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The context: bioimage informatics (1/2) 

2/58 

 using computational techniques to analyze (= extract useful information from) multi-
dimensional bioimages at molecular, cellular or systemic scale, e.g. : 
− high-content screening (or visual screening) for drug discovery 
− cells segmentation 
− mapping brain circuits 
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The context: bioimage informatics (2/2) 

 automated microscopes and the 
increase in resolution has led to 
bioimage data explosion 
− terascale has become a reality 

 need of automatic processing 
− fully- or semi-automatic? 
− human intervention might be 

needed 
 post-processing proofreading 
 semi-automatic analysis 

2-5D visualization-
assisted analysis 
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The goal: visualization-assisted analysis of large bioimages (1/2) 
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The goal: visualization-assisted analysis of large bioimages (2/2) 
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The state of the art 

 free and/or open-source visualization tools 
− Voxx, OME, ImageJ, Icy, ilastik, CellProfiler, CellOrganizer, CellExplorer, FARSIGHT, 

Bisque, BrainExplorer, BrainAligner, 3D Slicer, ParaView 

 commercial tools 
− Amira (VSG), Imaris (Bitplane), ImagePro (MediaCybernetics), Neurolucida (MBF 

Bioscience) 

 standalone 3-5D visualization-assisted analysis of large images not feasible with any of 
these tools at present 
− large ≠ terascale 
− missing 3-5D visualization 
− low versatility: supported image formats, cross-platform, etc. 
− low extendibility: how many available plugins? Are they easy-to-write? 
− high memory requirements: both system RAM and GPU RAM 
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“Vaa3D is designed expressly for working with 3D volumetric data and is built on an efficient 
3D renderer that allows real-time visualization and manipulation of multigigabyte–sized 
data on a standard computer. […] it may not be as fun as 3D gaming but Vaa3D promises to 
make working with 3D image data in the lab much more enjoyable” 

Vaa3D(1): enjoying working with 3D image data!  

Hanchuan Peng 

Daniel Evanko, “Connecting the dots in 3D”, Nature Methods highlights, 2010 

(1) Peng, H. et al, “V3D enables real-time 3D visualization and quantitative analysis of large-scale biological 
image data sets”, Nature Biotechnology 28, 348-353, 2010 

 developed and under development at Peng Lab 
 members that left 

recruiting 

Zhi Zhou 

Alessandro Bria 
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Vaa3D: architecture 

Vaa3D 

core 

Vaa3D plugins 

Qt 

3D renderer 

neuron annotator 
… 

Boost 
libtiff 

neuron editing 

newmat11 

image I/O 

neuron tracing 

neuron toolbox 

OpenGL 

Vaa3D plugin interface 

LOCI BioFormat Importer Plugin creator TeraFly … 

core GUI … 
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 3D color image stacks 
− Tiff stack (.tif, .tiff), Zeiss LSM (.lsm), MRC (used for electron microscopy images) (.mrc), Vaa3D's 

raw file (.v3draw, .raw) 
− any bioimage format supported by LOCI Bioinformats Java library (using the Vaa3D-bioformats 

plugin) 

 5D time series of color image stacks 
− each time point saved as a separate file (end with suffix like 000.tif, 001.tif, ...) 
− each time point saved as a single slice of a 3D image stack of whatever formats Vaa3D supports 

(e.g. tiff, or Vaa3D's raw) 

 3D irregular shaped surfaces: Wavefront .OBJ files, Vaa3D’s surface format (.v3ds) 

 3D point cloud: .apo file (a simple CSV format with fixed number of columns) 

 3D landmarks: .marker (indeed a simple CSV format), .csv 

Vaa3D: supported bioimage formats 
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Vaa3D: basic use 
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Vaa3D: surface rendering and creation 
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Vaa3D: neuron editing 
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Vaa3D: visualizing 5D data 

 On-air demostration 
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Vaa3D: 2-mouse click 3D pinpointing (1/2) 
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 be A and B the two non-parallel rays 
generated at two viewing angles, 
corresponding to 2-mouse clicks 
− each click defines a ray through the 

current cursor location orthogonal to the 
screen 

 a marker is created at the point in space 
for which the sum of its Euclidean 
distance to A and B is minimal 
− robust to inaccuracy in the user’s 2D clicks 

