
1/58 UCBM (Rome) – Allen Institute (Seattle)

UCBM (Rome) – Allen Institute (Seattle)

The context: bioimage informatics (1/2)

2/58

 using computational techniques to analyze (= extract useful information from) multi-
dimensional bioimages at molecular, cellular or systemic scale, e.g. :
− high-content screening (or visual screening) for drug discovery
− cells segmentation
− mapping brain circuits

UCBM (Rome) – Allen Institute (Seattle) 3/58

The context: bioimage informatics (2/2)

 automated microscopes and the
increase in resolution has led to
bioimage data explosion
− terascale has become a reality

 need of automatic processing
− fully- or semi-automatic?
− human intervention might be

needed
 post-processing proofreading
 semi-automatic analysis

2-5D visualization-
assisted analysis

UCBM (Rome) – Allen Institute (Seattle) 4/58

The goal: visualization-assisted analysis of large bioimages (1/2)

UCBM (Rome) – Allen Institute (Seattle) 5/58

The goal: visualization-assisted analysis of large bioimages (2/2)

UCBM (Rome) – Allen Institute (Seattle) 6/58

The state of the art

 free and/or open-source visualization tools
− Voxx, OME, ImageJ, Icy, ilastik, CellProfiler, CellOrganizer, CellExplorer, FARSIGHT,

Bisque, BrainExplorer, BrainAligner, 3D Slicer, ParaView

 commercial tools
− Amira (VSG), Imaris (Bitplane), ImagePro (MediaCybernetics), Neurolucida (MBF

Bioscience)

 standalone 3-5D visualization-assisted analysis of large images not feasible with any of
these tools at present
− large ≠ terascale
− missing 3-5D visualization
− low versatility: supported image formats, cross-platform, etc.
− low extendibility: how many available plugins? Are they easy-to-write?
− high memory requirements: both system RAM and GPU RAM

UCBM (Rome) – Allen Institute (Seattle) 7/58

“Vaa3D is designed expressly for working with 3D volumetric data and is built on an efficient
3D renderer that allows real-time visualization and manipulation of multigigabyte–sized
data on a standard computer. […] it may not be as fun as 3D gaming but Vaa3D promises to
make working with 3D image data in the lab much more enjoyable”

Vaa3D(1): enjoying working with 3D image data!

Hanchuan Peng

Daniel Evanko, “Connecting the dots in 3D”, Nature Methods highlights, 2010

(1) Peng, H. et al, “V3D enables real-time 3D visualization and quantitative analysis of large-scale biological
image data sets”, Nature Biotechnology 28, 348-353, 2010

 developed and under development at Peng Lab
 members that left

recruiting

Zhi Zhou

Alessandro Bria

UCBM (Rome) – Allen Institute (Seattle) 8/58

Vaa3D: architecture

Vaa3D

core

Vaa3D plugins

Qt

3D renderer

neuron annotator
…

Boost
libtiff

neuron editing

newmat11

image I/O

neuron tracing

neuron toolbox

OpenGL

Vaa3D plugin interface

LOCI BioFormat Importer Plugin creator TeraFly …

core GUI …

UCBM (Rome) – Allen Institute (Seattle) 9/58

 3D color image stacks
− Tiff stack (.tif, .tiff), Zeiss LSM (.lsm), MRC (used for electron microscopy images) (.mrc), Vaa3D's

raw file (.v3draw, .raw)
− any bioimage format supported by LOCI Bioinformats Java library (using the Vaa3D-bioformats

plugin)

 5D time series of color image stacks
− each time point saved as a separate file (end with suffix like 000.tif, 001.tif, ...)
− each time point saved as a single slice of a 3D image stack of whatever formats Vaa3D supports

(e.g. tiff, or Vaa3D's raw)

 3D irregular shaped surfaces: Wavefront .OBJ files, Vaa3D’s surface format (.v3ds)

 3D point cloud: .apo file (a simple CSV format with fixed number of columns)

 3D landmarks: .marker (indeed a simple CSV format), .csv

Vaa3D: supported bioimage formats

UCBM (Rome) – Allen Institute (Seattle) 10/58

Vaa3D: basic use

UCBM (Rome) – Allen Institute (Seattle) 11/58

Vaa3D: surface rendering and creation

UCBM (Rome) – Allen Institute (Seattle) 12/58

Vaa3D: neuron editing

UCBM (Rome) – Allen Institute (Seattle) 13/58

Vaa3D: visualizing 5D data

 On-air demostration

UCBM (Rome) – Allen Institute (Seattle) 14/58

Vaa3D: 2-mouse click 3D pinpointing (1/2)

