
Introduction to Scientific Introduction to Scientific
Computing and Visualization Computing and Visualization
in Pythonin Python

Alice Invernizzi– a.invernizzi@cineca.it
SuperComputing Applications and Innovation Department

INDEX

• Introduction

• Speeding Up Python: Numpy array data structures

• IPython for interactive computation

• Visualizing 2D Data with matplotlib

• Brief introduction to 3D Visualization with Mayavi

Introduction

• Python is a powerful, flexible, open-source language that is easy
to learn, easy to use and has powerful libraries for data
manipulation.

• Python has been used in scientific computing and highly
quantitative domains such as finance, oil and gas, physics and
signal processing…

• http://www.python.org/about/success/#scientific

• What are the key elements that ensure usability of this language
in science?

• Python provides easy-to-use tools for data structuring,
manipulation, query, analysis and visualization

http://www.python.org/about/success/

Introduction
“The purpose of computation is insight, not numbers”

Richard Hamming, Numerical Analysis for Scientists and Engineer

From Scientific Data To Scientific Visualization

To understand the meaning of the numbers we
compute, we often need postprocessing, statistical
analysis and graphical visualization of our data.

Introduction

The scientist’s needs
•Get data (simulation, experiment control)
•Manipulate and process data.
•Visualize results... to understand what we are doing!
•Communicate results: produce figures for reports or
publications, write presentations.

Python has all desirable tools for satisfying Scientific
Computing users…
•IPython, an advanced Python shell for interactive
computing
•Numpy : provides powerful numerical arrays
objects, and routines to manipulate them
•Scipy : high-level data processing routines.
Optimization, regression, interpolation
•Matplotlib : 2-D visualization, “publication-ready”
plot
•Mayavi : 3-D visualization

GET DATA

PARSE IT

PROCESS

VISUALIZE

PUBLISH

csv,
beautifulsoup

numpy, scipy

matplot
lib,
chaco,
mayavi2

LaTeX
cherrypy

urllib2

Numpy

an efficient multi-dimensional container for
generic data

Why Numpy?

How slow is Python?
Let’s add on one to a million numbers.

Why Python is slow?
•Dynamic typing requires a lot of metadata around variable.
•Python uses heavy frame objects during iteration
Solution:
•Make an object that has a single type and continuous storage.
•Implement common functionality into that object to iterate in C

C:\Users\invernizzi>python -m timeit -c
"[i+1 for i in range(1000000)]"
10 loops, best of 3: 59.3 msec per loop

Why Numpy?
Speeding Up Python:
Let’s add on one to a million numbers, using numpy library

Why Python is fast?
•Homogenous data type object: every item takes up the same size
block of memory .
•Function that operates on ndarray in an element by element
fashion
•Vectorize wrapper for a function
•build-in function are implemented in compiled C code.

C:\Users\invernizzi>python -m timeit -s
"import numpy" -c "numpy.arange(1000000)+1"
100 loops, best of 3: 2.91 msec per loop

Numpy

“Life is too short to write C++ code“
David Beazley - EuroScipy 2012 Bruxelles

Numpy

Features:
•A powerful N-dimensional array object
•Broadcasting function
•Tools for integrating C/C++ and Fortran code
•Useful linear algebra, Fourier transform and random number
capabilities.
•Ufuncs, function that operates on ndarrays in an element-by-
element fashion

History:
•Based originally on Numeric by Jim Hugunin
•Also based on NumArray by Perry Greenfield
•Written both by Trevis Oliphant to bring both features set together.