Vaa3D: 2-mouse click 3D pinpointing (2/2) 
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Vaa3D: 1-mouse click 3D pinpointing (1/2) 



UCBM (Rome) – Allen Institute (Seattle)  17/58 

Vaa3D: 1-mouse click 3D pinpointing (2/2) 

 the most probable location on A is 
estimated by applying the mean-shift 
algorithm on the intensity distribution 
− the initial center of mass (CoM) p1 is 

computed along the whole ray [0, R1] 
intersecting the volume 

− the CoM is repeatedly reestimated by 
using progressively smaller intervals 
around the proceeding CoM until 
convergence 

 can be used for quick manual cell-
counting or for quantitatively profiling 
the voxel intensity along the straight 
line segment connecting two markers  
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Vaa3D: semi-automatic neuron tracing (1/2) 
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Vaa3D: semi-automatic neuron tracing (2/2) 

 searching the “optimal path” connecting 
a set of markers 
− voxels are considered as graph vertexes 
− edges connect each pair of adjacent 

voxels 
− edge weight is the inverse of the average 

intensity of the two voxels 
− Dijkstra’s algorithm is used to find the 

least-cost path between pairs of markers 

 individual segments are defined as 
paths between markers and branching 
points 
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Vaa3D: 1-stroke 3D curving 
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Vaa3D: built-in plugins 

a plugin to create plugins! 

importing ANY bioimage format 

image filters 

image registration 

image stitching 

movie maker 
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Vaa3D: a tutorial for developing a plugin (1/8) 

 Setting up the development environment under Linux / MacOS 
− get and build (or install, if available for your platform) Qt 4.7.2 (or .3, .4) 
− get and build Vaa3D source code by following instructions at 

https://code.google.com/p/vaa3d/ 
− get and install Qt Creator (optional) 

 Setting up the development environment under Windows 
− download the precompiled binaries Qt 4.7.2 for Visual Studio 2008 
− check the prerequisites at https://code.google.com/p/vaa3d/ 
− get and build Vaa3D source code by following the build instructions for CMake at the 

Vaa3D’s google code webpage. Use Visual Studio 2008 as both project generator and 
compiler. 

− get and install Qt Creator (optional) 

 

https://code.google.com/p/vaa3d/
https://code.google.com/p/vaa3d/
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Vaa3D: a tutorial for developing a plugin (2/8) 

 Using Vaa3D plugin creator  for creating a Qt project of a new plugin 

The name of the plugin that will appear under 
the Vaa3D plugins menu 

The name of the C++ class interfacing with 
the Vaa3D plugin loader 

In-Vaa3D functions (will appear in the menu) 

Path of the “v3d_external” folder 

Command-line functions 



TEMPLATE = lib 
CONFIG += qt plugin warn_off 
VAA3DPATH  = D:\Vaa3D\v3d_external 
INCLUDEPATH += $$VAA3DPATH/v3d_main/basic_c_fun 
 
HEADERS += myPlugin_plugin.h 
SOURCES += myPlugin_plugin.cpp 
SOURCES += 
$$VAA3DPATH/v3d_main/basic_c_fun/v3d_message.cpp 
 
TARGET = $$qtLibraryTarget(myPlugin) 
DESTDIR = $$VAA3DPATH/bin/plugins/myPlugin/ 
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Vaa3D: a tutorial for developing a plugin (3/8) 

 myplugin.pro 

Vaa3D core functions, I/O, etc. 

path of the “v3d_external” folder 

configuring the current project as a Qt plugin 

plugin headers and source files 



#ifndef __MYPLUGIN_PLUGIN_H__ 
#define __MYPLUGIN_PLUGIN_H__ 
 
#include <QtGui> 
#include <v3d_interface.h> 
 
class CPlugin : public QObject, V3DPluginInterface2_1 
{ 
   Q_OBJECT 
   Q_INTERFACES(V3DPluginInterface2_1); 
 
public: 
   float getPluginVersion() const {return 1.1f;} 
 
   QStringList menulist() const; 
   void domenu(const QString &menu_name,  

V3DPluginCallback2 &callback, QWidget *parent); 
 
