.

CINECA \.

Summer
n School on

u SCIENTIFIC
VISUALIZATION

IPython

A System for Interactive Scientific
Computing

CINECA

11

Why IPython?

Python Shell Limitation

No formatting

No syntax highlighting
No code completion
No function signature
assistence

IPython

Command history

Tab auto-completion.

In-line editing of code.

Object introspection, and
automatic extract of
documentation

Good interaction with operating
system shell.

CINECA \

File Edit

Summer
Schnul on

P SCIENTIFIC
Y 1

w' -~ VISUAUZATION

View Eernel Magic

kernel 1] kernel 2 [£]

Window Help

In [2]:
Out[2]:

In [3]:

In [4]:
%quickre
help
%magic

%history

In [5]:
In [6]
In [7]:
myfunc
In [8]:

Variable

help
Type help() for interactive help, or help(object) for help about object.

Fmagic

%history
.F

m

import numpy as np

def myfunc():
return 1

Jwho
np usage

Jwhos
Type Data/Info
<function myfunc at @x@4F91DFa@>
<module "numpy' from 'C:\<...>ages\numpy__init .pyc'>
<module "IPython.core.usa<...>\IPython\core\usage.pyc'>

function
module
module

Summer
School on

VISUALIZATION

* IPython will treat any line whose first character is a % as a special call to a ‘magic’ function.
These allow you to control the behavior of IPython itself, plus a lot of system-type features.

%autocall: Insert parentheses in calls automatically, e.g. range 3 5
%debug: Debug the current environment

$edit: Run a text editor and execute its output

ggui: Specify a GUI toolkit to allow interaction while its event loop 1is running
history: Print all or part of the input history

%$loadpy: Load a Python file from a filename or URL (!)

%logon and %logoff: Turn logging on and off

gmacro: Names a series of lines from history for easy repetition

gpylab: Loads numpy and matplotlib for interactive use

gquickref: Load a quick-reference guide

$recall: Bring a line back for editing

grerun: Re-run a line or lines

grun: Run a file, with fine control of its parameters, arguments, and more
$save: Save a line, lines, or macro to a file

$timeit: Use Python’s timeit to time execution of a statement, expression, or
block

CINECA

IPython NoteBook

The IPython Notebook is a web-based
interactive computational environment
where you can combine code execution,
text, mathematics, plots and rich media
into a single document.

Embedding IPython

It is possible to start an IPython instance
inside your own Python programs. This
allows you to evaluate dynamically the
state of your code, operate with your
variables, analyze them

CINECA

Summer
School on

VISUALIZATION

IPIyl: Notebook

File Edit View Insert Cell Kernel Help

Untitled1-Copy0Q Last saved: May 15 9:24 AM

8 x & @A /[t [7] 2] »| s [Cde [

EXAMPLE

In [3]: from IPython.display import Math
Math (z'sin(2x)")

out(3]: sin(2z)

In [1]: %pylab inline
% = linspace(0, 3*pi, 500)
-

title('A simple example');
Welcome to pylab, a matplotlib-based Python envirenment

medule://IPython.zng.pylab.backend inline].
or more information, type 'help(pylab)'.

[backend:

A simple example

Summer
n School on

u SCIENTIFIC
VISUALIZATION

Matplotlib

Plotting and Graphing tool in Python

CINECA

11

Summer
School on

VISUALIZATION

“Matplotlib tries to make easy things easy and hard things possible”

John Hunting

Matplotlib is a powerful Python module to creating 2D figures. Matplotlib was modeled on
MATLAB, because graphing is something that MATLAB do very well.

What are the points that built the success of Matplotlib?

*It uses Python: MATLAB lacks many of the features of general purpose languages
*It is opensource

*It is cross-platform: can run on Linux,Windows, Mac OS and Sun Solaris

*It is very customizable and extensible

*Plots should look great - publication quality.

