I3t Summer
School on
SCIENTIFIC
VISUALIZATION

Introdcution to Scientific
Visualization in Python

Alice Invernizzi- a.invernizziecineca.it
SuperComputing Applications and Innovation Department

\

CINECA

INDEX

Introduction

Speeding Up Python: Numpy array data
structures

IPython for interactive computation
Visualizing 2D Data with matplotlib

Brief introduction to 3D Visualization with
Mayavi

CINECA

VISUALIZATION

Summer
School on
SCIENTIFIC

Summer
School on
p | SCIENTIFIC
" VISUALIZATION

INTRODUCTION

Python is a powerful, flexible, open-source language that is easy to learn,
easy to use and has powerful libraries for data manipulation.

Python has been used in scientific computing and highly quantitative
domains such as finance, oil and gas, physics and signal processing...

http://www.python.org/about/success/#scientific

What are the key elements that ensure usability of this language in
science?

Python provides easy-to-use tools for data structuring, manipulation,
query, analysis and visualization

CINECA

http://www.python.org/about/success/
http://www.python.org/about/success/

Summer
) School on

— u SCIENTIFIC
VISUALIZATION

INTRODUCTION

“The purpose of computation is insight, not numbers”
Richard Hamming, Numerical Analysis for Scientists and Engineer

From Scientific Data To Scientific Visualization

o To understand the meaning of the numbers we compute, we often need
\\ postprocessing, statistical analysis and graphical visualization of our data.

CINECA ~_‘:~‘-< :

Summer
School on

| SCIENTIFIC
VISUALIZATION

INTRODUCTION

The scientist’s needs

. L] . . .
Get data (simulation, experiment control) urllibz
® .
Manipulate and process data.
® . .
Visualize results... to understand what we are cSVvy
beautifulsoup

doing!
Communicate results: produce figures for reports or
publications, write presentations.

Python has all desirable tools for satisfying
Scientific Computing users...

IPython, an advanced Python shell for interactive
computing

Numpy : provides powerful numerical arrays
objects, and routines to manipulate them

Scipy : high-level data processing routines.
Optimization, regression, interpolation

Matplotlib : 2-D visualization, “publication-ready”
plot

ayavi : 3-D visualization

numpy, scipy

matplotlib,
chaco,
mayaviz

LaTeX
cherrypy

111103

CINECA

Summer

School on
SCIENTIFIC
VISUALIZATION

Numpy

an efficient multi-dimensional container for
generic data

CINECA

Summer
) School on

k SCIENTIFIC
VISUALIZATION

WHY NUMPY?

How slow is Python?
Let’s add on one to a million numbers.

4)

C:\Users\invernizzi>python -m timeit -c "[i+l] for i in
range (1000000) 1"
10 loops, best of 3: 59.3 msec per loop

- /

\.Nhy Python is slow?

Dynamic typing requires a lot of metadata around variable.
Python uses heavy frame objects during iteration

Solution:

Make an object that has a single type and continuous storage.
Implement common functionality into that object to iterate in C

CINECA

Summer
) School on

VVW*\('“[JAAF’Y' ‘l“b‘ \ﬂSLﬁﬁﬁ%ﬁgngﬁ

Speeding Up Python:
Let’s add on one to a million numbers, using numpy library
4)
C:\Users\invernizzi>python -m timeit -s "import numpy" -c
"numpy .arange (1000000) +1"
100 loops, best of 3: 2.91 msec per loop

_ /
Why Python is fast?

o . . .
Homogenous data type object: every item takes up the same size

block of memory .

Function that operates on ndarray in an element by element
fashion

Vectorize wrapper for a function

Build-in function are implemented in compiled C code.

CINECA

Summer

| *‘ School on
4 SCIENTIFIC
" VISUALIZATION

NUMPY

“Life is too short to write C++ code*

David Beazley - EuroScipy 2012 Bruxelles

CINECA

Summer
School on
) | SCIENTIFIC
" VISUALIZATION

NUMPY

Features:

- A powerful N-dimensional array object
- Broadcasting function
-Tools for integrating C/C++ and Fortran code

- Useful linear algebra, Fourier transform and random number
capabilities.

- Ufuncs, function that operates on ndarrays in an element-
by-element fashion

History:
-Based originally on Numeric by Jim Hugunin
-Also based on NumArray by Perry Greenfield

- Written both by Trevis Oliphant to bring both features set
together.

CINECA

CINECA

Summer
School on
SCIENTIFIC

' VISUAUZATION

Addintional utilities all names exported to
numpy

fft Discrete Fourier FFT derived from
transforms Numeric

distutils Enhanced build and improvements built on
distribution standard distutils

f2py Automatic wrapping of a useful utility needed
Fortran code by SciPy

Summer
h

School on
“ SCIENTIFIC
VISUAUZATION

NUMERIC ARRAY

Array Creation

>>> import numpy as np

>>> a = np.array([0,1,2,3])

>>> a

array ([0, 1, 2, 3])
>>a=array([0,1,2],dtype=float)
array([0., 1., 2.1])

>>> a=np.arange (10)

>>> a

array ([0, 1, 2, 3, 4, 5, 6, 7, 8, 91)
>>> a=np.linspace (0,10,10)

>>> a

array ([0. , 1.11111111, 2.22222222, 3.33333333,
4.44444444, 5.5555555¢, 6.0660666667, 7.77777778,
8.88888889, 10. 1)

>>> a=array ([[1,2,3],[4,5,6]1)

>>> a

array ([[1, 2, 3],

(4, 5, 611])

CINECA \

Summer
School on
SCIENTIFIC

NUMERIC ARRAY OO -0mr

Array Creation

array (object, dtype=None, copy=1l,order=None, subok=0,ndmin=0)
arange ([start,]stop[,step=1],dtype=None)

ones (shape, dtype=None, order="'C")

zeros (shape, dtype=float, order="'C")

identity (n,dtype=‘1")

linspace (start, stop, num=50, endpoint=True, retstep=False)
empty (shape, dtype=None, order =‘C’)

eye(N, M=None, k=0, dtype=float)

CINECA

Summer
School on
g | SCIENTIFIC
" VISUALIZATION

NUMERIC ARRAY

Array Shape

>>>a=array([[1,2,3],[4,5,6]1])
>>> a.itemsize

4

>>> a.shape

(2, 3)

>>>a.reshape (6)
array([1,2,3,4,5,6])

>>> a.resize ((3,4))
>>> g

array([[1, 2, 3, 4]

a.reshape(6)

S e a.reshape((3,4))

12

>>> a.mean|()
1.75

>>> a.max ()
6

>>> a.min ()
0

CINECA

Summer
h

School on
“ SCIENTIFIC
VISUAUZATION

NUMERIC ARRAY

Array Slicing

-

>>> af[4d:,4:]
array([[44, 45],
[54, 55]1])

>>> al:,2]
array([2,12,22,32,42,52])

>>> af[2::2,::2]
array([[20, 22, 24],
[40, 42, 44]])

.