   QStringList funclist() const ; 
   bool dofunc(const QString &func_name, const 

V3DPluginArgList &input, V3DPluginArgList &output, 
V3DPluginCallback2 &callback, QWidget *parent); 

}; 
 
#endif 
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Vaa3D: a tutorial for developing a plugin (4/8) 

 myplugin_plugin.h 

generates the plugin menu in Vaa3D 

a Qt class MUST start with Q_OBJECT 

processes the user’s menu selection 

configuring the current class as a Qt plugin 

command-line interaction 



Q_EXPORT_PLUGIN2(myPlugin, CPlugin); 
 
QStringList CPlugin::menulist() const 
{ 
    return QStringList()  
           <<tr("thresholding") 
           <<tr("about"); 
} 
 
 
void CPlugin::domenu(const QString &menu_name, 

V3DPluginCallback2 &callback, 
QWidget *parent) 

{ 
    if (menu_name == tr("thresholding")) 
    { 
        v3d_msg("To be implemented."); 
    } 
    else 
    { 
        v3d_msg(tr("This is a test plugin, you can 

use it as a demo..Developed by Alessandro 
Bria, 2012-01-01")); 

    } 
} 
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Vaa3D: a tutorial for developing a plugin (5/8) 

 myplugin_plugin.cpp 

generates the plugin menu in Vaa3D 

processes the user’s menu selection 

configuring the current class as a Qt plugin 
named myPlugin. The name must match the  
TARGET parameter in the .pro 

Displaying an “About” message when the user 
selects “about” from the plugin menu 

displays a message to the user when selecting 
“thresholding” from the plugin menu 



////invoke a Vaa3D plugin function 
        virtual bool callPluginFunc(const QString & plugin_name, const QString & func_name, 
                                    const V3DPluginArgList & input, V3DPluginArgList & output) = 0; 
 
////get opened images  
 
        //obtain a list of all currently opened images 
        virtual v3dhandleList getImageWindowList() const = 0; 
 
        //obtain the *current* selected image window, defined as the tri-view window currently selected in Vaa3D main window 
        virtual v3dhandle currentImageWindow() = 0; 
 
        //obtain the *current* selected image window, defined as the currently being operated 3D viewer 
        //curHiddenSelectedWindow may not be the *currentImageWindow* if the selection is done from a 3d viewer 
        virtual v3dhandle curHiddenSelectedWindow() = 0;  
 
////set computed image content/result  
 
        //create a new image window for returning some computed image content 
        virtual v3dhandle newImageWindow(QString name="new_image") = 0; 
 
        //directly output computed image content to an existing image window. The size of the window will be changed             
        //automatically. 
        virtual void updateImageWindow(v3dhandle image_window) = 0; 
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Vaa3D: a tutorial for developing a plugin (6/8) 

 V3DPluginCallback (1/3) 



////manipulate image names 
 
        virtual QString getImageName(v3dhandle image_window) const = 0; 
        virtual void setImageName(v3dhandle image_window, QString name) = 0; 
 
////access the actual 4D image data structure 
 
        virtual Image4DSimple * getImage(v3dhandle image_window) = 0; 
        virtual bool setImage(v3dhandle image_window, Image4DSimple * image) = 0; 
 
////access the 3D landmark list defined for an image 
 
        virtual LandmarkList  getLandmark(v3dhandle image_window) = 0; 
        virtual bool setLandmark(v3dhandle image_window, LandmarkList & landmark_list) = 0; 
 
////access the 3D region of interest (ROI) defined for an image 
 
        virtual ROIList getROI(v3dhandle image_window) = 0; 
        virtual bool setROI(v3dhandle image_window, ROIList & roi_list) = 0; 
 