Numpy

Numeric Array

Array Creation

>>> import numpy as np
>>> a = np.array([0,1,2,3])
>>> a
array([0, 1, 2, 3])
>>a=array([0,1,2],dtype=float)
array([0., 1., 2.])
>>> a=np.arange(10)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> a=np.linspace(0,10,10)
>>> a
array([0. , 1.11111111, 2.22222222, 3.33333333,
 4.44444444, 5.55555556, 6.66666667, 7.77777778,
 8.88888889, 10.])
>>> a=array([[1,2,3],[4,5,6]])
>>> a
array([[1, 2, 3],
 [4, 5, 6]])

Numeric Array

Array Creation

array(object, dtype=None, copy=1,order=None, subok=0,ndmin=0)

arange([start,]stop[,step=1],dtype=None)

ones(shape,dtype=None,order='C')

zeros(shape,dtype=float,order='C')

identity(n,dtype=‘l’)

linspace(start, stop, num=50, endpoint=True, retstep=False)

empty(shape, dtype=None, order =‘C’)

eye(N, M=None, k=0, dtype=float)

Numeric Array

Array Shape

>>>a=array([[1,2,3],[4,5,6]])
>>> a.itemsize
4
>>> a.shape
(2, 3)
>>>a.reshape(6)
array([1,2,3,4,5,6])
>>> a.resize((3,4))
>>> a
array([[1, 2, 3, 4],
 [5, 6, 0, 0],
 [0, 0, 0, 0]])
>>> a.size
12
>>> a.mean()
1.75
>>> a.max()
6
>>> a.min()
0

4
1

5 6
2 3

0 0 0 0
5
1

6 0
2 3

0
4

1 2 3 4 5 6

a.reshape(6)

a.reshape((3,4))

Numeric Array

Array Slicing

>>> a[0,3:5]
array([3, 4])

>>> a[4:,4:]
array([[44, 45],
[54, 55]])

>>> a[:,2]
array([2,12,22,32,42,52])

>>> a[2::2,::2]
array([[20, 22, 24],
[40, 42, 44]])

Numeric Array
Unary/Binary Operation

>>> a=array((1,2,3,4))
>>> a
array([1, 2, 3, 4])
>>> a+=1
>>> a
array([2, 3, 4, 5])
>>> a*3
array([6, 9, 12, 15])
>>> b=array([[1,2,3,4],[5,6,7,8]])
>>> b
array([[1, 2, 3, 4],
 [5, 6, 7, 8]])
>>> b+a
array([[7, 11, 15, 19],
 [11, 15, 19, 23]])

Numeric Array

Ufunc: is a function that performs elementwise operations on data in ndarrays

>>> a
array([2, 3, 4, 5])
>>> pow(a,2)
array([4, 9, 16, 25])

Speeding Up Python with Numpy

class Grid:
"""A simple grid class that stores the details and
solution of the computational grid."""
def __init__(self, nx=10, ny=10, xmin=0.0, xmax=1.0,
ymin=0.0, ymax=1.0):
…
…

class LaplaceSolver:
"""A simple Laplacian solver that can use different
schemes to solve the problem.""“

def numericTimeStep(self, dt=0.01):
…
def slowTimeStep(self, dt=0.01):

Full code: laplace_benchmark.py

Speeding Up Python with Numpy

def slowTimeStep(self, dt=0.01):
 g = self.grid
 nx, ny = g.u.shape
 dx2, dy2 = g.dx**2, g.dy**2
 dnr_inv = 0.5/(dx2 + dy2)
 u = g.u
err = 0.0
 for i in range(1, nx-1):
 for j in range(1, ny-1):
 tmp = u[i,j]
 u[i,j] = ((u[i-1, j] + u[i+1, j])*dy2 +(u[i, j-1]

+ u[i,j+1])*dx2)*dnr_inv
 diff = u[i,j] - tmp
 err += diff*diff
 return numpy.sqrt(err)

Pure Python Computational Core

def numericTimeStep(self, dt=0.0):
 """Takes a time step using a NumPy expression."""
 g = self.grid
 dx2, dy2 = g.dx**2, g.dy**2
 dnr_inv = 0.5/(dx2 + dy2)
 u = g.u
 g.old_u = u.copy() # needed to compute the error.