*Postscript output for inclusion with TeX documents

*Embeddable in a graphical user interface for application development

*Code should be easy enough that | can understand it and extend it

*Making plots should be easy

CINECA

Summer
School on

VISUALIZATION

The Matplotlib code is conceptually divided into three parts:

*the pylab interface: the set of functions provided by matplotlib.pylab which allow
the user to create plots with code quite similar to MATLAB figure generating code

*The matplotlib frontend or matplotlib API : the set of classes that do the heavy
lifting, creating and managing figures, text, lines, plots.

*The backends are device dependent drawing devices that transform the frontend
representation to hardcopy or a display device. Example backends: PS hardcopy,
SVG hardcopy, PNG output, GTK GTKAgg, PDF, WxWidgets, Tkinter etc

CINECA

Summer

School on
\ VISUALIZATION
Text Objects
L
Figures: The plot itself, include
A TITLE A e P

dimensions and resolution
Axes: A figure can have multiple
axes, from which can be defined
plots and text
2D lines: 2D lines have properties
1 such as color, thickness, etc

J Texts: Objects which can be used
from figures or axes. Properties
include font, colour, etc.

v,
v

N
2D Line Object
Axes Objects

Figure Objects

CINECA \.

Summer
School on

VISUALIZATION

Matplotlib is designed for object oriented programming. This allows to define
objects such as colours, lines, axes, etc. Plots can also be designed using functions,
in a Matlab-like interface.

There are three ways to use Matplotlib:

pyplot: provides an interface to the underlying plotting library in matplotlib. This
means that figures and axes are implicitly and automatically created to achieve the
desired plot.

pylab: A module to merge Matplotlib and NumPy together in an
environment closer to MATLAB = pyplot+numpy
Object-oriented way: The Pythonic way to interface with Matplotlib

NOTE: The object-oriented is generally preferred for non-interactive plotting (i.e.,
scripting). The pylab interface is convenient for interactive calculations and
plotting.

CINECA

>>>from pylab import *
>>>t=arange (0,5,0.05)
>>>f=2*pi*sin (2*pi*t)
>>>plot (t, £)

>>>grid ()

>>>x1label ('x')

>>>ylabel (Yy')

>>>title (‘Primo grafico’)
>>>show ()

&

\

4

The function show() opens up an interactive window with the plot.

Summer
School on

VISUALIZATION

Primo Grafico

The function show() starts a TK mainloop that blocks the mainloop of the program.
You need to close the new window to continue the execution of the script.

CINECA

Summer
School on

VISUALIZATION

IPython is the designed Python shell for interactive script. If we are in interactive mode, then the figure is
redrawn on every plot command. If we are not in interactive mode, a figure state is updated on every plot
command, but the figure is actually drawn only when an explicit call to draw() or show() is made.

In order to use IPython for interactive plotting, start it in pylab mode.
>>>ipython pylab

Or from the IPython shell using magic word %pylab

IPython 0.13.1 -- An enhanced Interactive Python.

? -> Introduction and overview of IPython's features.

squickref -> Quick reference.

help -> Python's own help system.

object? -> Details about 'object', use 'object??' for extra details.
sqguiref -> A brief reference about the graphical user interface.
spylab

NOTE: interactive property is available in rcParams dictionary

CINECA

Summer
School on

VISUALIZATION

@ Yy N

: lmport numpy as np
>>>from lab import * : :
>>>t=aragge(0,5,%.05) import matplotlib.pyplot as plt

- 1ge | . t=np.arange(0,5,0.05)
>>>f=2*pi*sin (2*pi*t) f=2*np.pi*np.sin(2*np.pi*t)
>>>plot (t, f) lt.plot(t, f)

>>>grid () AP ,

1t. '
>>>xlabel ('x’) glg.gi;ge()l(‘x’)

>>>ylabel (‘y') plt.ylabel (‘y')

>>>title(‘Primo grafico’) , e .
>>>show () plt.title(‘YPrimo grafico’)

\\\» ////\\f?t.ShOW() <///

pylab mode: is convenient for pyplot mode: is generally preferred
interactive calculations and plotting. for non-interactive plotting

CINECA

When the figure object, is defined, some properties such

Summer
School on

VISUALIZATION

as dimensions and resolution, borders colour, etc can be set

//:;> x=arange (0,pi, 0.01)

>>> y=sin (x)