////access the 3D curve, 3D curve set, and 3D reconstructed neuron structure for an image 
 
        virtual NeuronTree getSWC(v3dhandle image_window) = 0; 
        virtual bool setSWC(v3dhandle image_window, NeuronTree & nt) = 0; 
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Vaa3D: a tutorial for developing a plugin (7/8) 

 V3DPluginCallback (2/3) 



////operating (open/close) the rendering windows 
 
        //open and close a global 3D viewer 
        virtual void open3DWindow(v3dhandle image_window) = 0; 
        virtual void close3DWindow(v3dhandle image_window) = 0; 
 
        //open and close a local 3D viewer 
        virtual void openROI3DWindow(v3dhandle image_window) = 0; 
        virtual void closeROI3DWindow(v3dhandle image_window) = 0; 
 
////Data pushing functions 
 
        //update the surface objects currently being displayed in a 3D viewer 
        virtual void pushObjectIn3DWindow(v3dhandle image_window) = 0; 
 
        //update the content in a 3D viewer directly 
        virtual void pushImageIn3DWindow(v3dhandle image_window) = 0; 
 
        //update the time point of a 3D viewer if it is displaying 5D (temporal) data 
        virtual int pushTimepointIn3DWindow(v3dhandle image_window, int timepoint) = 0; 
 
////direct pointers to Vaa3D internal data structure 
 
        virtual View3DControl * getView3DControl(v3dhandle image_window) = 0; 
        virtual View3DControl * getLocalView3DControl(v3dhandle image_window) = 0; 
        virtual TriviewControl * getTriviewControl(v3dhandle image_window) = 0; 
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Vaa3D: a tutorial for developing a plugin (8/8) 

 V3DPluginCallback (3/3) 

Direct access to Vaa3D core! 
To be used with care. 
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Vaa3D: implementing an example plugin 

 On-air demostration 
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Moving towards terascale bioimages: The Projectome Project 

 High Performance Computational Infrastructure for processing and 
visualizing neuro-anatomical information obtained using CLSM 

 Whole mouse brain 3D imaging with Confocal Light-Sheet Microscopy: 
− micrometer resolution 
− cm-sized specimen 
− TeraVoxel-sized dataset 
 

International Center of 
Computational Neurophotonics 
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Moving towards terascale bioimages: CLSM microscopy 

 neurons and other structures are selectively labeled 
with a fluorescent protein 

 the specimen is optically cleared and fixed 

 the specimen is illuminated by a thin sheet of light 
and the fluorescence emission is observed from the 
scanning axis perpendicular to the illumination 
plane 

 translations of the light sheet along the scanning 
axis produce a stack of 2D slices 

 the field of view of the confocal microscope is 
limited, so translations of the system along V, H axes 
are needed to produce different overlapping stacks 
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 fast 2D approach to align adjacent stacks 

 efficient use of memory resources (< 2GB of memory peak) 

 the stitched volume is saved into a multiresolution representation suited for 
further processing 

Moving towards terascale bioimages: TeraStitcher (1/3) 
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Moving towards terascale bioimages: TeraStitcher (2/3) 

 results 

the Vaa3D’s built-in stitching plugin 
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Moving towards terascale bioimages: TeraStitcher (3/3) 
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TeraFly: overview (1/3) 

 Vaa3D’s 3D rendering cannot handle very large 3D images 
− e.g. 1 GigaVoxels images require at least a video card with 1 GB of dedicated memory 

 TeraFly extends the Vaa3D software to cope with (potentially) unlimited sized bioimages 
even on laptops with a limited amount of system memory (≤ 4 GB) and video card 
memory (≤ 1 GB) 
− easy zoom-in/out with mouse-scroll 
− 4D supported (5D support work in progress        ) 
− automatic scaling of 3D markers and 3D curves throughout 3D navigation 
− annotation of 3D objects 
− basic caching (advanced caching work in progress       ) 
− separate translations along X, Y, Z 
− separate threads for GPU and I/O 
− fast zoom-in by interpolation + subsequent refinement by image slicing (web-like) 
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TeraFly: overview (2/3) 

 the underlying idea is to mimic the behavior of Google Earth 
− what you see is what you need (WYSIWYN) 
− multiresolution representation 
− mouse scroll for zoom-in/out 
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TeraFly: overview (3/3) 
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TeraFly: multiresolution representation 

 the volume is saved in tiled format at different 
resolutions 𝑖 = 0, … , 𝑘 
− i-th resolution is obtained by dividing i-1-th 

resolution by 2, that is equivalent to divide the 
original resolution by 2𝑖  

− 𝑘 is chosen so as the k-th resolution has size 
<100 MegaVoxels, thus it can be easily handled 
by the Vaa3D renderer 