UCBM (Rome) – Allen Institute (Seattle) 15/58

 be A and B the two non-parallel rays
generated at two viewing angles,
corresponding to 2-mouse clicks
− each click defines a ray through the

current cursor location orthogonal to the
screen

 a marker is created at the point in space
for which the sum of its Euclidean
distance to A and B is minimal
− robust to inaccuracy in the user’s 2D clicks

Vaa3D: 2-mouse click 3D pinpointing (2/2)

UCBM (Rome) – Allen Institute (Seattle) 16/58

Vaa3D: 1-mouse click 3D pinpointing (1/2)

UCBM (Rome) – Allen Institute (Seattle) 17/58

Vaa3D: 1-mouse click 3D pinpointing (2/2)

 the most probable location on A is
estimated by applying the mean-shift
algorithm on the intensity distribution
− the initial center of mass (CoM) p1 is

computed along the whole ray [0, R1]
intersecting the volume

− the CoM is repeatedly reestimated by
using progressively smaller intervals
around the proceeding CoM until
convergence

 can be used for quick manual cell-
counting or for quantitatively profiling
the voxel intensity along the straight
line segment connecting two markers

UCBM (Rome) – Allen Institute (Seattle) 18/58

Vaa3D: semi-automatic neuron tracing (1/2)

UCBM (Rome) – Allen Institute (Seattle) 19/58

Vaa3D: semi-automatic neuron tracing (2/2)

 searching the “optimal path” connecting
a set of markers
− voxels are considered as graph vertexes
− edges connect each pair of adjacent

voxels
− edge weight is the inverse of the average

intensity of the two voxels
− Dijkstra’s algorithm is used to find the

least-cost path between pairs of markers

 individual segments are defined as
paths between markers and branching
points

UCBM (Rome) – Allen Institute (Seattle) 20/58

Vaa3D: 1-stroke 3D curving

UCBM (Rome) – Allen Institute (Seattle) 21/58

Vaa3D: built-in plugins

a plugin to create plugins!

importing ANY bioimage format

image filters

image registration

image stitching

movie maker

UCBM (Rome) – Allen Institute (Seattle) 22/58

Vaa3D: a tutorial for developing a plugin (1/8)

 Setting up the development environment under Linux / MacOS
− get and build (or install, if available for your platform) Qt 4.7.2 (or .3, .4)
− get and build Vaa3D source code by following instructions at

https://code.google.com/p/vaa3d/
− get and install Qt Creator (optional)

 Setting up the development environment under Windows
− download the precompiled binaries Qt 4.7.2 for Visual Studio 2008
− check the prerequisites at https://code.google.com/p/vaa3d/
− get and build Vaa3D source code by following the build instructions for CMake at the

Vaa3D’s google code webpage. Use Visual Studio 2008 as both project generator and
compiler.

− get and install Qt Creator (optional)

https://code.google.com/p/vaa3d/
https://code.google.com/p/vaa3d/

UCBM (Rome) – Allen Institute (Seattle) 23/58

Vaa3D: a tutorial for developing a plugin (2/8)

 Using Vaa3D plugin creator for creating a Qt project of a new plugin

The name of the plugin that will appear under
the Vaa3D plugins menu

The name of the C++ class interfacing with
the Vaa3D plugin loader

In-Vaa3D functions (will appear in the menu)

Path of the “v3d_external” folder

Command-line functions

TEMPLATE = lib
CONFIG += qt plugin warn_off
VAA3DPATH = D:\Vaa3D\v3d_external
INCLUDEPATH += $$VAA3DPATH/v3d_main/basic_c_fun

HEADERS += myPlugin_plugin.h
SOURCES += myPlugin_plugin.cpp
SOURCES +=
$$VAA3DPATH/v3d_main/basic_c_fun/v3d_message.cpp

TARGET = $$qtLibraryTarget(myPlugin)
DESTDIR = $$VAA3DPATH/bin/plugins/myPlugin/

UCBM (Rome) – Allen Institute (Seattle) 24/58

Vaa3D: a tutorial for developing a plugin (3/8)

 myplugin.pro

Vaa3D core functions, I/O, etc.