>>> y2=cos (x)

>>> figure (facecolor='g')

>>> plot (x,y,label="sin (x) ")
>>> legend()

>>> figure(figsize=[3,3])

>>> plot (x,y2,label="cos (x)")
>>> legend()

>>> close (1)

\\ii> close('all')

\

4

CINECA \

D.51

L FI I S L
?).m.am.sz.m.ss.m.s

[1l] Figure 3

200 ++ Bv@

Summer
School on

VISUALIZATION

* The function plot () is highly customizable, accommodating various options,
including plotting lines and/or markers, line widths, marker types and sizes,
colors, and legend to associate with each plot.

CINECA

plot (lineZd ,

[properties 1linelZd])

color keyword color: ‘b’ blue, ‘r’ red, ‘g’ green, ‘y’ yellow, ‘k’ black, ‘w’
white, ‘c’ cyan, ‘m’ magenta
label line label used for legends
linestyle line style: ¢* no line, ‘--' dashed, *-* continuous, ‘:° doted, ‘.-* dash-dot
linewidth line width: float value in pixels
marker type: °.” Point, ‘0’ circle, ‘D’ diamond, ‘"’ triangle, ‘s’ square,
marker T IR €1, -
*? star, ‘+’ plus, ‘h’ hexagon,
markersize marker size: float value in pixels
markeredgecolor | marker edge color: cf color
markerfacecolor maker face color: ¢f color

Creating 2D Plot

Setting line2D property

>>>x=arange (0,pi,0.1)

>>>plot (x,sin (x) ,marker="'o"',color="r",

markerfacecolor='b', label="'sin(x) ")
>>>legend ()

Creating Multi-line plot

o

>>>
>>>
>>>
>>>
>>>
>>>
>>>

<

t=arange (0,5,0.05)

f=2*pi*sin (2*pi*t)

f2=sin (2*pi*t) *exp (-2*t)
plot(t,f, 'g--o',t,f2,'r:s?)
hold (True)
f3=2*pi*sin (2*pi*t) *cos (2*pi*t)
plot (t,£f3,'c-.D',label="£f3")
legend (('f1','f2',"£3"))

CINECA \

School on
1.0 :
0.8}
0.6
0.4}
0.2}
%80 05 10 30 3.5
8
¢ @ fl
6 e L) o e f2)4
e @ . 5‘ ® ¢ m-m 3
I 1 1 I
aky ! ;! | [
* o ¢ o L4 [
® e w e 4w ®» "
. . ’e t [
Z‘Q oe 84 %0 @ f‘. A
: r ',f . 1' \‘ '!.‘ '| P v
f H 'I . 1 4 §
0 ‘. e T i T Ll
[Lo Ao
| 4o o4 ede o4 ' o0 9
' . T Ly .
o % ® @ @ @ e
e o ¢ o ° o o
-4 .l) l‘ f 1 1 17
o4 o4 ¢ v
-6} o oo] o8
~8 1 2 1 5

Summer

Summer
School on

VISUALIZATION

Creating sub-plot

subplot() allows to divide the figure in a grid with specified number of
columns and rows. Then we can place our plot in the desired zone.

subplot (numRows, numColumns, PlotIndex)

A e R e e e e e e AR A R AR R R e AR EEa s RN e R e rAN e Ra e r AR e e tra e s naanraas

Poogb-=l
H %.U 05 10 15 20

CINECA \

Creating sub-plot

from pylab import *
X = arange (0, 2.0, 0.01)

subplot (2, 1, 1)
plot (x, x ** 2, 'b--")

subplot (2, 1, 2)
plot (x, cos(2*pi*x), 'r.')

subplots adjust (hspace = 0.5)

QOWO

CINECA \

Summer
School on

A |
f SCIENTIFIC
VISUALIZATION

4.0

3.5
3.01
251
201
15
1.0
0.5F

A
| Il Il Il | Il Il

0. %

0.5 1.0 15 2.0

1.0

0.5F

0.0

14

0.5 1.0 15 2.0

Summer
School on

\ VISUALIZATION

When you create a subplot, an axis instance is automatically created. The
axes can be defined as follows: ax = subplot(111)

To create an axis:

axes ([bottom left corner x, bottom left corner y, width, height])

width
height It is possible to modify axes with:
left | axis([xmin,xmax,ymin,ymax])
: grid()
: xticks(location,label)
: bottom
:
|
1

</

Figure
CINECA

/
/

s

/ x = numpy.random.randn (1
y = numpy.random.randn (1
axscatter = axes ([0.1,
axhistx axes([0.1,0.
axhisty axes ([0. 77 0.