− e.g. for a ∼1 TeraVoxels volume whose size is 
10.000 × 10.000 × 10.000 

− 𝑘 = 5 and the 5-th resolution has size ∼29 
MegaVoxels  

 tiles dimensions is typically in [256, 512]  

𝑘 = 2 

0 

1 
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TeraFly: architecture (1/2) 

Vaa3D 
core 

TeraFly 

3D renderer … 

Vaa3D plugin interface 

core 

I/O 

entity 

control presentation 

  
CPlugin 

  
CExplorer 

  
CSettings 

  
CConverter 

  
CImport 

  
CVolume 

  
CAnnotations 

  
PMain 

  
PLog 

  
PAbout 

  
PDialogImport 

  
PConverter 
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TeraFly: architecture (2/2) 

: CExplorer : CExplorer : CExplorer : CExplorer 

: V3dR_GLWidget : V3dR_GLWidget : V3dR_GLWidget : V3dR_GLWidget 

zoom-in 

zoom-out 

zoom-in 

zoom-out 

zoom-in 

zoom-out 

resolution 0 resolution 1 resolution 2 resolution 3 
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TeraFly: flying through the brain on a laptop 

 On-air demostration 

easy zoom-in/out with mouse scroll 

fast zoom-in by interpolation + 1-step refinement 

separate threads for GPU and I/O 

basic caching 
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TeraFly: zoom-in method (1/3) 

 3D exploration starts with a pre-
computed 3D image of the whole 
volume at low resolution 
− the first time a multiresolution 

volume is imported into TeraFly, 
the resolution that is best suited 
for the computer hardware 
capabilities is chosen and saved in 
a fast-to-load format (vmap.bin) 

− the low-res volume map so 
obtained will be used for starting 
the 3D exploration every time the 
user will open the volume 

− usually has size < 100 MegaVoxels 
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TeraFly: zoom-in method (2/3) 

 zoom-in is triggered when mouse 
scroll exceeds a fixed threshold 

 since the Vaa3D renderer zoom-in 
is center-based, we look at the 
center of the viewport 
− random 1-click pinpointing actions 

are triggered around the center of 
the viewport 

− the majority of markers is created 
on the foreground tissue/cells  

− we take the centroid as the center 
of the next higher-res view 

− the VOI is defined using the view 
size (can be set by the GUI) 
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TeraFly: zoom-in method (3/3) 

prev : 
CExplorer : CVolume next : 

CExplorer 

setVOI 

start 

new 

show 

rend: 
V3dR_GLWidget 

rend: 
V3dR_GLWidget 

getInterpVOI 

hide 

newImageWindow 

signal 

copyVOI 

updateImage 

 data I/O starts asap in a different 
thread 

 meanwhile, VOI is extracted from 
the current view by interpolation 
and passed to the next view 

 the interpolated VOI is shown in 
Vaa3D (GPU thread) 

 meanwhile, data I/O ends and a 
signal is emitted 

 the GPU thread catches the signal 
and triggers an update in the 
current view with the high res 
data just loaded 
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TeraFly: zoom-out method and basic caching 

prev : 
CExplorer 

next : 
CExplorer 

rend: 
V3dR_GLWidget 

rend: 
V3dR_GLWidget 

 zoom-out is triggered when the mouse 
scroll down exceeds a fixed threshold 
(can be tuned in the GUI) 

 the current view is hidden and the 
previous view is restored 

 the higher res view just hidden is 
maintained in memory for basic caching 
− when zooming-in again, the cached 

view is simply restored if the overlap 
between its VOI and the requested 
VOI is above a certain percentage 
(can be tuned in the GUI) 

restore 

hide 

show 

hide 
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TeraFly: image slicing (1/2) 