 # The actual iteration
 u[1:-1, 1:-1] = ((u[0:-2, 1:-1] + u[2:, 1:-1])*dy2 +
 (u[1:-1,0:-2] + u[1:-1, 2:])*dx2)*dnr_inv

 return g.computeError()

Speeding Up Python with Numpy

Numpy Python Computational Core

%run
C:/Users/invernizzi/Documents/CORSI/2013/SCUOLA_VISUALIZZA
ZIONe/Esempi/laplace_benchmark.py

Solving Equation
Doing 100 iterations on a 500x500 grid
Elapsed Time SlowTimeStep 100.920565005 s
Elapsed Time NumericTimeStep 0.771977486264 s

The entire for i and j loops have been replaced in NumericTimeStep by a
single NumPy expression. NumPy expressions operate elementwise.

The beauty of the expression is that its completely done in C. This makes the
computation *much* faster.

Speeding Up Python with Numpy

130 X Faster !!

IPython

A System for Interactive Scientific
Computing

Why IPython?

Python Shell Limitation

No formatting
No syntax highlighting
No code completion
No function signature
assistence
…

IPython
Command history
Tab auto-completion.
In-line editing of code.
Object introspection, and
automatic extract of
documentation
Good interaction with operating
system shell.

Ipython Magic
• IPython will treat any line whose first character is a % as a special call to a ‘magic’ function.

These allow you to control the behavior of IPython itself, plus a lot of system-type features.

%autocall: Insert parentheses in calls automatically, e.g. range 3 5
%debug: Debug the current environment
%edit: Run a text editor and execute its output
%gui: Specify a GUI toolkit to allow interaction while its event loop is running
%history: Print all or part of the input history
%loadpy: Load a Python file from a filename or URL (!)
%logon and %logoff: Turn logging on and off
%macro: Names a series of lines from history for easy repetition
%pylab: Loads numpy and matplotlib for interactive use
%quickref: Load a quick-reference guide
%recall: Bring a line back for editing
%rerun: Re-run a line or lines
%run: Run a file, with fine control of its parameters, arguments, and more
%save: Save a line, lines, or macro to a file
%timeit: Use Python’s timeit to time execution of a statement, expression, or

block

More on IPython

IPython NoteBook
The IPython Notebook is a web-based
interactive computational environment
where you can combine code execution,
text, mathematics, plots and rich media
into a single document.

Embedding IPython
It is possible to start an IPython instance
inside your own Python programs. This
allows you to evaluate dynamically the
state of your code, operate with your
variables, analyze them

Matplotlib

Plotting and Graphing tool in Python

Matplotlib

Matplotlib is a powerful Python module to creating 2D figures. Matplotlib was modeled on
MATLAB, because graphing is something that MATLAB do very well.

What are the points that built the success of Matplotlib?

•It uses Python: MATLAB lacks many of the features of general purpose languages
•It is opensource
•It is cross-platform: can run on Linux,Windows, Mac OS and Sun Solaris
•It is very customizable and extensible
•Plots should look great - publication quality.
•Postscript output for inclusion with TeX documents
•Embeddable in a graphical user interface for application development
•Code should be easy enough that I can understand it and extend it
•Making plots should be easy

“Matplotlib tries to make easy things easy and hard things possible”

John Hunting

Matplotlib

The Matplotlib code is conceptually divided into three parts:

•the pylab interface: the set of functions provided by matplotlib.pylab which allow
the user to create plots with code quite similar to MATLAB figure generating code

•The matplotlib frontend or matplotlib API : the set of classes that do the heavy
lifting, creating and managing figures, text, lines, plots.

•The backends are device dependent drawing devices that transform the frontend
representation to hardcopy or a display device. Example backends: PS hardcopy,
SVG hardcopy, PNG output, GTK GTKAgg, PDF, WxWidgets, Tkinter etc

Matplotlib: main objects

TITLE

Text Objects

2D Line Object
Axes Objects

Figure Objects

Figures: The plot itself, include
dimensions and resolution
Axes: A figure can have multiple
axes, from which can be defined
plots and text
2D lines: 2D lines have properties
such as color, thickness, etc
Texts: Objects which can be used
from figures or axes. Properties
include font, colour, etc.