CINECA

Summer

School on
& SCIENTIFIC
VISUALIZATION

s

NUMERIC ARRAY

Unary/Binary Operation

/////>>> a=array((1,2,3,4))

>>> a
array ([1, 2, 3, 4])
>>> a+=1
>>> a
array([2, 3, 4, 5])
>>> a*3
array ([6, 9, 12, 15])
>>> b=array([[1,2,3,4],[5,6,7,8]])
>>> Db
array([[1l, 2, 3, 4],
[5, 6, 7, 811)
>>> b+a

array([[7, 11, 15, 19],
[11, 15, 19, 23]11])

CINECA

Summer
=y School on

IQlJAAEHQlC:/\RH{AQY ‘.“l‘ \ﬂSLEﬁﬁ%ﬁgﬂgﬁ

Ufunc: is a function that performs elementwise operations on data in ndarrays

\
>>> a
array([2, 3, 4, 5])
>>> pow(a,2)
array([4, 9, 16, 25])
\ J
TRIGONOMETRIC OTHERS
sin(x) sinh (x) exp (x) log(x)
cos (x) cosh (x) logl0 (x) sqrt (x)
arccos (x) absolute(x) conjugate(x)
negative (x) ceil (x)
arccosh (x) floor (x) fabs (x)
arctan (x) arctanh (x) hypot (x,vy) fmod (x,vy)
arcsin(x) arcsinh (x) maximum (x,y) minimum(x,y)

arctan2 (x,y)

CINECA \

Summer
=y School on

SCIENTIFIC
SPEEDING UP PYTHON USING NUMPYA S vistitzsrion

This example solves Laplace’'s equation over a 2-d rectangular grid using using an

iterative finite difference scheme: ju _ 0

class Grid:
"""A simple grid class that stores the details and solution of the computational

grid . mwwan
def init (self, nx=10, ny=10, xmin=0.0, xmax=1.0,

ymin=0.0, ymax=1.0) :

class LaplaceSolver:
"""A simple Laplacian solver that can use different schemes to solve the

problem.""™
def numericTimeStep (self, dt=0.01):

def slowTimeStep (self, dt=0.01) :

‘ Full code: laplace_benchmark.py
CINECA

Summer
h

School on
“ SCIENTIFIC
VISUAUZATION

SPEEDING UP PYTHON USING NUMP

Pure Python Computational Core

/////rdef slowTimeStep (self, dt=0.01) :
= self.grid

g_

nx, ny = g.u.shape

dx2, dy2 = g.dx**2, g.dy**2
dnr inv = 0.5/ (dx2 + dy2)

u = g.u
err = 0.0
for i in range(l, nx-1):

for j in range(l, ny-1):
tmp = u[llj]
uli,j] = ((uli-1, J] + uli+l, Jl)*dy2 +(uli, j-1]
+ uli,j+1]) *dx2) *dnr inv
diff = ul[i,Jj] - tmp
err += diff*diff

\\\\\‘ return numpy.sqrt (err) 4/////

CINECA \

Summer
h

School on
“ SCIENTIFIC
VISUAUZATION

SPEEDING UP PYTHON USING NUMP

Numpy Python Computational Core

//i;;; numericTimeStep (self, dt=0.0): i\\\\\

"""Takes a time step using a NumPy expression."""
g = self.grid

dx2, dy2 = g.dx**2, g.dy**2

dnr inv = 0.5/ (dx2 + dy2)

u = g.u
g.old u

u.copy() # needed to compute the error.

The actual iteration
ufl:-1, 1:-1] = ((uf[0:-2, 1:-1] + uf2:, 1:-17)*dy2 +
(ufl:-1,0:-2] + u[l:-1, 2:])*dx2)*dnr inv

return g.computeError ()

= /

Summer
=y School on

SCIENTIFIC

SPEEDING UP PYTHON USING NUMPY* VISUALIZATION

Srun
C:/Users/invernizzi/Documents/CORSI/2013/SCUOLA VIS
UALIZZAZIONe/Esempi/laplace benchmark.py

Solving Equation

Doing 100 iterations on a 500x500 grid

Elapsed Time SlowTimeStep 100.920565005 s 130 X Faster !!
Elapsed Time NumericTimeStep 0.771977486264 s

The entire for i and j loops have been replaced in NumericTimeStep
by a single NumPy expression. NumPy expressions operate
elementwise.

The beauty of the expression is that its completely done in C. This
makes the computation *much* faster.

CINECA \

Summer

School on
SCIENTIFIC
VISUALIZATION

IPython

A System for Interactive
Scientific Computing

CINECA

Summer
, School on
N SCIENTIFIC
" VISUALIZATION

WHY IPYTHON?

B v i

File Edit View Kemel Magic Window Help

Python Shell Limitation [[ez D |

In [2]: help
OQut[2]: Type help() for interactive help, or help(object) for help about object.

In [3]: %magic

No formatting —
No syntax highlighting tauickref

Ymagic

No code completion history
No function signature assistence | ™ I imwert mmey == v

In [6]: def myfunc():

return 1
In [7]: %who
myfunc np usage
IPython In [8]: %whos
Variable Type Data/Info
Command history myfunc function <function myfunc at exe4F9IDFE>
. np module <module "numpy’ from 'C:\<...rages\numpy__init__ _.pyc'>
Tab auto-complet]on. usage module <module "IPython.core.usa<...>\IPython\core\usage.pyc'>
. o o In [9]: =
In-line editing of code. 2Ll —

Object introspection, and automatic

extract of documentation

Good interaction with operating system
hell.

CINECA

Summer
) School on

PYTHON MAGIC TN vsiazaon

.IPython will treat any line whose first character is a % as a special call to a
‘magic’ function. These allow you to control the behavior of IPython itself,
plus a lot of system-type features.

%$autocall: Insert parentheses in calls automatically, e.g. range 3 5
%debug: Debug the current environment

%gedit: Run a text editor and execute its output

ggui: Specify a GUI toolkit to allow interaction while its event loop is running
Shistory: Print all or part of the input history

%loadpy: Load a Python file from a filename or URL (!)

%$logon and %$logoff: Turn logging on and off

gmacro: Names a series of lines from history for easy repetition

$pylab: Loads numpy and matplotlib for interactive use

$quickref: Load a gquick-reference guide

%$recall: Bring a line back for editing

$rerun: Re-run a line or lines

grun: Run a file, with fine control of its parameters, arguments, and more
$save: Save a line, lines, or macro to a file

%$timeit: Use Python’s timeit to time execution of a statement, expression, or block

CINECA

Summer
h

MORE ON IPYTHON

IPython NoteBook

The IPython Notebook is a web-based
interactive computational environment where
you can combine code execution, text,
mathematics, plots and rich media into a single
document.

Embedding IPython

It is possible to start an IPython instance inside
your own Python programs. This allows you to
evaluate dynamically the state of your code,
operate with your variables, analyze them

CINECA \

School on
“ SCIENTIFIC
VISUAUZATION

IPIv]: Notebook Untitled1-CopyQ Last saved: May 15 9:24 AN

File Edit View Insert Cell Kernel Help

B | x ®m @8 t 4+ | 7|2 | »]|s][Cke [7]

EXAMPLE

In [3]: Ffrom IPython.display import Math
Math (z'sin(2x) ")

out[3]: sin(2z)

In [1]: %pyleb inline
x = linspace(0, 3*pi, 500)
plot(x, sin(x**2))
title{'a simple example');

Welcome to pylab, a matpletlib-based Python enviromment [backend:
module://IPython. zmg. pylab.backend_inline].
For more information, type 'help(pylab)'.

A simple example
10 p P

Summer

School on
SCIENTIFIC
VISUALIZATION

Matplotlib

Plotting and Graphing tool
in Python

CINECA

Summer
) School on

M AT P L OT L I B & Vi SUSA?IEZIXI'I-'II(F)IIS

“Matplotlib tries to make easy things easy and hard things possible”
John Hunting

Matplotlib is a powerful Python module to creating 2D figures. Matplotlib was modeled on
MATLAB, because graphing is something that MATLAB do very well.

What are the points that built the success of Matplotlib?

It uses Python: MATLAB lacks many of the features of general purpose languages
It is opensource

It is cross-platform: can run on Linux,Windows, Mac OS and Sun Solaris

It is very customizable and extensible

Plots should look great - publication quality.