\.‘ OAA

axscatter.scatter (x, V)

draw ()

binwidth = 0.25

xymax = max([max(fabs(x)), max(fabs(y))])
lim = (int (xymax/binwidth) + 1) * binwidth
bins = arange(-lim, lim + binwidth,
binwidth)

axhistx.hist (x, bins=bins)

draw ()

axhisty.hist (y, bins=bins,
orientation='horizontal')

draw ()

<

CINECA

Summer
School on

VISUALIZATION

120
100}
80
60|
40
20

11 I
40 20 4060801002040

Summer
School on

VISUALIZATION

There are several option to annotate a graph with text.

title
0.06
004
0.02 annotate
o
o J//
S 000
-
0.02 L]
004 text
08 65 0.04 0.02 0.00 0.02 0.04 0.06
xlabel

Is is possible to create text
object with several options

CINECA

xlabel (s, *args, **kwargs)

ylabel (s, *args, **kwargs)

title (s, *args, **kwargs)

annotate(s, xy, xytext=None,
textcoords='data', arrowprops=None, **props)
text(x, y, s, fontdict=None, **kwargs)

. [size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-
fontsize - .
large’ | ‘xx-large’ |
fontfamily [FONTNAME | ‘serif” | ‘sans-serif” | ‘cursive’ | ‘fantasy’ | ‘monospace’ |
fontstyle [‘normal’ | ‘italic’ | ‘oblique’]
[@ numeric value in range 0-1000] “ultralight’ | ‘light’ | ‘normal’ |
fontweight ‘regular’ | ‘book’ | ‘medium’ | ‘roman’ | ‘semibold’ | ‘demibold’ | ‘demi’ |
‘bold’ | ‘heavy’ | ‘extra bold’ | “black’]
[@ numeric value in range 0-1000] ‘ultra-condensed’ | ‘extra-condensed’ |
fontstretch ‘condensed’ | ‘semi-condensed’ | ‘normal’ | ‘semi-expanded’ | ‘expanded’
| ‘extra-expanded’ | ‘ultra-expanded’]
color [matplotlib color]
position [(x.y)]. in range 0-1
rotation [angle in degrees | “vertical® | ‘horizontal’]
:;:rtlcalallgmne [‘top’ | ‘center’ | “bottom”]
horizontalalign | vjeq | <center’ | “right |
ment

///
/[>>> x=[9,10,13,12,11,10,9,8,45,11,12,10, 9,
11,10,13,9]

>>> plot (x,label="myfunc')

>>> legend()

>>> title('Mytitle')

>>> ylabel ('y', fontsize="'medium',color="r")
>>> xlabel ('x', fontsize="x-
large',color='b',position=(0.3,1))

>>> text (4,20, 'mytext',

color="'qg', fontsize="medium')

>>> annotate ('annotate',xy=(8,45),xytext=(10,
35) ,arrowprops=dict (facecolor="'black',shrink=0.
05))

\

~__

xlabel(r’Sy i=2\pi\sin(2\pi x)S’) is equal to

CINECA

.

\
\
\

/
/

v

To render mathematical expressions, use a raw string and enclose your mathematical expres-
sion with signs $. For Greek letters, start with a slash followed by the name of the letter.

Summer

School on
VISUALIZATION
42 Mytitle . .
[— mytone]|

401
35} annotate

301

201

15F

101

y; = 2w sin(2mx)

Summer
School on

VISUALIZATION

There are several ways you can use matplotlib:
*Run it interactively with the Python shell
*Automatically process data and generate output in a variety of file format

*Embed it in a graphical user interface, allowing the user to interact with an
application to visualize data.