How to work with Matplotlib

Matplotlib is designed for object oriented programming. This allows to define
objects such as colours, lines, axes, etc. Plots can also be designed using functions,
in a Matlab-like interface.

There are three ways to use Matplotlib:
pyplot: provides an interface to the underlying plotting library in matplotlib. This
means that figures and axes are implicitly and automatically created to achieve the
desired plot.
pylab: A module to merge Matplotlib and NumPy together in an
environment closer to MATLAB = pyplot+numpy
Object-oriented way: The Pythonic way to interface with Matplotlib

NOTE: The object-oriented is generally preferred for non-interactive plotting (i.e.,
scripting). The pylab interface is convenient for interactive calculations and
plotting.

Simple Example

>>>from pylab import *
>>>t=arange(0,5,0.05)
>>>f=2*pi*sin(2*pi*t)
>>>plot(t,f)
>>>grid()
>>>xlabel(‘x’)
>>>ylabel(‘y’)
>>>title(‘Primo grafico’)
>>>show()

The function show() opens up an interactive window with the plot.
The function show() starts a TK mainloop that blocks the mainloop of the program.
You need to close the new window to continue the execution of the script.

Interactive mode
IPython is the designed Python shell for interactive script. If we are in interactive mode, then the figure is
redrawn on every plot command. If we are not in interactive mode, a figure state is updated on every plot
command, but the figure is actually drawn only when an explicit call to draw() or show() is made.

In order to use IPython for interactive plotting, start it in pylab mode.

>>>ipython pylab

Or from the IPython shell using magic word %pylab

IPython 0.13.1 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.
%guiref -> A brief reference about the graphical user interface.

%pylab

NOTE: interactive property is available in rcParams dictionary

pylab , pyplot

>>>from pylab import *
>>>t=arange(0,5,0.05)
>>>f=2*pi*sin(2*pi*t)
>>>plot(t,f)
>>>grid()
>>>xlabel(‘x’)
>>>ylabel(‘y’)
>>>title(‘Primo grafico’)
>>>show()

import numpy as np
import matplotlib.pyplot as plt
t=np.arange(0,5,0.05)
f=2*np.pi*np.sin(2*np.pi*t)
plt.plot(t,f)
plt.grid()
plt.xlabel(‘x’)
plt.ylabel(‘y’)
plt.title(‘Primo grafico’)
plt.show()

pylab mode: is convenient for
interactive calculations and plotting.

pyplot mode: is generally preferred
for non-interactive plotting

Figure

>>> x=arange(0,pi,0.01)
>>> y=sin(x)
>>> y2=cos(x)
>>> figure(facecolor='g')
>>> plot(x,y,label='sin(x)')
>>> legend()
>>> figure(figsize=[3,3])
>>> plot(x,y2,label='cos(x)')
>>> legend()
>>> close(1)
>>> close('all')

When the figure object, is defined, some properties such
as dimensions and resolution, borders colour, etc can be set

Creating a 2D plot

• The function plot() is highly customizable, accommodating various options,
including plotting lines and/or markers, line widths, marker types and sizes,
colors, and legend to associate with each plot.

plot(line2d , [properties line2d])

Creating 2D Plot

>>>x=arange(0,pi,0.1)
>>>plot(x,sin(x),marker='o',color='r',
markerfacecolor='b',label='sin(x)')
>>>legend()

Setting line2D property

Creating Multi-line plot

>>> t=arange(0,5,0.05)
>>> f=2*pi*sin(2*pi*t)
>>> f2=sin(2*pi*t)*exp(-2*t)
>>> plot(t,f,'g--o',t,f2,'r:s‘)
>>> hold(True)
>>> f3=2*pi*sin(2*pi*t)*cos(2*pi*t)
>>> plot(t,f3,'c-.D',label='f3')
>>> legend(('f1','f2‘,’f3’))

subplot() allows to divide the figure in a grid with specified number of
columns and rows. Then we can place our plot in the desired zone.

