I3t Summer
School on
SCIENTIFIC
VISUALIZATION

Introduction to GUI
development using Qt

Paolo Quadrani - p.quadrani@cineca.it

Andrea Negri - a.negri@cineca.it

SuperComputing Applications and Innovation Department

\

CINECA

mailto:p.quadrani@cineca.it
mailto:a.negri@cineca.it

Summer
h) School on

u SCIENTIFIC
. VISUALIZATION
What is Qt

* Qtis a cross-platform development framework written in C++
Can be used in several programming languages through bindings
* Ruby

* Java

* Perl

* Python — PyQt

The Qt Toolkit is a collection of classes for various purposes

* Database management

XML

* WebKit

* Multimedia

* Networking

For desktop, mobile and embedded development

* Used by more than 350,000 commercial and open source developers
* Backed by Qt consulting, support and training

* Trusted by over 6,500 companies worldwide

CINECA

Summer

School on
SCIENTIFIC
VISUALIZATION

Qt modules

D ted
Qt Parts of Somehing epr;::a €

Mobility Qt Labs New e ey

Qts glarl gtactiveqt gt3d gtbase gtconnectivity

gtdeclarative gtdoc gtdocgallery gtfeedback gtgraphicaleffects

qtimageforma’rs_“ gtjsbackend gtjsondb gtlocation gtmultimedia

gtpim gtga gtquickl gtrepotools gtscripts
gttranslations gtwayland

gtphonon
gtsensors qtsvg gtsystems gttools
gtwebkit examples&demos gtxmlpatterns

gtwebkit

Summer
h) School on

u SCIENTIFIC
VISUAUZATION

Qt brief timeline

* Qt Development Frameworks founded in 1994
* Trolltech acquired by Nokia in 2008
* Qt Commercial business acquired by Digia in 2011

* Qt business acquired by Digia from Nokia in 2012

CINECA

Summer
h) School on

u SCIENTIFIC
VISUAUZATION

Why Qt

 \Write code once to target multiple platforms
* Produce compact, high-performance applications
« Focus on innovation, not infrastructure coding

* Choose the license that fits you
« Commercial, LGPL or GPL

« Count on professional services, support and training

CINECA

Summer
h) School on

u SCIENTIFIC
VISUAUZATION

PyQt

* PyQt is a set of Python bindings for Qt framework
* Bindings implemented as Python modules (620+ classes)
* Almost the entire Qt library is available

* Take advantage of both languages key strength
* Python: easy to learn, lot of extensions, no compilation required
* Qt: abstraction of platform-specific details, GUI designer

CINECA

Summer
h) School on

u SCIENTIFIC
VISUAUZATION

“Hello world” in PyQt 1/2

CINECA

from PyQt4.QtCore import *
from PyQt4.QtGui import *
import sys

app = QApplication(sys.argv)

PushButton = QPushButton ("Hello World")
PushButton.show ()

sys.exit (app.exec ())

Summer
h) School on

u SCIENTIFIC
VISUALIZATION

“Hello world” in PyQt 2/2

CINECA

* sys module needed to access command-line arguments

* QtCore and QtGui (from PyQt4 library) contains GUI widgets
* Every PyQt application must have a QApplication object

* Create a new instance of a QPushButton

* Call show () to schedule a “paint event”

*The call to app.exec () starts the event loop

Summer

School on
SCIENTIFIC
VISUALIZATION

Core types

CINECA

Summer
h) School on

u SCIENTIFIC
VISUAUZATION

QObject

QODbiject is the heart of Qt's object model

Include these features:
* Memory management
* Object properties
* Introspection
* Signals and slots
* Event handling

QObject has no visual representation

CINECA

Summer
h) School on

u SCIENTIFIC
VISUAUZATION

Object tree

* QODbjects organize themselves in object trees
* Based on parent-child relationship

* QObject (QObject *parent = 0)

* Parent adds object to list of children

* Parent owns children Parent
* Used intensively with QWidget

QObject
Children
Parent-child relationship 5
IS NOT inheritance! QObject
QObject

CINECA

Summer
h) School on

u SCIENTIFIC
VISUAUZATION

Qt's Widget Model - QWidget

* Derived from QObiject
* Adds visual representation QObject

* Receives events

* e.g. mouse, keyboard events
QWidget QFile

* Paints itself on screen
* Using styles
QLabel QPushButton QTextEdit

CINECA

Summer
h) School on

u SCIENTIFIC
VISUAUZATION

Object Tree and QWidget

-, ™

°* new QWldget (0) QPushButton

* Widget with no parent = "window" _PushMe

(L] Toggle)

* QWidget children S
* Positioned in parent's coordinate system O opton

* Clipped by parent's boundaries
QCheckBox
™ Choice 1

* QWidget parent
* Propagates state changes
* hides/shows children when it is hidden/shown itself
* enables/disables children when it is enabled/disabled itself

CINECA

Summer

h) School on
SCIENTIFIC
VISUALIZATION

Widgets containing other widgets

* Container Widget
* Aggregates other child-widgets

* Use layouts for aggregation
* QHBoxLayout, QVBoxLayout, QGridLayout
* Note: Layouts are not widgets

* Layout Process
* Add widgets to layout
* Layouts may be nested
* Set layout on container widget
* Hint: use QtDesigner to apply layouts!