path of the “v3d_external” folder

configuring the current project as a Qt plugin

plugin headers and source files

#ifndef __MYPLUGIN_PLUGIN_H__
#define __MYPLUGIN_PLUGIN_H__

#include <QtGui>
#include <v3d_interface.h>

class CPlugin : public QObject, V3DPluginInterface2_1
{
 Q_OBJECT
 Q_INTERFACES(V3DPluginInterface2_1);

public:
 float getPluginVersion() const {return 1.1f;}

 QStringList menulist() const;
 void domenu(const QString &menu_name,

V3DPluginCallback2 &callback, QWidget *parent);

 QStringList funclist() const ;
 bool dofunc(const QString &func_name, const

V3DPluginArgList &input, V3DPluginArgList &output,
V3DPluginCallback2 &callback, QWidget *parent);

};

#endif

UCBM (Rome) – Allen Institute (Seattle) 25/58

Vaa3D: a tutorial for developing a plugin (4/8)

 myplugin_plugin.h

generates the plugin menu in Vaa3D

a Qt class MUST start with Q_OBJECT

processes the user’s menu selection

configuring the current class as a Qt plugin

command-line interaction

Q_EXPORT_PLUGIN2(myPlugin, CPlugin);

QStringList CPlugin::menulist() const
{
 return QStringList()
 <<tr("thresholding")
 <<tr("about");
}

void CPlugin::domenu(const QString &menu_name,

V3DPluginCallback2 &callback,
QWidget *parent)

{
 if (menu_name == tr("thresholding"))
 {
 v3d_msg("To be implemented.");
 }
 else
 {
 v3d_msg(tr("This is a test plugin, you can

use it as a demo..Developed by Alessandro
Bria, 2012-01-01"));

 }
}

UCBM (Rome) – Allen Institute (Seattle) 26/58

Vaa3D: a tutorial for developing a plugin (5/8)

 myplugin_plugin.cpp

generates the plugin menu in Vaa3D

processes the user’s menu selection

configuring the current class as a Qt plugin
named myPlugin. The name must match the
TARGET parameter in the .pro

Displaying an “About” message when the user
selects “about” from the plugin menu

displays a message to the user when selecting
“thresholding” from the plugin menu

////invoke a Vaa3D plugin function
 virtual bool callPluginFunc(const QString & plugin_name, const QString & func_name,
 const V3DPluginArgList & input, V3DPluginArgList & output) = 0;

////get opened images

 //obtain a list of all currently opened images
 virtual v3dhandleList getImageWindowList() const = 0;

 //obtain the *current* selected image window, defined as the tri-view window currently selected in Vaa3D main window
 virtual v3dhandle currentImageWindow() = 0;

 //obtain the *current* selected image window, defined as the currently being operated 3D viewer
 //curHiddenSelectedWindow may not be the *currentImageWindow* if the selection is done from a 3d viewer
 virtual v3dhandle curHiddenSelectedWindow() = 0;

////set computed image content/result

 //create a new image window for returning some computed image content
 virtual v3dhandle newImageWindow(QString name="new_image") = 0;

 //directly output computed image content to an existing image window. The size of the window will be changed
 //automatically.
 virtual void updateImageWindow(v3dhandle image_window) = 0;

UCBM (Rome) – Allen Institute (Seattle) 27/58

Vaa3D: a tutorial for developing a plugin (6/8)

 V3DPluginCallback (1/3)

////manipulate image names

 virtual QString getImageName(v3dhandle image_window) const = 0;
 virtual void setImageName(v3dhandle image_window, QString name) = 0;

////access the actual 4D image data structure

 virtual Image4DSimple * getImage(v3dhandle image_window) = 0;
 virtual bool setImage(v3dhandle image_window, Image4DSimple * image) = 0;

////access the 3D landmark list defined for an image

 virtual LandmarkList getLandmark(v3dhandle image_window) = 0;
 virtual bool setLandmark(v3dhandle image_window, LandmarkList & landmark_list) = 0;

////access the 3D region of interest (ROI) defined for an image

 virtual ROIList getROI(v3dhandle image_window) = 0;
 virtual bool setROI(v3dhandle image_window, ROIList & roi_list) = 0;

////access the 3D curve, 3D curve set, and 3D reconstructed neuron structure for an image

 virtual NeuronTree getSWC(v3dhandle image_window) = 0;
 virtual bool setSWC(v3dhandle image_window, NeuronTree & nt) = 0;