Postscript output for inclusion with TeX documents

Embeddable in a graphical user interface for application development

Code should be easy enough that | can understand it and extend it

Making plots should be easy

CINECA

Summer
) School on

k SCIENTIFIC
VISUALIZATION

MATPLOTLIB

The Matplotlib code is conceptually divided into three parts:

*the pylab interface: the set of functions provided by matplotlib.pylab
which allow the user to create plots with code quite similar to MATLAB

figure generating code

*The matplotlib frontend or matplotlib API : the set of classes that do
the heavy lifting, creating and managing figures, text, lines, plots.

*The backends are device dependent drawing devices that transform the
frontend representation to hardcopy or a display device. Example
backends: PS hardcopy, SVG hardcopy, PNG output, GTK GTKAgg, PDF,
WxWidgets, Tkinter etc

CINECA

n School on
' k SCIENTIFIC
HOW TO WORK WITH MATPLOTLIB HISEASLERIE

Matplotlib is designed for object oriented programming. This allows to define
objects such as colours, lines, axes, etc. Plots can also be designed using
functions, in a Matlab-like interface.

There are three ways to use Matplotlib:

pyplot: provides an interface to the underlying plotting library in matplotlib.
This means that figures and axes are implicitly and automatically created to
achieve the desired plot.

pylab: A module to merge Matplotlib and NumPy together in an
environment closer to MATLAB = pyplot+numpy
Object-oriented way: The Pythonic way to interface with Matplotlib

NOTE: The object-oriented is generally preferred for non-interactive plotting

(i.e., scripting). The pylab interface is convenient for interactive calculations
and plotting.

CINECA

Summer
School on
SCIENTIFIC

HOW TO WORK WITH MATPLOTLIB @ VISUALIZATION

object-oriented
interface

FigureCanvas

Renderer

state-machine
interface

CINECA

Summer
=y School on

u SCIENTIFIC
VISUAUIZATION

HOW TO WORK WITH MATPLOTLIB

Figure Canvas encapsulates the concept of a surface to draw onto

&

WK

Renderer does the drawing

Artists is the object that take the Renderer and know how to put it on

the canvas. There are two types of artists:
- Primitives: line2D, Text, Rectangle

- Container: Figure, Axes, Axis, Tick

CINECA \

Summer
) School on

u SCIENTIFIC
VISUALIZATION

pylab and pyplot

Pyplot + Numpy pylab

4 N O N

import numpy as np

import matplotlib.pyplot as plt
t=np.arange (0,5,0.05)
f=2*np.pi*np.sin(2*np.pi*t)
plt.plot (t, £)

plt.grid()

plt.xlabel ('x")

lt.yvlabel (‘vy’/ ; :
glt.gitle(strét Plot’) >>>title (‘First Plot’)
>>>show ()

e VRS y

pyplot mode: is generally preferred
for non-interactive plotting,provides
a MATLAB - style state machine convenient for interactive

!nterface .to the undgrlymg 00 calculations and plotting. It makes the
interface in matplotlib environment more MATLAB-like.

>>>from pylab import *
>>>t=arange (0,5,0.05)
>>>f=2*pi*sin (2*pi*t)
>>>plot (t, £)

>>>grid ()

>>>xlabel ('x')
>>>ylabel (‘y')

pylab mode: merge together pyplot and
numpy in a common namespace. It is

CINECA

Summer
h

School on
u SCIENTIFIC
VISUALIZATION

OO IN MATPLOTLIB

The Zen of Python: explicit is better than implicit

/ \ 200+~ B@E

import numpy as np 6 : _ FirstPlot
import matplotlib.pyplot as plt

t=np.arange(0,5,0.05) a
f=2*np.pi*np.sin(2*np.pi*t)
fig=plt.figure()

ax=fig.add subplot (111) - 0
ax.plot (t, f)
ax.set xlabel ("x")

ax.set ylabel ("y") a
ax.set title("First Plot")
fig.show () ”

2 1 2 3
x

CINECA \

Summer
h

School on
& SCIENTIFIC
VISUALIZATION

MATPLOTLIB MAIN OBJECT

Text Objects

Figures: The plot itself,

« [\ include dimensions and

1 TITLE resolution

Axes: A figure can have
multiple axes, from which
can be defined plots and text
2D lines: 2D lines have

properties such as color,
J thickness, etc
Texts: Objects which can be
used from figures or axes.
\ Properties include font,

colour, etc.

2D Line Object \
Axes Objects

Figure Objects

\ 4

CINECA

Summer

) School on
u SCIENTIFIC
VISUALIZATION

SIMPLE EXAMPLE

/ D
>>>from pylab import *
>>>t=arange (0,5,0.05)
>>>f=2*pi*sin (2*pi*t)
>>>plot (t, £)

>>>grid ()

>>>xlabel (Yx')

>>>ylabel (‘y')

>>>title (‘Primo grafico’)
>>>show ()

" N

The function show() opens up an interactive window with the plot.

The function show() starts a TK mainloop that blocks the mainloop of the
program.

You need to close the new window to continue the execution of the script.

Primo Grafico

CINECA

Summer
) School on

k SCIENTIFIC
VISUALIZATION

INTERACTIVE MODE

IPython is the designed Python shell for interactive script. If we are in interactive mode, then the figure
is redrawn on every plot command. If we are not in interactive mode, a figure state is updated on every
plot command, but the figure is actually drawn only when an explicit call to draw() or show() is made.

In order to use IPython for interactive plotting, start it in pylab mode.
>>>ipython pylab
Or from the IPython shell using magic word %pylab

IPython 0.13.1 -- An enhanced Interactive Python.

? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.

help -> Python's own help system.

object? -> Details about 'object’, use ‘object??' for extra details.
%guiref -> A brief reference about the graphical user interface.

%pylab
NOTE: interactive property is available in rcParams dictionary

CINECA

FUGURE

Summer
h

School on
u SCIENTIFIC
VISUALIZATION

When the figure object, is defined, some properties such as dimensions and

resolution, borders colour, etc can be set

>>>
>>>
>>>
>>>
>>>
>>>
>>>

>>>
>>>

\>>>

x=arange (0,p1,0.01)
y=s1in (x)

y2=CoOs (X)

figure (facecolor='g")

N

plot (x,y,label="sin (x) ")

legend ()
figure(figsize=([3,3])

plot (x,vy2,label="cos(x)")

legend ()
close (1)
close('all')

o= = |

'/ Figure 3

NOOC += BVvE

s
"\l Figur E@Iﬂ

©®"00O + -~

— cos(x)

L M
?).{K).E_.OI.SZ.{E.B.{B.S

/

CINECA \

Summer
=y School on

u SCIENTIFIC
VISUALIZATION
CREATING A 2D PLOT
The function plot() is highly customizable, accommodating various options, including

plotting lines and/or markers, line widths, marker types and sizes, colors, and legend to
associate with each plot.

plot (line2d , [properties 1lineZd])

color keyword color: ‘b’ blue, ‘r’ red, ‘g’ green, ‘y’ yellow, ‘k’ black, ‘w’
white, ‘c’ cyan, ‘m’ magenta
label line label used for legends
linestyle line style: ¢* no line, ‘--' dashed, *-* continuous, ‘:° doted, ‘.-* dash-dot
linewidth line width: float value in pixels
marker type: °.” Point, ‘0’ circle, ‘D’ diamond, ‘"’ triangle, ‘s’ square,
marker 3 2 3 2 3 2 -
*? star, ‘+’ plus, ‘h’ hexagon,
markersize marker size: float value in pixels
markeredgecolor | marker edge color: cf color
markerfacecolor maker face color: ¢f color