CINECA

Summer
h School on
SCIENTIFIC

" VISUALIZATION

Layout: examples

QHBoxLayout
[One H Two H Three || Four H Five
QVBoxLayout
One | QGridLayout
Two
(One) (Two)
Three { Three :1
Four .
Five

CINECA

Summer
h) School on

u SCIENTIFIC
VISUAUZATION

Object communication

* Between objects
* Signals & Slots

* Between Qt and the application
* Events

* Between Objects on threads
* Signal & Slots + Events

CINECA

Summer
h) School on

u SCIENTIFIC
VISUAUZATION

Callbacks

General Problem
How do you get from "the user clicks a button” to your business logic?

Possible solutions:

* Callbacks
» Based on function pointers
* Not type-safe

 Observer Pattern (Listener)
» Based on interface classes
* Needs listener registration
* Many interface classes

 Qt uses

» Signals and slots for high-level (semantic) callbacks
« Virtual methods for low-level (syntactic) events.

CINECA

Summer
h) School on

u SCIENTIFIC
VISUALIZATION
Signals and slots

* Every PyQt object deriving from QODbject supports S&S mechanism

* Widgets emit signals

A signal announce state changes:

* a button was clicked

* a checkbox is checked/unchecked
* editing in a text field finished

Widgets react to a signal through slots

Connections are used to link signals and slots

CINECA

Summer
) School on

k _ SCIENTIFIC
- VISUALIZATION

Signals & Slots 1/8

Summer
N

School on
“ SCIENTIFIC
" VISUAUIZATION

Signals & Slots 2/8

Signal emitted

CINECA

Summer
) School on

k _ SCIENTIFIC
- VISUALIZATION

Signals & Slots 3/8

Y[

42 3

Slot implemented

CINECA

Summer
v School on

| k | SCIENTIFIC
- VISUALIZATION

Signal/Slot connection

CINECA

Summer
) School on

k _ SCIENTIFIC
- VISUALIZATION

QObject::connect(slider, &QSlider::valueChanged,
spinbox, &QSpinBox::setValue)

CINECA

Summer
A

School on
“ SCIENTIFIC
VISUAUIZATION

Signals & Slots 6/8

void QSlider::mousePressEvent(...)

{

emit valueChanged(newValue);

CINECA \

Summer
) School on

k _ SCIENTIFIC
VISUALIZATION

Signals & Slots 7/8

void QSpinBox::setValue(int value)
[

m_value = value;

CINECA \

Summer

) School on
k : SCIENTIFIC
VISUALIZATION

Signals & Slots 8/8

void QSlider::mousePressEvent(...) void QSpinBox::setValue(int value)

{ {

emit valueChanged(newValue); m_value = value;

} }
v v
e a2 &
A A A A =
Signal emitted Slot implemented

Signal/Slot connection

QObject::connect(slider, &QSlider::valueChanged,
spinbox, &QSpinBox::setValue)

CINECA \

Summer
h) School on

“ SCIENTIFIC
VISUALIZATION
About connections 1/4

Connection syntax (old school, the same as C++ Qt framework):

connect (wl, SIGNAL(signature), w2, SLOT(signature))
w1: source widget, sending a signal
SIGNAL(signature): signal to be connected

w2: destination widget, which react to the signal with a slot
SLOT(signature): method to be called when the signal is emitted

Example:

self.connect (aButton, SIGNAL('clicked()'), self, SLOT('close()'))

In this case, when the button aButton is clicked, the containing widget (self) will be closed

CINECA

Summer
h) School on

u SCIENTIFIC
. VISUALIZATION
About connections 2/4

Rule for Signal/Slot Connection:
“Can ignore arguments, but not create values from nothing”

Signal Slot
rangeChanged(int,int) = ok setRange(int,int)
rangeChanged(int,int) | ok setValue(int)
rangeChanged(int,int) | ok update()

valueChanged(int) ok setValue(int)
valueChanged(int) ok update()
valueChanged(int) ok setRange(int,int)
valueChanged(int) ko setValue(float)*
textChanged(QString) | ko setValue(int)

CINECA * Though not for Qt4 connection types

Summer
A

About connections 3/4

CINECA

School on
u SCIENTIFIC
VISUALIZATION

Signal(s) Connect to Slot(s)

one OK many

many OK one

one OK another signal

« Signal to Signal connection
connect(btn, SIGNAL('clicked()'),
self, SIGNAL('emitOkSignal()'));