UCBM (Rome) – Allen Institute (Seattle) 28/58

Vaa3D: a tutorial for developing a plugin (7/8)

 V3DPluginCallback (2/3)

////operating (open/close) the rendering windows

 //open and close a global 3D viewer
 virtual void open3DWindow(v3dhandle image_window) = 0;
 virtual void close3DWindow(v3dhandle image_window) = 0;

 //open and close a local 3D viewer
 virtual void openROI3DWindow(v3dhandle image_window) = 0;
 virtual void closeROI3DWindow(v3dhandle image_window) = 0;

////Data pushing functions

 //update the surface objects currently being displayed in a 3D viewer
 virtual void pushObjectIn3DWindow(v3dhandle image_window) = 0;

 //update the content in a 3D viewer directly
 virtual void pushImageIn3DWindow(v3dhandle image_window) = 0;

 //update the time point of a 3D viewer if it is displaying 5D (temporal) data
 virtual int pushTimepointIn3DWindow(v3dhandle image_window, int timepoint) = 0;

////direct pointers to Vaa3D internal data structure

 virtual View3DControl * getView3DControl(v3dhandle image_window) = 0;
 virtual View3DControl * getLocalView3DControl(v3dhandle image_window) = 0;
 virtual TriviewControl * getTriviewControl(v3dhandle image_window) = 0;

UCBM (Rome) – Allen Institute (Seattle) 29/58

Vaa3D: a tutorial for developing a plugin (8/8)

 V3DPluginCallback (3/3)

Direct access to Vaa3D core!
To be used with care.

UCBM (Rome) – Allen Institute (Seattle) 30/58

Vaa3D: implementing an example plugin

 On-air demostration

UCBM (Rome) – Allen Institute (Seattle) 31/58

Moving towards terascale bioimages: The Projectome Project

 High Performance Computational Infrastructure for processing and
visualizing neuro-anatomical information obtained using CLSM

 Whole mouse brain 3D imaging with Confocal Light-Sheet Microscopy:
− micrometer resolution
− cm-sized specimen
− TeraVoxel-sized dataset

International Center of
Computational Neurophotonics

UCBM (Rome) – Allen Institute (Seattle) 32/58

Moving towards terascale bioimages: CLSM microscopy

 neurons and other structures are selectively labeled
with a fluorescent protein

 the specimen is optically cleared and fixed

 the specimen is illuminated by a thin sheet of light
and the fluorescence emission is observed from the
scanning axis perpendicular to the illumination
plane

 translations of the light sheet along the scanning
axis produce a stack of 2D slices

 the field of view of the confocal microscope is
limited, so translations of the system along V, H axes
are needed to produce different overlapping stacks

UCBM (Rome) – Allen Institute (Seattle) 33/58

 fast 2D approach to align adjacent stacks

 efficient use of memory resources (< 2GB of memory peak)

 the stitched volume is saved into a multiresolution representation suited for
further processing

Moving towards terascale bioimages: TeraStitcher (1/3)

UCBM (Rome) – Allen Institute (Seattle) 34/58

Moving towards terascale bioimages: TeraStitcher (2/3)

 results

the Vaa3D’s built-in stitching plugin

UCBM (Rome) – Allen Institute (Seattle) 35/58

Moving towards terascale bioimages: TeraStitcher (3/3)

UCBM (Rome) – Allen Institute (Seattle) 36/58

TeraFly: overview (1/3)

 Vaa3D’s 3D rendering cannot handle very large 3D images
− e.g. 1 GigaVoxels images require at least a video card with 1 GB of dedicated memory

 TeraFly extends the Vaa3D software to cope with (potentially) unlimited sized bioimages
even on laptops with a limited amount of system memory (≤ 4 GB) and video card
memory (≤ 1 GB)
− easy zoom-in/out with mouse-scroll
− 4D supported (5D support work in progress)
− automatic scaling of 3D markers and 3D curves throughout 3D navigation
− annotation of 3D objects
− basic caching (advanced caching work in progress)
− separate translations along X, Y, Z
− separate threads for GPU and I/O
− fast zoom-in by interpolation + subsequent refinement by image slicing (web-like)

UCBM (Rome) – Allen Institute (Seattle) 37/58

TeraFly: overview (2/3)

 the underlying idea is to mimic the behavior of Google Earth
− what you see is what you need (WYSIWYN)
− multiresolution representation
− mouse scroll for zoom-in/out