Displaying a plot can be time consuming, especially for multiple and
complex plots. Plots can be saved without being displayed using the
savefig() function:

X = arange(0,10,0.1)
plot(x, x ** 2)
savefig (‘C:/myplot.png’)

CINECA

Matplotlib Gallery VISUALIZATION

* http:// matplotllb sourceforge net/ gallery html

Mmoo Mg g |

s — —
*m
L B =
b, oy R S——
LYAA bt aten
R FFFFrl : - e
i P L : :

i § jEiigéccé

i

-

E\

http://matplotlib.sourceforge.net/gallery.html

CINECA

Summer
School on

VISUALIZATION

The mplot3d toolkit adds simple 3D plotting capabilities to
matplotlib by supplying an axes object that can create a 2D

projection of a 3D scene. The resulting graph will have the same
look and feel as regular 2D plots.

Lorentz attractor

dx

ﬁ T ﬂ'(y—j_:)!
%: I(;}—E) — Y,
dz

pri Ty — Dz.

N Summer
ool on

mplot3d W VISUAUZATION

import numpy as np
import matplotlib.pyplot as plt

from mpl toolkits.mplot3d import Axes3D

def lorenz(x, vy, z, s=10, r=28, b=2.667)
x dot = s*(y - X)
y dot = r*x - y - x*z
z dot = x*y - b*z
return x dot, y dot, z dot

dt = 0.01

stepCnt = 10000

Need one more for the initial wvalues
Xs = np.empty((stepCnt + 1,))

ys = np.empty((stepCnt + 1,))

zs = np.empty((stepCnt + 1,))

Setting initial values

xs[0], ys[0], zs[O] = (0., 1., 1.05)

CINECA \.

Summer
School on

\ VISUALIZATION

Stepping through "time".

for i in

(stepCnt)
Derivatives of the X, Y, Z state
x dot, y dot, z dot = lorenz(xs[i], ys[1], zs[i])
xs[1 + 1] = xs[1] + (x dot * dt)
ys[i + 1] = ys[i] + (y dot * dt)
zs[i + 1] = zs[i] + (z_dot * dt) orenz Attractr

fig = plt.figure ()
ax = fig.gca(projection='3d")

ax.plot(xs, ys, zs)

ax.set xlabel ("X Axis")

Z Axis

ax.set ylabel ("Y Axis")

ax.set zlabel ("Z Axis")

ax.set_title("Lorenz Attractor")

plt.show ()

CINECA \.

Summer
School on

VISUALIZATION

It is possible to create animated graph:
simple_animation.py
lorentz_animation.py

It is possible to interact with the object graph:
mouse_event.py
picker_example.py

It is possible to customize the plot widget enabling action
matplotlib_radiobutton.py
matplotlib_checkbutton.py

CINECA

Summer
School on

VISUALIZATION

http://wiki.python.org/moin/NumericAndScientific/Plott ing

Plotting Tools

» @ Matzlotlb is an Open Source glotting library designed to sugport interactive and publication qualty platting with a syntax familiar to Matlab users. Its interactive mode supports muliple windowing toalkits (cuently: GTK, Tkinter, @, and wxWindows) as wel as multiple
noninteractive backends (POF, postseript, SVG, antigrain geometry, and Caira). Plots can be embedded within GUI applications or for non-interactive uses without any available display in batch mode. Matplotlib provides both a Matlab-like functional interface as well a5 an
abject orientad interface. (' IPython has a "oylab” made which is specfically designed for interactive plating with matplatl.

» O Veusz s a GPL scientic plotting package witten in Python and Py(t, designed to create publication-qualiy output. Graphs are buit up from simple components, and the pragram fatures an integrated command-line, GUI and scripting interface. Veusz can also be
embedded in other Pythan programs, even thase not using PyCt.

» OVimisisa pure Python library for visualization of 10 to 40 data in an objact oiented way. Essentially, visvis is an object orientad layer of Python on tap of OpenGl, thersby combining the power of OpenG! with the usabilty of Python. A Matlab-lks interface in the form of a
set of functions allows easy creation of abjects (2.q. plot(), imshaw(), volshow(), surf]).

