
Paraview scripting

Ivan Spisso – i.spisso@cineca.it
SuperComputing Applications and Innovation Department

OUTLINE

• Why scripting

• pvbatch and pvpython

• The Python GUI tools

• Accessing a Python Shell

• Create a pipeline

• Python in paraview: The paraview.simple module

• Trace recording

• Macros

• Save ParaView state as a Python script

• Hands-on Python Scripting in ParaView

Why Scripting

 http://www.paraview.org/Wiki/ParaView/Users_Guide/Scripting_ParaView

• Automate repetitive tasks (several similar data-sets)

• GUI is not useful or unavailable (batch execution)

• In-situ visualization or co-processing (computing+post-processing

at run-time)

The ParaView client provides an easy-to-use GUI in which to visualize data with the

standard window, menu, and button controls. Driving ParaView with a mouse is

intuitive, but is not easily reproducible and exact as is required for repetitive

analysis and scientific result reproducibility. For this type of work, it is much

better to use ParaView's scripted interface. This is an an alternative control path

that works alongside of, or as a replacement for, the GUI.

http://www.paraview.org/Wiki/ParaView/Users_Guide/Scripting_ParaView
http://www.paraview.org/Wiki/ParaView/Users_Guide/Scripting_ParaView

pvbatch - pvpython

• Paraview contents 2 command lines able to run a python script:

– pvpython;

– pvbatch;

The differences is that:

– pvpython is equivalent to the paraview client where the

python interpreter plays the role of the GUI (interactive,

serial);

– pvbatch: is equivalent to the paraview server where the

commands are executed from the python script in the server

instead then from a socket plugged to a paraview client

(parallel)

The Python GUI tools

 http://www.paraview.org/Wiki/Python_GUI_Tools

If ParaView has been compiled with the Python wrapping, some

advanced features become available to the user such as:

1. Accessing a Python Shell

2. Trace recording

3. Macros

4. Save ParaView state as a Python script

Those features can be reached from the Tools menu for the Shell

and Trace access.

http://www.paraview.org/Wiki/Python_GUI_Tools
http://www.paraview.org/Wiki/ParaView/Users_Guide/Scripting_ParaView

Accessing a Python shell

 http://www.paraview.org/Wiki/ParaView/Python_Scripting

The python interpreter is already runnable from paraview (under

Tools > Python Shell) to perfom interactive applications

http://www.paraview.org/Wiki/ParaView/Users_Guide/Scripting_ParaView
http://www.paraview.org/Wiki/ParaView/Users_Guide/Scripting_ParaView
http://www.paraview.org/Wiki/ParaView/Users_Guide/Scripting_ParaView

Create a Pipeline:

 create an object, shrink and render it

 http://www.paraview.org/Wiki/ParaView/Python_Scripting#Creating_a_Pipeline

Or run the script cone.py

http://www.paraview.org/Wiki/ParaView/Users_Guide/Scripting_ParaView
http://www.paraview.org/Wiki/ParaView/Users_Guide/Scripting_ParaView

The paraview.simple module
 http://www.paraview.org/Wiki/ParaView/Python_Scripting#paraview.simple_Module

• The first thing any ParaView Python script must do is load the paraview.simple module.

 from paraview.simple import *

 Or in a save way using the try/except construct

try: paraview.simple

except: from paraview.simple import *

• This command is automatically invoked in the ParaView GUI tracing facility, but it must

add when you are writing a script to be used in batch. The simple module can be loaded

from Python interpreters running in several applications:

• pvpython

• Pvbatch

• Paraview (Tools > python shell)

• External Python interpreter

• The paraview.simple module contains a function for every source, reader,filter, and writer

with off-course the same name as shown in the GUI menus but with spaces and special

characters removed.