CINECA \

Summer
) School on

' — SCIENTIFIC
CREATING A 2D PLOT " “ VISHAUZATION

Setting line2D property - pylab style L E— —
>>>x=arange (0,pi,0.1) |
>>>plot (x,sin(x),marker="'o',color="r", os|
markerfacecolor="'b', label="sin (x) ")
>>>]egend () oA

0.2+ 1
import num as n . ‘ . ‘ . ‘
/E) py p \ 0'%.0 0.5 1.0 15 20 25 3.0 3.5

from matplotlib import pyplot as plt

x=np.arange(0,100,10) " ‘ ‘ ‘ ‘ ‘ . ‘
y=2.0*np.sqgrt (x) i
f=plt.figure() -
ax=f.add subplot (111) 15 e

line,=ax.plot (x,vVy) "
line.set color('r"') "

line.set linestyle('--") r .’/
line.set marker('s"') L
plt.setp(line,markeredgecolor="green',markerface L

color='b',markeredgewidth=3)

line.set markersize (15) f
plt.show () O35 o 4 50 e 70 80 9

W, Setting line2D property - 0O style

CINECA

Summer
) School on

| — 'I': SCIENTIFIC
D N VISUAUIZATION

CREATING A 2D PLOT

C> arange (0’5,0.05)Creatmg Multi-line plot -- pyla} . | | | g

>>> f=2*pi*sin(2*pi*t) 6 .,o* .f.l‘l .!.Q* :'l; ‘:: g
>>> £2=5in (2*pi*t) *exp (-2%t) o R | |
b le o e

>>> plot (t,f, 'g--0',t,£2, 'r:s") .

>>> hold (True) IR SRANASRA .
e SRR

>>> £3=2*%pi*sin (2*pi*t)*cos (2*pi*t) q

>>> plot(t,£3,'c-.D',label="£3") b “’I“. ; 64 o0 o4 S6e 04 000 ¢4
>>> legend (('"f1','"£f2Y,7£37)) “L‘f ®L® "“‘:l ";‘:’r ., =
a4t . [[[[

\\\¥ 4/// P S
s o L1 o o os

Creating Multi-line plot --00 0 '1 2 3 s g
import numpy as np
from matplotlib import pyplot as plt

x=np.arange (0,100,10) 25000 : ‘ ‘ : : : ‘
--- line2
yl1=2.0*np.sqgrt (x) ; 20000 — inesl|
y2=3.0*x**(1.0/3.0) o0l lined | |
y3=4.0*%x+3.0*x**2
y4=5.0*%x-2.0*x**2 10000
5000

f=plt.figure() e
ax=f.add subplot (111)
linel,=ax.plot (x,yl, 'r-=") —3000¢
line2,=ax.plot (x,y2, 'b-.") ~10000}
line3, lined4=ax.plot (x,y3,x,vy4) _15000]
line3.set color('g')

_200000 10 20 30 40 SIO 60 70 80 90

lined.set color('y"')

| ax.legend([line2,1ine3,1ined], ['1line2', '1ine3', '1lined ‘]
)

lt.show ()

Summer
) School on

: u SCIENTIFIC
VISUALIZATION
CREATING A 2D PLOT
Logarithmic plot and errorplot are derived from simple plot and
can be used in a similar way.

Log

10°

2
— T

-

semilogx() creates a logarithmic x axis.
semilogy() creates a logarithmic y axis.
loglog() creates both x and y logarithmic axe
errorbar creates error bar in x/y direction

107
///:;;ort numpy as np *\\\\\

from matplotlib import pyplot as plt

1072
101 10°

x=np.linspace(0,1,10)
y=x* (x+1) * (x+1)

xerr=np.random.normal (size=10,scale=0.1) 5 _Error_
yerr=np.random.normal (size=10,scale=0.5)

f=plt.figure () ar

ax=f.add subplot (111)

ax.loglog (x,x**2,label=r'S$x"2S") 3

ax.loglog (x,x**3,label=r'S$x"3S$")
ax.legend (loc="upper left')

f2=plt.figure ()

ax2=f2.add subplot (111) J |
ax2.errorbar (x,y,xerr=xerr, yerr=yerr,ecolor="qg"'))
1t.show () 1 ‘ . ‘ . ‘ .
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 12

CINECA

Summer

School on

) | SCIENTIFIC
" VISUALIZATION

CREATING A SUBPLOT

subplot() allows to divide the figure in a grid with specified number of columns and
rows. Then we can place our plot in the desired zone.

subplot (numRows, numColumns, PlotIndex)

Poogb-ol
H %.U 05 10 15 20

CINECA

CREATING A SUBPLOT

/ Creating subplot-- pylaﬁ

subplot (2, 1, 1
plot (x,x**2, ‘b
subplot (2, 1, 2)

plot (x, cos (2*pi*x), 'r.'")

14
\

x = arange (0, 2.0, 0.01)
)
)

subplots adjust (hspace = 0.5)
show ()

\

Summer

School on
SCIENTIFIC
VISUALIZATION

_/

/ Creating subplot-- ON
import numpy as np

import matplotlib.pyplot as plt

x = np.linspace (0, 8*np.pi, num=40)
f=plt.figure ()

ax=f.add subplot(2,1,1)

ax.plot (x, np.sin(x))

ax2=f.add subplot(2,1,2)
ax2.plot (x, np.arctan(x))
f.subplots adjust (

left=0.13, right=0.97,

top=0.97, bottom=0.10,

wspace=0.2, hspace=0.4)
plt.show ()

CINECA \

Summer

N | School on
£ u | SCIENTIFIC

AXES ' VISUALIZATION

When you create a subplot, an axis instance is automatically created. The axes can be
defined as follows: ax = subplot(111)
To create an axis:

axes ([bottom left corner x, bottom left corner y, width,
height])

height It is possible to modify axes with:

left

axis([xmin,xmax,ymin,ymax])
grid()
Xticks(location,label)
bottom legend ()

CINECA

Summer
) School on

| . k SCIENTIFIC
VISUALIZATION

X = numpy.random.randn (1000)

y = numpy.random.randn (1000) 120
axscatter = axes([0.1,0.1,0.65,0.65]) o
axhistx = axes([0.1,0.77,0.65,0.2]) ol
axhisty = axes([0.77,0.1,0.2,0.65]) 9

axscatter.scatter (x, Vy)
draw () o
binwidth = 0.25 1|
xymax = max([max(fabs(x)), max(fabs(y))])

lim = (int(xymax/binwidth) + 1) * binwidth

bins = arange(-1lim, lim + binwidth, o

binwidth) 2l

axhistx.hist (x, bins=bins) | S A § I
draw () -4 -3 -2 -1 0 1 2 3 4°0 204060 801002040

axhisty.hist(y, bins=bins,
orientation="horizontal')
draw ()

CINECA

Summer
h

School on
SCIENTIFIC
AXES: LIMITS AND TICKS ‘ VISUALIZATION

How to control axis limits?

pyplot functions

-x1lim(mn, mx)

—ylim(mn, mx)

axes methods

-set xlim(mn, mx)

-set ylim(mn, mx)

mn and mx are the lower and upper limits of the axis range.

How to control axis ticks?

pyplot functions

-xticks (loc, lab)

-yticks (loc, lab)

axes methods

-set xticks(loc) and set xticklabels (lab)
—-set yticks(loc) and yticklabels (lab)

In these functions/methods the arguments are:

-loc is a list or tuple containing the tick locations

-lab an optional list or tuple containing the labels for the tick marks. These may be numbers or
strings.

-loc and lab must have the same dimensions

CINECA \

w:u
3

W B - @

2
1
0

(=]

h

TEXT

There are several option to annotate a graph with text.

title

0.06

0.04

0.02 annotate
[} /
o
@ 000
>

-0.02 .