» B Chacos a device-indepandent 20 plotting package based on a DisplayPDF APL It supports fast vactor graphics rendering for interactive data analysis {read: fast vz updating plats) and custom plat construction. Chaca is easy to embed in pythan GUI applications
(vodMindaws, () and provides nica abstractions for averlays and taols (select regions, zoom/pan, cross-hars, abels, data inspectars, etc.). Chaco s able ta autput to any raster format supported by (&' PIL, as well as PDF, PastSarint and 3VG backends. See (#/the gallery
for screenshots and code examples.

» diaCrabher is based on Py(QiGraph and allows you to read, filter, pracass, interpalate and plot n-dimensional values from different saurces {like libreOffice- or csi-flas) and vanable size. Through interactive reading s also possible to evaluate streams in a kind of ‘software-
osciloscops’

» KonradHinsen has some platting support in his ScientificPythan package, for example TkPlatCanves.

» Michael Haggery has Qs Gruplot madule that interfaces vith) the GUPLOT package.

» @ oot wrap A module by Mike Miller which wraps the functions in @ the G platutils package.

» WBLTBLTis an extension o he t widgets that can produce X/ plots and bar charts. The BLT package can be used thraugh @ the Py package, a framework for the creation of megawidgets built on top of Thinter.
» 0 PyQut s a st of Python bindings for the Qut C++ class ibrary which extends the Qt framewark with widgets for scientific and enginssring applications.

» OoUntisa Pythan library based on Qut providing efficient 20 data-plotting faatures (curve/image visualization and related tools) for interactive camputing and signallimage processing application development.

» GDISUN DISLN s & highHlevel and sasy to use graphics library for displaying data as curves, bar graphs, pie charts, J0-calor plots, surfaces, contours and maps. The software s available for several C, Fortran 77 and Foriran 30 compiers. For some aperation systems, the
programming languagas Python and Perl are also supported by DISLIN. DISLIN is frae for the Linux and FreeBSD aperating systems and for the MS-003 and Windows 38/NT compilers GCC, GT7 and ELF0. Other DISLIN versions are available at low prices and can be
tested free of charge.

— () Mayayi Starting fram Mayavi2, the 30 data visualization program Mayavi is fully scriptable from Python, can be integrated in larger applications, and exposes a simple pylab/matlab-ike interface for platting amays.

» @ qdmodule GO is a graphics library for the creation of GIF pictures, witten by Thomas Boutl. gdmodule is an Python extension for this librery. It can do lines, arcs, flls, fonts and can also manipulate cther GIF pictures. Included in the gdmodule is 2 graphing madule,

CINECA S

http://wiki.python.org/moin/NumericAndScientific/Plotting
http://wiki.python.org/moin/NumericAndScientific/Plotting

Summer
School on

VISUALIZATION

Mayavi2 seeks to provide easy and interactive visualization of 3D
data, or 3D plotting. It does this by the following:

*an (optional) rich user interface with dialogs to interact with all
data and objects in the visualization.

*a simple and clean scripting interface in Python, including ready to
use 3D visualization functionality similar to matlab or matplotlib or
an object-oriented programming interface.

‘use the power of VTK without forcing you to learn it.

CINECA

http://www.python.org/
http://matplotlib.sf.net/
http://www.vtk.org/

Summer
School on

VISUALIZATION

So the user can choose three different ways to use Mayavi:

*Use the mayavi2 application completely graphically.

*Use Mayavi as a plotting engine from simple Python scripts, for
example from Ipython, in combination with numpy.

*(Advanced) Script the Mayavi application from Python. The Mayavi
application itself features a powerful and general purpose scripting
API that can be used to adapt it to your needs.

CINECA

- Summer
_School on

VISUALIZATION

Mayavi Interface
Menus TVTK Scene

Mayav2

* Theinteractive
application, mayavi2, is
an end-user tool thatcan | @ ® * % =
be used without any E E;;E: N
programming knowledge

* Mayavi presents a
simplified pipeline view
of the visualization. e Y

* The application displays In [1]:
an interactive Python
shell, where Python
commands can be
entered for immediate Python Interactive

execution. Object Editor Shell

File \isualize Wiew Tools Help

Mayavi TWTK Scene 1 & |

X EMEEE

Engine Tree View

Logger view tab

Mayavi object editor

CINECA \

Summer
School on

VISUALIZATION

Mayavi Engine

* The Engine manages a
collection of Scene.