• Each function creates a pipeline object, which will show up in the pipeline browser (with

the exception of writers), and returns an object that is a proxy that can be used to query

and manipulate the properties of that pipeline object.

http://www.paraview.org/Wiki/ParaView/Users_Guide/Scripting_ParaView
http://www.paraview.org/Wiki/ParaView/Users_Guide/Scripting_ParaView

Python 2.7.3 (default, Feb 4 2013, 20:52:48) [MSC v.1500 64 bit (AMD64)] on win32

>>> paraview version 3.98.1-RC2

from paraview.simple import *

>>> help(Sphere)

Help on function CreateObject in module paraview.simple:

CreateObject(*input, **params)

The Sphere source can be used to add a polygonal sphere to the 3D scene. The output of the Sphere source is polygonal data with point normals defined.

This function creates a new proxy. For pipeline objects that accept inputs, all non-keyword arguments are assumed to be inputs. All keyword arguments are assumed to be property,value pairs

and are passed to the new proxy.

>>> help(Show)

Help on function Show in module paraview.simple:

Show(proxy=None, view=None, **params)

Turns the visibility of a given pipeline object on in the given view.

If pipeline object and/or view are not specified, active objects are used.

>>> help(Render)

Help on function Render in module paraview.simple:

Render(view=None)

Renders the given view (default value is active view)

>>> help(Hide)

Help on function Hide in module paraview.simple:

Hide(proxy=None, view=None)

Turns the visibility of a given pipeline object off in the given view.

If pipeline object and/or view are not specified, active objects are used.

Batch scripting in python

>>> mysphere=Sphere()

>>> dir(mysphere)

['CellData', 'Center', 'EndPhi', 'EndTheta', 'FieldData', 'FileNameChanged', 'GetCellDataInformation', 'GetDataInformation',

'GetFieldDataInformation', 'GetPointDataInformation', 'GetProperty', 'GetPropertyValue', 'Initialize', 'InitializeFromProxy', 'ListProperties',

'Observed', 'ObserverTag', 'PhiResolution', 'PointData', 'Port', 'Radius', 'SMProxy', 'SetPropertyWithName', 'StartPhi', 'StartTheta',

'ThetaResolution', 'UpdatePipeline', 'UpdatePipelineInformation', '_Proxy__ConvertArgumentsAndCall', '_Proxy__GetActiveCamera',

'_Proxy__LastAttrName', '_Proxy__Properties', '__class__', '__del__', '__delattr__', '__dict__', '__doc__', '__eq__', '__format__', '__getattr__',

'__getattribute__', '__getitem__', '__hash__', '__init__', '__iter__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__',

'__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'add_attribute']

>>> print mysphere.Radius

0.5

>>> print mysphere.PointData

<paraview.servermanager.FieldDataInformation object at 0x0000000017BBAC50>

>>> Render()

<paraview.servermanager.RenderView object at 0x0000000018044FD0>

>>> Show()

<paraview.servermanager.GeometryRepresentation object at 0x0000000017A50748>

>>>

Batch scripting in python

Trace record

1. Start tracing
2. Build your pipeline as usual
3. Stop tracing and save the trace file with

a name

Use the trace file

You can use the traced file in two ways:

- As a macro

- As a python script using the GUI

- As a python script in batch

Macro

• Macros allow the user to define a Python script as built-in actions that become

accessible from the Macros menu or directly inside the Toolbar.

• Once a local file is defined as a macro (by clicking-on Create New Macro) the

given file is copied inside the user specific ParaView directory. No reference is kept

to the original file. Therefore, if you keep editing the original file, the changes

won't affect the macro itself.

• The macros list is built dynamically at the ParaView start-up by listing the

content of the ParaView/Macros directory, as well as the user specific

ParaView/Macros directory. Note: if you want to rename a macro, rename the file

in one of the given directory.

Save ParaView state as a Python script

To save the state as a Python script, go to the File menu and choose Save State
without forgetting to switch the file type to be Python *.py.

Recording a Paraview pipeline

A similar (but different) solution to launch a pipeline in an

automated way is to:

– record a test

and then to:

– Play a test

Workout

• Build a script to process several VTK dataset according to the

pipeline obtained during the previous tutorial

• Launch the script over the dataset to archive different animations

• Record a test and play it for the above mentioned operations