Testo
0.04
0'0»8.06 -0.04 -0.02 0.00 0.02 0.04 0.06
xlabel

Is is possible to create text
object with several options

CINECA \

o

xlabel (s, *args, **kwargs)
ylabel (s, *args, **kwargs)
title (s, *args, **kwargs)

annotate (s, xy, xytext=None,

Summer

School on
SCIENTIFIC
VISUALIZATION

textcoords='data',arrowprops=None, **props)

text(x, y, s, fontdict=None, **kwargs)

. [size in points | ‘xx-small’ | ‘x-small’ | ‘small’ | ‘medium’ | ‘large’ | ‘x-
fontsize . \
large’ | ‘xx-large’]
fontfamily [FONTNAME | ‘serif” | ‘sans-serif” | ‘cursive’ | ‘fantasy’ | ‘monospace’ |
fontstyle [‘normal’ | “italic’ | ‘oblique’]
[@ numeric value in range 0-1000] “ultralight’ | ‘light’ | ‘normal’ |
fontweight ‘regular’ | ‘book’ | ‘medium’ | ‘roman’ | ‘semibold’ | ‘demibold’ | ‘demi’ |
‘bold’ | ‘heavy’ | ‘extra bold’ | “black’]
[@ numeric value in range 0-1000] ‘ultra-condensed’ | ‘extra-condensed’ |
fontstretch ‘condensed’ | ‘semi-condensed’ | ‘normal’ | ‘semi-expanded’ | ‘expanded’
| ‘extra-expanded’ | ‘ultra-expanded’]
color |matplotlib color]
position [(x.y)], in range 0-1
rotation | angle in degrees | ‘vertical’ | “horizontal’]
;;:rtlcalallgmne [‘top’ | ‘center’ | “bottom”]
horizontalalign [left’ | “center’ | ‘right]
ment

Summer
h

School on
u SCIENTIFIC
VISUALIZATION
TEXT

>>> x=[9,10,13,12,11,10,9,8,45,11,12,10, 9, 15 | , _ Mytitle | .
(1,10,13,9] \ |

>>> plot (x,label="myfunc"')
>>> legend ()

>>> title('Mytitle') 30r
>>> ylabel ('y', fontsize="medium',color="r") .|
>>> xlabel ('x', fontsize="x-
large',color='b',position=(0.3,1))

35| annotate

201

>>> text (4,20, 'mytext', Bf

color="'g', fontsize="medium') 10}

>>> ; ‘ , ‘

annotate ('annotate',xy=(8,45),xytext=(10, ’ ? fx ° ° oW

35) ,arrowprops=dict (facecolor="'black', shrink

<O >

To render mathematical expressions, use a raw string and enclose your mathematical expres-
sion with signs $. For Greek letters, start with a slash followed by the name of the letter.

xlabel(r’Sy i=2\pi\sin(2\pi x)S’) is equal to y; = 2msin(2mx)

CINECA \

Summer
) School on

u SCIENTIFIC
VISUALIZATION

IMAGES FILES

There are several ways you can use matplotlib:

- Run it interactively with the Python shell

- Automatically process data and generate output in a variety of file format

- Embed it in a graphical user interface, allowing the user to interact with an
application to visualize data.

Displaying a plot can be time consuming, especially for multiple and complex
plots. Plots can be saved without being displayed using the savefig() function:

x = arange(0,10,0.1)
plot(x, x ** 2)
savefig (‘C:/myplot.png’)

CINECA

Summer

PLOT TYPES

School on
SCIENTIFIC
VISUALIZATION

Chart Suggestions—A Tought-Starter
Variable Width Table or Table with Bar Chart Column Chart Circular Area Chart Line Chart Columnn Chart Line Chart
Colurmn Chart Embedded Charts
HH||BEEE E B adl || adl ||[EZ
ol
T T 1 T 1 |
. | Marny tems Few ltems Cyclical Data Mon-Cyclical Data Single of Few Categories Many Categonies
Two Variables Marry
per lem Ca'.e%nnes Eew Ca;.egnre-s Mary I:-'e-i{:-cs Few Periods
One Varistie per lem |
T ! Chver Time
Among tems
—'g| | Ciodurmn Histogram
| Few
Single — Data—
Comparison Variable | Points
Scatter Chart Two |
Variables _
= .:._‘ o rsmm
Lo il - . What Would you e Line Histogra
S ——— Relationship — like to show? [— Distribution ———— h[';aE'
= Bt5=—
e | /O
Bubble Chart
0o
e 00 Composition Scatter Chart
o OD Tres
o Variables | Two | e
| Variables o ;f,","*
Changing .
Static
Over Ti
e e 30 Area Chart
Few Periods Many Periods | Tee |
Variables
1 | 1
Oinily Rielative Relative and Absolute Only Relative Relstive and Absolute Simple Share Accurmulation or Components
Differences Matter Differences Matter Differences Matter Differences Matter cif'l;mal Su :il'acti?n to Total DFCGI'I‘IEGFEFE
1 1 [] Il
Stacked 100% Stacked Stacked 100% Stacked Area Chart Fie Chart /starfall Chart Stacked 100%
Column Chart Column Chart Area Chart Column Chart with
mim Subcompanents
E: BHE
.

CINECA Wy,

Summer
h

School on
“ SCIENTIFIC
VISUAUZATION

BAR PLOT
bar(left, height)
Esempio:
pylab x
n dayl=(7,10,15,17,17,10,5,3,6,15,18,8]

n day2=[5,6,6,12,13,15,15,18,16,13,10, 6]
m=['Jan', 'Feb', "Mar', "Apr', 'May', 'Jun®
, 'Jul', "Aug', 'Sept', 'Oct', "Nov', "Dec']

n Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec

width=0.2 Montn
i=arange (len(n dayl))
rl=bar (i, n dayl,width, color='r',linewidth=1)

r2=bar (i+width,n day2,width,color="b',linewidth=1)

xticks (i+width/2,m)

xlabel ("Month'); ylabel ('Rain Days'); title('Comparison')
legend ((r1[0],xr2[0]), ('Cityl"', 'City2"'),loc=0, labelsep=0.006)

CINECA \

PIE PLOT

pie(x)
subplot (211)
pie(n dayl, labels=m,
explode=(0,0,0,0.1,0.1,0,0,0,0,0,0.
1,01,
shadow=True)
title('Cityl")
subplot (212)
pie(n day2, labels=m,
explode=[0,0,0,0,0,0,0,0.1,0.1,0,0,
01,
shadow=True)
title('City2")

s

Summer
School on
SCIENTIFIC
VISUALIZATION

Summer
h

< 4 | School on
‘ “ \ SCIENTIFIC
\ " VISUAUZATION

MESHGRID

Common mistake
Given a grid (xi,yi) compute f(xi,yi)

import numpy as np

from matplotlib import pyplot as plt
import matplotlib

X=np.arange (4)

y=np.arange (4)

def f(x,vy):
return
matplotlib.mlab.bivariate normal (X,Y,1.0,1.0,0.0,0.0)

f(x,vy)
array([0, 2, 6, 12])

WRONG!