 On-air demostration 
fast zoom-in by interpolation + n-step refinement (by image slicing) 
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prev : 
CExplorer : CVolume next : 

CExplorer 

start 

show 

rend: 
V3dR_GLWidget 

rend: 
V3dR_GLWidget 

getInterpVOI 

hide 

newImageWindow 

signal 

copyVOI 

updateImage 

 depending on hardware speed, it 
might be convenient to use image 
slicing so as to load the first 
chunk of high res data and display 
it asap 

 convenient when image updates 
are very fast and I/O is quite slow 
(tradeoff) 

 the optimal number of steps 
should be automatically detected 
given the hardware specs 

TeraFly: image slicing (2/2) 

same as before 

signal 

copyVOI 

updateImage 
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TeraFly: annotating 3D objects (1/4) 

 On-air demostration 

automatic scaling of 3D markers and 3D curves throughout 3D navigation 

annotation of 3D objects 

separate translations along X, Y, Z 
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TeraFly: annotating 3D objects (2/4) 

 Octrees 
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TeraFly: annotating 3D objects (3/4) 

 we use a point region (PR) octree 
for storing 3D markers and 3D 
curves 
− the node stores an explicit 3-

dimensional point, which is the 
"center" of the subdivision for 
that node 

 compact representation 

 fast search 

 for 3D curves, additional linking 
between nodes is introduced for 
loading whole segments 
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TeraFly: annotating 3D objects (4/4) 

 markers are saved into 3D point 
cloud files (.apo) 

 curves are saved into SWC files 
(.swc) 

 a link file (.ano) is automatically 
generated for grouping 
heterogeneous 3D objects and 
annotations 

 .ano files can be simply drag-and-
dropped into Vaa3D or loaded by 
TeraFly on the image 
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TeraFly: I/O and the importance of the file format (1/3) 

 tiled format pros: 
− small files 
− can copy a subvolume (volume 

slicing) by simply copying 
directories 

− when a VOI is requested, only 
the tiles intersecting the VOI 
are involved 

root 
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TeraFly: I/O and the importance of the file format (2/3) 

 in the beginning, TeraFly could 
handle only the “Image series 
(tiled)” format 

 for very large volumes along X 
and Y, this led to a huge number 
of slice files 
− 10.000 slices  × 50  × 50 stacks 

= 25 millions of files! 
− almost impossible to move 
− slow to access data: need to 

open thousands of files 
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TeraFly: I/O and the importance of the file format (3/3) 

 TeraFly now uses the “Vaa3D raw 
(tiled, 4D)” format 

 blocks along Z instead of slices! 
− 10.000 slices  × 50  × 50 stacks 

= 50.000 files with blocks 
containing each 500 slices 

− each block is a 3D single-
channel Vaa3D raw (random 
access, “almost 10 times faster 
than TIFF”) 

− one volume per channel (i.e. 
channels is the 4th dimension) 
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TeraConverter 

 for the conversion of terascale 
volumes from one format to 
another 
− Image series (tiled / nontiled): any 

image format is supported (tiff, 
png, jpeg, bmp, etc.) 

− 3D tiff  
− Vaa3D raw (single file / tiled with 

blocks / series), RGB or 4D 

 RAM usage estimation 

 selection of the resolutions to be 
produced 
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Summary 

 Vaa3D is a free, open-source, cross-platform, extendible and versatile tool for 
visualizing and analyzing 3-5D bioimages on workstations and even on laptops 

 the existing standalone tools, both free and commercial, still cannot deal with 
terascale images and/or do not embed such a powerful and user-friendly 3D-
visualization-assisted analysis of bioimages 

 TeraFly enables Vaa3D to handle terascale 4D images, thus making it possible to 
fly through terabytes of images almost instantly and even on laptops 

 thanks to TeraConverter, TeraFly is also independent from the file format 
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