Creating sub-plot

subplot(numRows, numColumns, PlotIndex)

Creating sub-plot

from pylab import *
x = arange (0, 2.0, 0.01)

subplot(2, 1, 1)
plot(x, x ** 2, 'b--')

subplot(2, 1, 2)
plot(x, cos(2*pi*x), 'r.')

subplots_adjust(hspace = 0.5)
show()

Axes

When you create a subplot, an axis instance is automatically created. The
axes can be defined as follows: ax = subplot(111)
To create an axis:

axes([bottom_left_corner_x, bottom_left_corner_y, width, height])

It is possible to modify axes with:

axis([xmin,xmax,ymin,ymax])
grid()
xticks(location,label)

Axes

x = numpy.random.randn(1000)
y = numpy.random.randn(1000)
axscatter = axes([0.1,0.1,0.65,0.65])
axhistx = axes([0.1,0.77,0.65,0.2])
axhisty = axes([0.77,0.1,0.2,0.65])

axscatter.scatter(x, y)
draw()
binwidth = 0.25
xymax = max([max(fabs(x)), max(fabs(y))])
lim = (int(xymax/binwidth) + 1) * binwidth
bins = arange(-lim, lim + binwidth,
binwidth)
axhistx.hist(x, bins=bins)
draw()
axhisty.hist(y, bins=bins,
orientation='horizontal')
draw()

Text

text

There are several option to annotate a graph with text.

xlabel (s, *args, **kwargs)
ylabel (s, *args, **kwargs)
title (s, *args, **kwargs)
annotate(s, xy, xytext=None,
textcoords='data',arrowprops=None,**props)
text(x, y, s, fontdict=None,**kwargs)

Is is possible to create text
object with several options

Text

>>> x=[9,10,13,12,11,10,9,8,45,11,12,10,9,
11,10,13,9]
>>> plot(x,label='myfunc')
>>> legend()
>>> title('Mytitle')
>>> ylabel('y',fontsize='medium',color='r')
>>> xlabel('x',fontsize='x-
large',color='b',position=(0.3,1))
>>> text(4,20,'mytext',
color='g',fontsize='medium')
>>> annotate('annotate',xy=(8,45),xytext=(10,
35),arrowprops=dict(facecolor='black',shrink=0.
05))

Images File

There are several ways you can use matplotlib:
•Run it interactively with the Python shell
•Automatically process data and generate output in a variety of file format
•Embed it in a graphical user interface, allowing the user to interact with an
application to visualize data.

Displaying a plot can be time consuming, especially for multiple and
complex plots. Plots can be saved without being displayed using the
savefig() function:
x = arange(0,10,0.1)

plot(x, x ** 2)

savefig(‘C:/myplot.png’)

Matplotlib Gallery

• http://matplotlib.sourceforge.net/gallery.html

http://matplotlib.sourceforge.net/gallery.html

mplot3d

• The mplot3d toolkit adds simple 3D plotting capabilities to
matplotlib by supplying an axes object that can create a 2D
projection of a 3D scene. The resulting graph will have the same
look and feel as regular 2D plots.

Lorentz attractor

mplot3d

import numpy as np
import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

def lorenz(x, y, z, s=10, r=28, b=2.667) :

 x_dot = s*(y - x)

 y_dot = r*x - y - x*z

 z_dot = x*y - b*z

 return x_dot, y_dot, z_dot

dt = 0.01
stepCnt = 10000
Need one more for the initial values
xs = np.empty((stepCnt + 1,))
ys = np.empty((stepCnt + 1,))
zs = np.empty((stepCnt + 1,))
Setting initial values
xs[0], ys[0], zs[0] = (0., 1., 1.05)

mplot3d
Stepping through "time".

for i in

(stepCnt) :
 # Derivatives of the X, Y, Z state

 x_dot, y_dot, z_dot = lorenz(xs[i], ys[i], zs[i])

 xs[i + 1] = xs[i] + (x_dot * dt)

 ys[i + 1] = ys[i] + (y_dot * dt)

 zs[i + 1] = zs[i] + (z_dot * dt)

fig = plt.figure()
ax = fig.gca(projection='3d')

ax.plot(xs, ys, zs)

ax.set_xlabel("X Axis")

ax.set_ylabel("Y Axis")

ax.set_zlabel("Z Axis")

ax.set_title("Lorenz Attractor")

plt.show()