CINECA

Summer
h

School on
SCIENTIFIC
MESHGRID “ VISUAUZATION

3
XX, yy=np.meshgrid(x,vy)
2
>>> £ (xx,VY) OKII
array([[0, 1, 4, 9],
(1, 2, 5, 1017, 1
[2, 3, 6, 111,
[3, 4, 7, 12]1])
0
1 2 3
plt.imshow(Z,origin="'lower") imshow contourf
plt.show () 5
plt.contourf (2) o
plt.show () 25

CINECA Ty,

MATPLOTLIB GALLERY

.http: / /matplotlib.sourceforge.net/gallery.html

U ey

wo R |
AN T

t.'r' j I - . "" R —
‘ ;l | PP ——

Sy Aot
D LD PD B 2D - e ———
C PPV e) 4 = - = d
e T -y L

SO tet ()06 paetn
o - L
s

o en
n
-
“I'he |
-
-
"
sein
——
> L
i) e
f
4 ey
f s
om P o300
D .o
f
/
7/ san
so0s il
— . W - -
-) - L ~ - \ =

CINECA

*‘ School on

Summer

SCIENTIFIC
" VISUALIZATION

oty — — -
—— — e —

B tn - i)

http://matplotlib.sourceforge.net/gallery.html
http://matplotlib.sourceforge.net/gallery.html
http://matplotlib.sourceforge.net/gallery.html

Summer
A

School on
u SCIENTIFIC
VISUALIZATION

Exercise 1

Plot a regular step function and its Fourier Transform

Step Function f(¢)

1 14
12}
f(t) _ 1, |t| < ? 2o
> 4 0z

0:' |t| — 2 O'Ez.u 15 10 X 10 15 2.0

o FFT
40} :\1 *‘* Real |4
Hints: 0} g — tmag]]

Use np.fft.fft() and np.fft.fftshift(), np.fft.fftfreq() = |
Use F.real() and F.imag() Sl

=30 =20 -10 0 10 20 30

spectra = np.fft.fftshift(
np.fft.fft(np.fft.fftshift (step)))

freq = np.fft.fftfreg(len(step), d=t[1l] - t[0])
freqg = np.fft.fftshift (freq)

Summer
) School on

k SCIENTIFIC
VISUALIZATION

mplot3d

The mplot3d toolkit adds simple 3D plotting capabilities to
matplotlib by supplying an axes object that can create a 2D
projection of a 3D scene. The resulting graph will have the same look
and feel as regular 2D plots.

Matplotlib offers a rudimentary 3D plotting :

Curves

Wireframe
Surface

CINECA

Summer
h

< 4 | School on
u \ SCIENTIFIC
A - VISUALIZATION

mplot3d :3D curves

import numpy as np
import matplotlib.pyplot as plt

from mpl toolkits.mplot3d import Axes3D

def lorenz(x, vy, z, s=10, r=28, b=2.667)

x dot = s*(y - Xx) Lorentz attractor
y dot = r*x - y - x*z dr
z dot = x*y - b*z E — ﬂ-(y_i:):
return x dot, y dot, z dot .dy
ETi x(p—z)—y,
dt = 0.01
stepCnt = 10000 dz
Need one more for the initial values dt —-1@;——ﬁ33.
Xxs = np.empty((stepCnt + 1,))

ys = np.empty((stepCnt + 1,))

zs = np.empty((stepCnt + 1,))

Setting initial values

xs[0], ys[O], zs[O] = (O., 1., 1.05)

CINECA

Summer
h

< 4 | School on
u \ SCIENTIFIC
A - VISUALIZATION

mplot3d :3D curves

Stepping through "time".
for 1 in (stepCnt)
Derivatives of the X, Y, Z state

x dot, y dot, =z dot lorenz (xs[1], ysl[i], zs[1])

xs[i + 1] = xs[i] + (x dot * dt)
ys[i + 1] = ys[i] + (y dot * dt)
zs[i + 1] = zs[1] + (z dot * dt)

fig = plt.figure ()

ax = fig.add subplot(l,1,1,projection="'3d"')
ax.plot(xs, ys, zs)

ax.set xlabel ("X Axis")

ax.set ylabel ("Y Axis")

ax.set zlabel ("Z Axis")

ax.set title("Lorenz Attractor")

plt.show ()

Lorenz Attractor

CINECA

mplot3d :3D wireframe

import numpy as np

from mpl toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt

from matplotlib import cm

.linspace(-4*np.pi, 4*np.pi, num=20)
np.meshgrid(x, x)

.Sgrt (X*x*2 + Y**2)

.sin(R) / R

f=plt.figure (figsize=(2.25,2.25))

ax = f.add subplot(l,1,1, projection='3d"')
ax.plot wireframe (X, Y, Z)

ax.legend() ;

f.subplots adjust(

left=-.05, right=1., top=1l., bottom=.05)
plt.show ()

CINECA

Summer

School on

p | SCIENTIFIC
- VISUALIZATION

7 '~A’/“ \‘5’0 '.’,‘I

Summer
‘,\ School on
; SCIENTIFIC
" VISUALIZATION

mplot3d :3D surface

import numpy as np
from mpl toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt

from matplotlib import cm

.linspace (-4*np.pi,
X, Y = np.meshgrid(x, x)
R = np.sgrt (X**2 + Y*x*2)
Z = np.sin(R) / R

4*np.pi, num=20)

f=plt.figure (figsize=(2.25,2.25))

ax = f.add subplot(l,1,1, projection='3d')
ax.plot surface(X, Y,

Z ,cmap=cm. spectral ,rstride=1,cstride=1,
alpha=.5,linewidth=0)

ax.legend() ;

ax.contour (X,Y,Z,zdir="y"',offset=15)
ax.contour(X,Y,Z,zdir="x"',o0ffset=-15)
plt.show ()

CINECA

Summer
h

School on
MORE ON MATPLOTLIB N\ O vsiazion

Matplotlib doesn’t only offer an interface to make plots.

The GUI that pops up when calling plt.show() is actually interactive: matplotlib offers you objects
and functions to interact with the user.

You can get the coordinates of a mouse click, perform actions on keyboard input, let the user select
objects etc...

Matplotlib allows the programmer to make simple GUIs which are basically OS independent:
matplotlib supports six graphical user interface toolkits (GTK, Qt...) and one uniform API.

To manage events :
- Catch the event with connect function
- Define a function (action) to be executed when a particular event occurs

There are several predefined events:
- 'button_press_event‘ ,'button_release_event','draw_event‘, '’key_press_event’, 'key_release_event,
'motion_notify_event','pick_event’,'resize_event','scroll_event’,
figure_enter_event', figure_leave_event,
‘axes_enter_event','axes_leave_event‘,'close_event*

EXAMPLES:
mouse_event.py
- Picker_example.py

CINECA

Summer
h

School on
| u SCIENTIFIC
VISUALIZATION

It is possible to customize the plot with new widgets. Widgets are objects built-in to

MORE ON MATPLOTLIB

Matplotlib : button,sliders,check button,radio button.
A button in matplotlib is exactly what you think it is: a clickable region, in which

clicking returns a callback that can be linked to any action.

Examples:
matplotlib_radiobutton.py
matplotlib_checkbutton.py

CINECA

Summer
) School on

-~ SCIENTIFIC
MORE ON MATPLOTLIB “ VISUALIZATION

It is possible to create animated graph in matplotlib.

Creating a basic animation is a matter of initializing the plot, creating functions to update

the frames, and passing these functions to an animation object.

* The purpose of the init() function is to set the background of the animation: it should
essentially hide any plot elements that you don't want to be shown in every frame.

: The purpose of the animate() function is to update the plot elements for each frame.
Creating the animation now is a matter of passing these initialization and frame-step
functions to the animator

anim = animation.FuncAnimation(fig, animate, init func=init,

frames=200, interval=20, blit=True)

EXAMPLE:
simple_animation.py

CINECA

Summer
) School on

’ SCIENTIFIC
EMBEDDING MATPLOTLIB IN A GUI “ MEREEERTION

Matplotlib + IPython is very handy for interactive plotting, experimenting
with datasets,trying different visualization of the same data, and so on.
There will be cases where we want an application to acquire, parse, and
then,

display our data.