UCBM (Rome) – Allen Institute (Seattle) 38/58

TeraFly: overview (3/3)

UCBM (Rome) – Allen Institute (Seattle) 39/58

TeraFly: multiresolution representation

 the volume is saved in tiled format at different
resolutions 𝑖 = 0, … , 𝑘
− i-th resolution is obtained by dividing i-1-th

resolution by 2, that is equivalent to divide the
original resolution by 2𝑖

− 𝑘 is chosen so as the k-th resolution has size
<100 MegaVoxels, thus it can be easily handled
by the Vaa3D renderer

− e.g. for a ∼1 TeraVoxels volume whose size is
10.000 × 10.000 × 10.000

− 𝑘 = 5 and the 5-th resolution has size ∼29
MegaVoxels

 tiles dimensions is typically in [256, 512]

𝑘 = 2

0

1

UCBM (Rome) – Allen Institute (Seattle) 40/58

TeraFly: architecture (1/2)

Vaa3D
core

TeraFly

3D renderer …

Vaa3D plugin interface

core

I/O

entity

control presentation

CPlugin

CExplorer

CSettings

CConverter

CImport

CVolume

CAnnotations

PMain

PLog

PAbout

PDialogImport

PConverter

UCBM (Rome) – Allen Institute (Seattle) 41/58

TeraFly: architecture (2/2)

: CExplorer : CExplorer : CExplorer : CExplorer

: V3dR_GLWidget : V3dR_GLWidget : V3dR_GLWidget : V3dR_GLWidget

zoom-in

zoom-out

zoom-in

zoom-out

zoom-in

zoom-out

resolution 0 resolution 1 resolution 2 resolution 3

UCBM (Rome) – Allen Institute (Seattle) 42/58

TeraFly: flying through the brain on a laptop

 On-air demostration

easy zoom-in/out with mouse scroll

fast zoom-in by interpolation + 1-step refinement

separate threads for GPU and I/O

basic caching

UCBM (Rome) – Allen Institute (Seattle) 43/58

TeraFly: zoom-in method (1/3)

 3D exploration starts with a pre-
computed 3D image of the whole
volume at low resolution
− the first time a multiresolution

volume is imported into TeraFly,
the resolution that is best suited
for the computer hardware
capabilities is chosen and saved in
a fast-to-load format (vmap.bin)

− the low-res volume map so
obtained will be used for starting
the 3D exploration every time the
user will open the volume

− usually has size < 100 MegaVoxels

UCBM (Rome) – Allen Institute (Seattle) 44/58

TeraFly: zoom-in method (2/3)

 zoom-in is triggered when mouse
scroll exceeds a fixed threshold

 since the Vaa3D renderer zoom-in
is center-based, we look at the
center of the viewport
− random 1-click pinpointing actions

are triggered around the center of
the viewport

− the majority of markers is created
on the foreground tissue/cells

− we take the centroid as the center
of the next higher-res view

− the VOI is defined using the view
size (can be set by the GUI)

UCBM (Rome) – Allen Institute (Seattle) 45/58

TeraFly: zoom-in method (3/3)

prev :
CExplorer : CVolume next :

CExplorer

setVOI

start

new

show

rend:
V3dR_GLWidget

rend:
V3dR_GLWidget

getInterpVOI

hide

newImageWindow

signal

copyVOI

updateImage

 data I/O starts asap in a different
thread

 meanwhile, VOI is extracted from
the current view by interpolation
and passed to the next view

 the interpolated VOI is shown in
Vaa3D (GPU thread)

 meanwhile, data I/O ends and a
signal is emitted

 the GPU thread catches the signal
and triggers an update in the
current view with the high res
data just loaded

UCBM (Rome) – Allen Institute (Seattle) 46/58

TeraFly: zoom-out method and basic caching

prev :
CExplorer

next :
CExplorer

rend:
V3dR_GLWidget

rend:
V3dR_GLWidget

 zoom-out is triggered when the mouse
scroll down exceeds a fixed threshold
(can be tuned in the GUI)

 the current view is hidden and the
previous view is restored

 the higher res view just hidden is
maintained in memory for basic caching
− when zooming-in again, the cached

view is simply restored if the overlap
between its VOI and the requested
VOI is above a certain percentage
(can be tuned in the GUI)

restore

hide

show

hide

UCBM (Rome) – Allen Institute (Seattle) 47/58

TeraFly: image slicing (1/2)