* In each Scene, a user may
have created any number
of Source

* A Source object can ModuleManager
further contain any [Lookup tables
number of Filter List of Modules
or ModuleManager

objects

CINECA

Summer
School on

VISUALIZATION

* Mayavi can also be used through a simple and yet powerful
scripting API, providing a workflow similar to that of MATLAB or
Mathematica.

* Mayavi’s mlab scripting interface is a set of Python functions that
work with numpy arrays and draw some inspiration from the
MATLAB and matplotlib plotting functions. It can be used
interactively in IPython, or inside any Python script or
application.

* There are a lot of parallels between matplotlib and mayavi:

— there exists huge object-oriented library, allowing you to
control even the smallest detail in a plot.

— there exists a module around that library called mlab, similar
(and in fact inspired by) pylab.

CINECA

Summer
_School on

W' VISUAUZATION

3D

Summer
School on

VISUALIZATION

mlab

Simple problems should have simple solutions

a R

>>> from numpy import *

>>> t = linspace (0,2*pi,50)
>>> u = cos(t)* p 1

>>> x,y,z =sin(u),cos(u),sin(t)
>>> mlab.points3d(x, vy, 2z)

J
N

Y

>>> from numpy import *

>>> t = linspace (0,2*p1i,50)
>>> u = cos(t)* p i

>>> x,y,z =sin(u),cos(u),sin(t)
>>> mlab.plot3d(x, vy, z, t)

(N /
CINECA \

Summer
School on

W' VISUAUZATION

mlab managing the pipeline
%23%%!gﬂpllllllllﬁﬁllllk

/ \ Pipeline | contours | Actor | Texturing
4

X,¥,z2 = ogrid [-5:5:100 j , -5:5:100 jJ T Y- e
Is Surface 7
, -5:5:100 5] ==

Auto update range: ¥

scalars = x*x*0.5 + y*y + z*z*2.0
obj = mlab.contour3d(scalars ,
opacity=0)
mlab.pipeline.scalar cut plane (obj)
mlab.show pipeline ()

g

CINECA \.

Summer
School on

VISUALIZATION

chem. py

we display the H20 molecule,
and use volume

rendering to display the electron
localization function

mri.py

Viewing MRI data with cut plane
and iso surface

We read an MRI scan, we turn it
into a 3D numpy array and we
visualize it

CINECA

Summer
School on

VISUALIZATION

In this exercise we'll plot some weather data read from a .csv file.
Each row rapresents one day, and there are columns for
min/mean/max temperature, dew point, wind speed, etc. We'll be
plotting temperature and weather event data.

- read .csv file with numpy loadtxt function populating a numpy
array only with min/max/mean temperature and weather event

data.

- plot on the same figure using subplot function, max,min and mean
temperature, add axis labels and title

- plot on the same figure using subplot function a trend line for
mean/max/min temperature. Use numpy's polyfit function to add a

trend line.
- plot on a new figure an event histogram counting occurred events

per month as display in figure 2

CINECA

Summer
School on

VISUALIZATION

Mean Temperatures in Bloomlngton 2012 90 Max Temperatures in Bloomington 2012
T T T

80 T T

! ﬁmf

50

- ;3:‘ SO

Figure 1

20
10

Mean Temperature (F)

0 20 40 60 80 100 120 140 %0 20 40 60 80 100 120 140

Min Temperatirey of Bé@armington 2012 Day of Year
T T T

© Max Temperature (F)

70
60
50
40

14 Weather Events in Bloomington 2012

HEEl Rain
Y | Thunderstorm | |
EE Snow

EE Fog

Min Temperature (F)
Y]
o

0 20 40 60 80 100 120 140
Day of Year

Event Count

Figure 2

January February March April
Month

CINECA

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