* Not allowed to name parameters

connect (mySlider,SIGNAL('valueChanged(int

value) ')

self, SLOT('setValue(int newValue)'))

Summer
h) School on

u SCIENTIFIC
VISUALIZATION
About connections 4/4

Old connection syntax has a serious issue:
if you don't write the signal signature exactly, signal will not be fired, but no warning

or exception will be thrown.
To avoid this behavior, there is another syntax for connections with PyQt:

sender.signalName.connect (receiver.slotName)

So the previous example:
self.connect(aButton, SIGNAL('clicked()'), self, SLOT('close()'))

Now become:

aButton.clicked.connect(self.close)

CINECA

Summer
h) School on

u SCIENTIFIC
VISUALIZATION

Event processing

* Qtis an event-driven Ul toolkit
* QApplication::exec () runs the event loop

1) Generate Events
by input devices: keyboard, mouse, etc.
by Qt itself (e.g. timers)

2) Queue Events
by event loop

3) Dispatch Events

by QApplication to receiver: QObject
Key events sent to widget with focus
Mouse events sent to widget under cursor

4) Handle Events
by QObject event handler methods

CINECA

Summer
h) School on

u SCIENTIFIC
. VISUALIZATION
Event handling

* QObiject::event(QEvent *event)
* Handles all events for this object

* Specialized event handlers for QWidget and QQuickltem:
* mousePressEvent() for mouse clicks
* touchEvent() for key presses

* Accepting an Event
* event->accept() / event->ignore()
* Accepts or ignores the event
* Accepted is the default

* Event propagation
* Happens if event is ignored
* Might be propagated to parent widget

CINECA

Summer
| School on
SCIENTIFIC
" VISUALIZATION

Application creation

CINECA

Summer

School on
SCIENTIFIC
" VISUALIZATION

Main Window

* QMainWindow: main application window
* Has own layout D—
Central Widget Ble Edt Help
QMenuBar B D P
QToolBar
QDockWidget g P Raremy Shea, Thianks, 30 Sea Views,
QStatusBar

el ek Tim Sheen, Caraba Gifts. 48 Ocean 'Wa
el e Sol Harvey, Chicos Coffee, 53 New Sprir
Soma Country sally Hobart, Tiroli Tea, 67 Long River, F

22 August 2005

Dear john Doe, 1|]

CINECA

Your order has been dispatched and should be
with you within 28 days.

We have dispatched those items that were in
stock. The rest of your order will be dispatched
once all the remaining items have amived at our
warehouse. No additional shipping charges will be
made.

Paragraphs I:l;._x_ll

Thank you for your payment which we h
‘Your erder has been dispatched and shg
We have dispatched those tems that w|
You made a small overpayment (less t

You made a small underpayment (less t
Unfortunately you did not send enough
You made an overpayment (more than

4 il

Summer
h) School on

u SCIENTIFIC
VISUAUZATION

QAction 1/2

* Action is an abstract user interface command
« Emits signal triggered on execution

» Connected slot performs action

* Added to menus, toolbar, key shortcuts

« Each performs same way

* Regardless of user interface used

CINECA

Summer
h) School on

u SCIENTIFIC
VISUAUZATION

QAction 2/2

To create an action, you can:
* |Instantiate a QAction object directly
* Call addAction() on existing QMenu and QtoolBar objects
* Then you can share it with other objects

self.saveAction = QAction (QIcon(":/images/save.png"), "&Save...",
self)

self.saveAction.setShortcut ("Ctrl+S")
self.saveAction.setStatusTip ("Save the current form letter")
self.connect (self.saveAct, QtCore.SIGNAL ("triggered()"), self.save)

self.fileMenu = self.menuBar () .addMenu("&File")
self.fileMenu.addAction(self.saveAction)

self.fileToolBar = self.addToolBar ("File")
self.fileToolBar.addAction (self.saveAct)

CINECA

Summer

School on
SCIENTIFIC
VISUALIZATION

Widgets

CINECA

Common widgets

00—

QPushButton

o S
i
QRadioButton

(O Option 1
=) Option 1

QCheckBox
™ Choice 1

CINECA

e

QLabel
Text

QLineEdit

|Edit me

QTextEdit

Plain Text

Html
Text

h

Qslider

| ——

QProcessBar

]

| 42 (42%)

QSpinBox

142UsD

_'ﬁ

S

&0

QComboBox
[Option 1 Lﬁi
QListWidget

Item 1
Checkable item 2
Itern 3
Item 4

Summer
School on
SCIENTIFIC
VISUALIZATION

Summer
h) School on

u SCIENTIFIC
VISUAUZATION

Common signals

Widget Signals
QPushButton clicked()
QLineEdit editingFinished(), returnPressed(), textChanged(const QString&)
QComboBox activated(int), currentindexChanged(int)
QCheckBox stateChanged(int)
QSpinBox valueChanged(int)
QSlider rangeChanged(int,int), valueChanged(int)