 On-air demostration
fast zoom-in by interpolation + n-step refinement (by image slicing)

UCBM (Rome) – Allen Institute (Seattle) 48/58

prev :
CExplorer : CVolume next :

CExplorer

start

show

rend:
V3dR_GLWidget

rend:
V3dR_GLWidget

getInterpVOI

hide

newImageWindow

signal

copyVOI

updateImage

 depending on hardware speed, it
might be convenient to use image
slicing so as to load the first
chunk of high res data and display
it asap

 convenient when image updates
are very fast and I/O is quite slow
(tradeoff)

 the optimal number of steps
should be automatically detected
given the hardware specs

TeraFly: image slicing (2/2)

same as before

signal

copyVOI

updateImage

UCBM (Rome) – Allen Institute (Seattle) 49/58

TeraFly: annotating 3D objects (1/4)

 On-air demostration

automatic scaling of 3D markers and 3D curves throughout 3D navigation

annotation of 3D objects

separate translations along X, Y, Z

UCBM (Rome) – Allen Institute (Seattle) 50/58

TeraFly: annotating 3D objects (2/4)

 Octrees

UCBM (Rome) – Allen Institute (Seattle) 51/58

TeraFly: annotating 3D objects (3/4)

 we use a point region (PR) octree
for storing 3D markers and 3D
curves
− the node stores an explicit 3-

dimensional point, which is the
"center" of the subdivision for
that node

 compact representation

 fast search

 for 3D curves, additional linking
between nodes is introduced for
loading whole segments

UCBM (Rome) – Allen Institute (Seattle) 52/58

TeraFly: annotating 3D objects (4/4)

 markers are saved into 3D point
cloud files (.apo)

 curves are saved into SWC files
(.swc)

 a link file (.ano) is automatically
generated for grouping
heterogeneous 3D objects and
annotations

 .ano files can be simply drag-and-
dropped into Vaa3D or loaded by
TeraFly on the image

UCBM (Rome) – Allen Institute (Seattle) 53/58

TeraFly: I/O and the importance of the file format (1/3)

 tiled format pros:
− small files
− can copy a subvolume (volume

slicing) by simply copying
directories

− when a VOI is requested, only
the tiles intersecting the VOI
are involved

root

UCBM (Rome) – Allen Institute (Seattle) 54/58

TeraFly: I/O and the importance of the file format (2/3)

 in the beginning, TeraFly could
handle only the “Image series
(tiled)” format

 for very large volumes along X
and Y, this led to a huge number
of slice files
− 10.000 slices × 50 × 50 stacks

= 25 millions of files!
− almost impossible to move
− slow to access data: need to

open thousands of files

UCBM (Rome) – Allen Institute (Seattle) 55/58

TeraFly: I/O and the importance of the file format (3/3)

 TeraFly now uses the “Vaa3D raw
(tiled, 4D)” format

 blocks along Z instead of slices!
− 10.000 slices × 50 × 50 stacks

= 50.000 files with blocks
containing each 500 slices

− each block is a 3D single-
channel Vaa3D raw (random
access, “almost 10 times faster
than TIFF”)

− one volume per channel (i.e.
channels is the 4th dimension)

UCBM (Rome) – Allen Institute (Seattle) 56/58

TeraConverter

 for the conversion of terascale
volumes from one format to
another
− Image series (tiled / nontiled): any

image format is supported (tiff,
png, jpeg, bmp, etc.)

− 3D tiff
− Vaa3D raw (single file / tiled with

blocks / series), RGB or 4D

 RAM usage estimation

 selection of the resolutions to be
produced

UCBM (Rome) – Allen Institute (Seattle) 57/58

Summary

 Vaa3D is a free, open-source, cross-platform, extendible and versatile tool for
visualizing and analyzing 3-5D bioimages on workstations and even on laptops

 the existing standalone tools, both free and commercial, still cannot deal with
terascale images and/or do not embed such a powerful and user-friendly 3D-
visualization-assisted analysis of bioimages

 TeraFly enables Vaa3D to handle terascale 4D images, thus making it possible to
fly through terabytes of images almost instantly and even on laptops

 thanks to TeraConverter, TeraFly is also independent from the file format

UCBM (Rome) – Allen Institute (Seattle) 58/58

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58