We will present an example of how to embed Matplotlib in applications
that use Qt4 as the graphical interface library.

We will see:

How to embed a Matplotlib Figure into a Qt window

How to embed both, Matplotlib Figure and a navigation toolbar into a Qt
window

CINECA

EXAMPLE

SYS
PyQt4 OtGui

matplotlib.backends.backend gtd4agg

FigureCanvasQTAgg as FigureCanvas
matplotlib.backends.backend gt4agg

NavigationToolbar2QTAgg as NavigationToolbar
matplotlib.pyplot plt
random

| I

__name == ' mailn
app = QtGui.QApplication(sys.argv)

main = Window ()
main.show ()

sys.exit (app.exec ())

CINECA

Summer
School on
p | SCIENTIFIC

" VISUALIZATION

EXAMPLE

CINECA

Window (QtGui.QDialog) :

~_init (self, parent=None):
QtGui.QDhialog 1init (parent)

self.figure = plt.figure()

this is the Canvas Widget that displays the
"figure’

self.canvas = FigureCanvas (self.figure)

this is the Navigation widget

self.toolbar = NavigationToolbar (self.canvas,
Just some button connected to "plot’ method
self.button = QtGui.QPushButton('Plot")
self.button.clicked.connect (self.plot)

set the layout

layout = QtGui.QVBoxLayout ()

layout.addWidget (self.toolbar)
layout.addWidget (self.canvas)
layout.addWidget (self.button)

self.setlLayout (layout)

Summer
School on

SCIENTIFIC

" VISUALIZATION

self)

EXAMPLE

def plot(self):
random data
data = [random.random() for i in
range (10)]
create an axis
ax = self.figure.add subplot (111)
discards the old graph
ax.hold (False)
plot data
ax.plot (data, "*-")
refresh canvas
self.canvas.draw ()

PPéde
CINECA

Summer
School on
SCIENTIFIC
VISUALIZATION

[E] python

POOC ++« Bv i@

3324

Summer
School on
SCIENTIFIC
VISUALIZATION

s

MORE ON MATPLOTLIB

http://wiki.python.org/moin/NumericAndScientific/Plott ing
Plotting Tools

» @ Matelotlo is an Open Source platting lrary designed to support interactive and publication quality plotting with a syntax famillar to Matlab users. Ms interactive mode supports multiple windowing toolkits (cumently: GTK, Thinter, Qt, and vxWindows| as well as multiple
noninteractive backends (POF, postscript, SVG, antigrain geometry, and Caira). Plots can be embedded within GUI applications or for non-interactive uses without any available display in batch made. Matplotlib provides both a Matlab-like functional interface as well as an
abject orientad intarface. ' IPython fias a "pylab” mode which is specfically designed for interactive plating with matploti.

») Vausz is 3 GPL scienfc plotting package watten in Python and PyClt designed to create publication-quality output. Graphs are buit up from simple components, and the pragram fatures an integrated command-line, GUI and scripting interface. Veusz can also be
embedded in other Python programs, even those not using PyQt.

» Vimisisa pure Python library for visualization of 10 to 40 data in an objgct oriented way. Essentially, visvis is an object oriented layer of Python on tap of OpenGl, thersby combining the power of OpenG! with the usabilty of Python. A Matlab-lks interface in the form of a
set of functions allows easy creation of abjects (2.q. plot(), imshaw(), volshow(), surf]).

» B Chacois 3 device-independent 20 plotfing package based on a DisplayPDF AP It supparts fast vector graphics rendering for interactive data analysis {read: fast vz updating plats) and custom plat construction. Chaca is easy to embed in pythan GUI applications
(uWindowrs, () and provides ice abstractions for averlays and taols (select regions, zoom/pan, cross-hairs, ahels, deta inspectors, etc.). Chaco s able to autput to any raster format supported by (&' PIL, as well as PDF, PastSarnt and 3VG backends. See (+/the gallery
for sereznshats and code examples.

» diaGrabher is based on & Py(QiGraph and allows you to read, fiter, process, interpalate and plot n-dimensional values fiom different sources {like libreOffice- or csi-flas) and vanable size. Through interactive reading s also possible to evaluate streams in a kind of ‘software-
asclloscops’

» KonradHinsen has some platting support in his ScientificPython package, for example TkP atCanvas.

» Michael Haggery has @3 Gnuplot module that interfaces vith & the GNUPLOT package.

» @ plot_wrap A madule by Mike Miller which wraps the functions in O the G olotutils package.

» WBLTBLTis an extension fo the t widgets that can produce &Y plots and bar charts. The BLT package can be used thiough @ the Py package, & framework for the creation of megawidgets built on top of Tinter.
» 0 PyClut is 2 set of Python bindings for the Qwt C++ class ibrary which extends the Ct framework with widgsts for scientific and enginesring applications.

» Douantisa Python library based on Qut providing efficient 20 data-plotting faatures (cuve/image visualization and related tools) for interactive camputing and signallimage processing application development.

» DISLN DISLN s & high-lzvel and easy to use graphics library for disglaying data as curves, bar graphs, pie charts, 30-color plots, surfaces, contours and maps. The software s available for several C, Fortran 77 and Foriran 90 compiers. For some operation systems, the
programming languages Python and Perl are also supported by DISLIN. DISLIN is free for the Linux and FreeBSD aperating systems and for the MS-003 and Windows 35/NT compilers GCC, GT7 and ELF0. Other DISLIN versions are available at low prices and can be
tested free of charge.

» @ Mayaui Starting from Mayaui2, the 30 data visualization program Mayaviis fully scrigtable from Pythan, can be integrated in larger apglications, and exposes a simple pylabimatlab-lks interface for plotting amays.

» 0 gdmadulz GD is a graphics library far the creation of GIF pictures, wntten by Thomas Boutell. gdmadule is an Pythan extension for this library. [can do lines, arcs, fils, fonts and can also manipulate ather GIF pictures. Included in the gdmadulz is a graphing madule,

CINECA

http://wiki.python.org/moin/NumericAndScientific/Plotting
http://wiki.python.org/moin/NumericAndScientific/Plotting

Summer
) School on

- , SCIENTIFIC
A BRIEF INTRODUCTION TO MAYAVI N S vsiaization

Mayavi2 seeks to provide easy and interactive visualization of 3D data, or 3D
plotting. It does this by the following:

CINECA

an (optional) rich user interface with dialogs to interact with all data
and objects in the visualization.

a simple and clean scripting interface in Python, including ready to use
3D visualization functionality similar to matlab or matplotlib or an
object-oriented programming interface.

use the power of VTK without forcing you to learn it.

Summer
) School on

| k SCIENTIFIC
) VISUALIZATION

A BRIEF INTRODUCTION TO MAYAVI

So the user can choose three different ways to use Mayavi:

* Usethe mayavi2 application completely graphically.

Use Mayavi as a plotting engine from simple Python scripts, for example
from Ipython, in combination with numpy.

(Advanced) Script the Mayavi application from Python. The Mayavi

application itself features a powerful and general purpose scripting API
that can be used to adapt it to your needs.

CINECA

The interactive
application, mayavi2,
is an end-user tool
that can be used
without any
programming
knowledge

Mayavi presents a
simplified pipeline
view of the
visualization.

The application
displays an interactive
Python shell, where
Python commands can
be entered for
immediate execution.

CINECA

MAYAVI INTERFACE

Menus

File Visualize View Tools Help

Mayavi |

Mayavi2

Qe =T FE

v ETVTK Scene 1
‘4l Add Data Source

Engine Tree View

Mayavi object editor

Object Editor

VISUALIZATION

[VTK Scene

TVTK Scene 1 & |

Summer
School on
SCIENTIFIC

XY XMEZZN

IPython [Logger
In [1]: El

Logger view tab

Python Interactive
Shell

MAYAVI ENGINE

The Engine manages a
collection of Scene.