More on Matplotlib

It is possible to create animated graph:
simple_animation.py
lorentz_animation.py

It is possible to interact with the object graph:
 mouse_event.py

picker_example.py

It is possible to customize the plot widget enabling action
matplotlib_radiobutton.py
matplotlib_checkbutton.py

More on Scientific
Visualization in Python
http://wiki.python.org/moin/NumericAndScientific/Plott ing

http://wiki.python.org/moin/NumericAndScientific/Plotting
http://wiki.python.org/moin/NumericAndScientific/Plotting

A brief introduction to
Mayavi

Mayavi2 seeks to provide easy and interactive visualization of 3D
data, or 3D plotting. It does this by the following:

•an (optional) rich user interface with dialogs to interact with all
data and objects in the visualization.
•a simple and clean scripting interface in Python, including ready to
use 3D visualization functionality similar to matlab or matplotlib or
an object-oriented programming interface.
•use the power of VTK without forcing you to learn it.

http://www.python.org/
http://matplotlib.sf.net/
http://www.vtk.org/

A brief introduction to
Mayavi

So the user can choose three different ways to use Mayavi:

•Use the mayavi2 application completely graphically.
•Use Mayavi as a plotting engine from simple Python scripts, for
example from Ipython, in combination with numpy.
•(Advanced) Script the Mayavi application from Python. The Mayavi
application itself features a powerful and general purpose scripting
API that can be used to adapt it to your needs.

Mayavi Interface

• The interactive
application, mayavi2, is
an end-user tool that can
be used without any
programming knowledge

• Mayavi presents a
simplified pipeline view
of the visualization.

• The application displays
an interactive Python
shell, where Python
commands can be
entered for immediate
execution.

Mayavi Engine

• The Engine manages a
collection of Scene.

• In each Scene, a user may
have created any number
of Source

• A Source object can
further contain any
number of Filter
or ModuleManager
objects

Simple Python Scripting with
Mayavi
• Mayavi can also be used through a simple and yet powerful

scripting API, providing a workflow similar to that of MATLAB or
Mathematica.

• Mayavi’s mlab scripting interface is a set of Python functions that
work with numpy arrays and draw some inspiration from the
MATLAB and matplotlib plotting functions. It can be used
interactively in IPython, or inside any Python script or
application.

• There are a lot of parallels between matplotlib and mayavi:
– there exists huge object-oriented library, allowing you to

control even the smallest detail in a plot.
– there exists a module around that library called mlab, similar

(and in fact inspired by) pylab.

0D 1D

2D

3D

mlab

mlab

>>> from numpy import *
>>> t = linspace (0,2*pi,50)
>>> u = cos(t)* p i
>>> x,y,z =sin(u),cos(u),sin(t)
>>> mlab.points3d(x, y, z)

>>> from numpy import *
>>> t = linspace (0,2*pi,50)
>>> u = cos(t)* p i
>>> x,y,z =sin(u),cos(u),sin(t)
>>> mlab.plot3d(x, y, z, t)

Simple problems should have simple solutions

mlab managing the pipeline

x,y,z = ogrid [-5:5:100 j , -5:5:100 j
, -5:5:100 j]
scalars = x*x*0.5 + y*y + z*z*2.0
obj = mlab.contour3d(scalars ,
opacity=0)
mlab.pipeline.scalar_cut_plane(obj)
mlab.show_pipeline()

mlab managing pipeline

chem.py
we display the H2O molecule,
and use volume
rendering to display the electron
localization function

mri.py
Viewing MRI data with cut plane
and iso surface
We read an MRI scan, we turn it
into a 3D numpy array and we
visualize it

Brief Exercise on Matplotlib

Brief Exercise on Matplotlib

Figure 1

Figure 2

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