In each Scene, a user may
have created any number
of Source

A Source object can further
contain any number of Filter
or ModuleManager objects

N

Summer

School on
SCIENTIFIC
VISUALIZATION

-

CINECA

Mayavi Engine

ModuleManager

[Lookup tables

List of Modules

Summer
| School on
g | SCIENTIFIC
" VISUALIZATION

MAYAVI ENGINE

Mayavi uses pipeline architecture:

Data sources: objects to be displayed
Modules: how to visualize your data
Filters: how to transform your data

Many different ways to look at the same “data source”

CINECA

Summer
n

School on
& SCIENTIFIC
VISUALIZATION

SIMPLE SCRIPT

Mayavi can also be used through a simple and yet powerful scripting API,
providing a workflow similar to that of MATLAB or Mathematica.

Mayavi’s mlab scripting interface is a set of Python functions that work
with numpy arrays and draw some inspiration from the MATLAB and
matplotlib plotting functions. It can be used interactively in IPython, or
inside any Python script or application.

There are a lot of parallels between matplotlib and mayavi:
-there exists huge object-oriented library, allowing you to control even
the smallest detail in a plot.

-there exists a module around that library called mlab, similar (and in
fact inspired by) pylab.

CINECA

Summer

School on
SCIENTIFIC
VISUALIZATION

CINECA

Summer
School on

u SCIENTIFIC
VISUAUIZATION

s

mlab

Simple problems should have simple solutions

points3d : points cloud with coloring

//1;;ort numpy as np i\\\\
from mayavi import mlab

t = np.linspace (0, 4*np.pi, 20) o [

X, Yy, Z = np.sin(2*t), np.cos(t), _
np.cos (2*t) < ‘ - .
s = 2+tnp.sin(t)

f=mlab.figure(size=(200,200),bgcolor= . L .

mlab.points3d(x, vy, Z,s) “
mlab.savefig(’test Points3D.pdf’)

mlab.show ()

AN /

mlab

plot3d : points connected by a line with a coloring

import numpy as np

from mayavi import mlab

n mer, n long = 6, 11

pi = np.pi

dphi = pi/1000.0

phi = np.arange (0.0, 2*pi + 0.5*dphi, dphi)

mu = phi*n mer

= mlab.figure (bgcolor=(1,1,1))

= np.cos (mu) * (1+np.cos (n_long*mu/n mer) *0.5)
= np.sin(mu)* (14+np.cos (n_long*mu/n mer) *0.5)
= np.sin(n long*mu/n mer) *0.5

= mlab.plot3d(x, y, zZ, np.sin(mu),

tube radius=0.025, colormap="Spectral")
mlab.view (distance=4.75);

mlab.pitch(-2.0)

mlab.show ()

CINECA \

H N KX H

Summer

School on
SCIENTIFIC
VISUALIZATION

Summer
‘,\ School on
: SCIENTIFIC
" VISUAUIZATION

mlab

It is possible to customize the visualization with labels and colorbars.
It is possible to control the camera changing rotation, elevation etc etc.

CAMERA

mlab.view (azimuth=None,
elevation=None,
distance=None,
focalpoint=(x,vy,z)),
mlab.pitch (degrees)
mlab.roll (degrees)

mlab.yaw (degrees) PitCh
mlab.move (forward=None, right=None, up=None)

Label and Colorbar

Roll

title(), axes (), orientation axes()
colorbar (), scalarbar(), vectorbar /()

CINECA

mlab

surf (x,y,f): plot function f(x,y)

//I;port numpy as np

from mayavi import mlab

def f(x, vy):

return np.sin(x+y) + \
np.sin(2*x - y) + \

np.cos (3*x+4*y)

X, y = np.mgrid[-7.:7.05:0.1,
5.:5.05:0.05]

mlab.surf (x, vy, f)

\\iiab.show()

™

/

CINECA

Summer
School on
SCIENTIFIC

" VISUAUIZATION

Summer

School on

) | SCIENTIFIC
- VISUALIZATION

mlab

A scalar field takes a value in every point in
space, f (X; y; z)

Visualisation approaches:
- Iso-Surfaces, 2D planes for constant values
f(x;y;z)=Cn

- Volymetric plotting (voxels), Transparent
color coded boxes

- Cut-planes, 2D plane o : ax + by + cz=m
with colorcoded values of f

CINECA

Summer

< 4 | School on
u \ SCIENTIFIC
A - VISUALIZATION

s

mlab

Vector field

f(r) = (fx (r); fy (r); fz (r))
where r = (x; y; z)
Visualisation approaches:

-Quiver, set of vectors (arrows)

-Stream lines, how particles in the
field flows

CINECA

Summer

School on
SCIENTIFIC
VISUALIZATION

mlab managing the pipeline

4 A

X,y,z = np.ogrid [-5:5:1003 , -
5:5:1003 , -5:5:1007]

scalars = x*x*0.5 + y*y + z*z*2.0

obj] = mlab.contour3d(scalars,
opacity=0)
mlab.pipeline.scalar cut plane(obj,pla
ne orientation='x axes')
mlab.pipeline.scalar cut plane (obj,pla
ne orilentation='y axes')

mlab.show pipeline ()

mlab.show ()

. 4

CINECA \

Summer
) School on

k SCIENTIFIC
VISUALIZATION

EXERCISE MATPLOTLIB

In this exercise we'll plot some weather data read from a .csv file.

Each row rapresents one day, and there are columns for min/mean/max
temperature, dew point, wind speed, etc. We'll plot

temperature and weather event data.

- read .csv file with numpy loadtxt function populating a numpy array only with
min/max/mean temperature and weather event data.
- plot on the same figure using subplot function, max,min and mean

temperature, add axis labels and title
- plot on the same figure using subplot function a trend line for mean/max/min

temperature. Use numpy's polyfit function to add a trend line.
- plot on a new figure an event histogram counting occurred events per month

as display in figure 2

CINECA

EXERCISE MATPLOTLIB

Mean Temperature (F)

Min Temperature (F)

Mean Temperatures in Bloomlngton 2012

Figure 1

Weather Events in Bloomington 2012

Summer
School on
SCIENTIFIC
VISUALIZATION

s

80 . ; 9 Max 'Il'emperaturels in Bloomilngton 2012
70 | = 80
60 | Tﬁﬁ { » 70
qp ? |2 60
01 g 50
40 * 1E 40
00 e
30 * ‘ = x 30
20 1= 20
10 ! ! ! 10 ! ! 1 ! !
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
70 Min Temperatiray of B&@avmington 2012 Day of Year
60
50
40 14
30pF
yo 12
20 g
10
0C.'r 20 40 60 80 100 120 140 o
Day of Year §
o
5
&
Figure 2

CINECA

January

February

I Rain
I Thunderstorm
) I Snow)
[Fog

March
Month

April

Summer
) School on

| k SCIENTIFIC
) VISUALIZATION

EXERCISE MLAB

In this exercise we display the H20 molecule, and use volume rendering to display the electron

localization function.

The atoms and the bounds are displayed using mlab.points3d and mlab.plot3d,
with scalar information to control the color.

Read electron localization function from h2o-elf.cube files.

Position of atoms are given by numpy arrays

atoms_x = np.array([2.9, 2.9, 3.8]) *40 / 5.5

atoms_y = np.array([3.0, 3.0, 3.0]) *40 / 5.5

atoms_z = np.array([3.8, 2.9, 2.7]) *40 / 5.5

H1 is in position 0

O is in position 1

H2 is in position 2

CINECA