CINECA

http://pyqt.sourceforge.net/Docs/PyQt4/qpushbutton.html
http://pyqt.sourceforge.net/Docs/PyQt4/qlineedit.html
http://pyqt.sourceforge.net/Docs/PyQt4/qcombobox.html
http://pyqt.sourceforge.net/Docs/PyQt4/qcheckbox.html
http://pyqt.sourceforge.net/Docs/PyQt4/qspinbox.html
http://pyqt.sourceforge.net/Docs/PyQt4/qslider.html

Summer

School on
SCIENTIFIC
VISUALIZATION

Dialogs

CINECA

Summer
h) School on

u SCIENTIFIC
VISUAUZATION

QDialog

* Base class of dialog window widgets e [|
* General Dialogs can have 2 modes: S| |

Email [] [Subscribe

* Modal dialog
* Remains in foreground, until closed
* Blocks input to remaining application
* Example: Configuration dialog

l Ok l l Cancel

* Non-Modal dialog
* Operates independently in application
* Example: Find/Search dialog

CINECA

Summer
n

3 School on
y k - SCIENTIFIC
" VISUAUIZATION

Building User Interfaces

Summer
School on
SCIENTIFIC
VISUALIZATION

Qt Designer

maimvindow. ui

Lé-,,ruuts
Vertical Layout Image: sample.png o Browse .. o

Debug

¥ Harizontal Layout
Projects ’

Grid Layour

Build Form Layout

Spacers

Horizontal Spacer TextLabel

Viertical Spacer

mE S

Buttons
Push Button

Tool Bution (Cancel) { 0K }
Radio Bution

A
Check Box

DR e BE

FComrand |inlk Boreas

e

CINECA

Summer

h) School on
SCIENTIFIC
VISUALIZATION

Build GUI using QtDesigner 1/3

* Qt Designer uses XML .ui files to store designs and does not generate any code itself

* pyuic4 takes a Qt4 user interface description file and compiles it to Python code

* The Python code is structured as a single class that is derived from the Python object type
 Class name is the name of the top level object set in Designer with Ui prepended

* The class contains a method called setupUi ()
* This takes a single argument which is the widget in which the user interface is created

CINECA

Summer

h) School on
SCIENTIFIC
VISUALIZATION

Build GUI using QtDesigner 2/3

1) create your GUI (or use MyDialog.ui from pyuicExample)

2) generate the .py file
pyuic4 -o MyDialog auto.py MyDialog.ui

3) use ui interface
from MyDialog auto import Ui Dialog

app = QApplication(sys.argv)

Dialog = QDialog() ### create new dialog

ui = Ui Dialog() ### create a new instance of your gui
ui.setupUi(Dialog) ### apply the gui to the created dialog

Dialog.show()
sys.exit(app.exec_())

CINECA

Summer

h) School on
SCIENTIFIC
VISUALIZATION

Build GUI using QtDesigner 3/3

> pyuic4 -h

Usage: pyuic4 [options] <ui-file>

Options:
--version show program's version number and exit
-h, --help show this help message and exit
-p, —--preview show a preview of the UI instead of generating code

-0 FILE, --output=FILE
write generated code to FILE instead of stdout

-x, --execute generate extra code to test and display the class

-d, --debug show debug output

-i N, --indent=N set indent width to N spaces, tab if N is 0 (default:
4)

-w, —--pygt3-wrapper generate a PyQt v3 style wrapper

Code generation options:
--from-imports generate imports relative to '.'

With -x option the generated Python class should be executed standalone to be displayed

CINECA

Summer
) School on

k _ SCIENTIFIC
VISUALIZATION

Matplotlib and Qt 1/6

Matplotlib is a Python 2D interactive plotting library

http://matplotlib.org/

.............
00000000

We will see how to:

" Embed a Matplotlib Figure into a Qt window
- Embed a Navigation Toolbar

CINECA \

http://matplotlib.org/

Summer
A

School on
u SCIENTIFIC
VISUALIZATION

Matplotlib and Qt 2/6

Open MatplotlibExample/matplotlibExample.py

@@ simple PyQt and MatplotLib example with Zoom/Pan

y=0.763021

P00+ B@EY

0.8f

0.6

0.4f

0.2

0.0

x=21.7742

Plot

CINECA

App features:

* generate a set of 25 points and plot it pressing
“Plot” button

* show navigation toolbar for zooming/panning

Summer
h) School on

Matplotlib and Qt 3/6 O usiiazarion

#import modules from Matplotlib

from matplotlib.backends.backend qt4agg import FigureCanvasQTAgg as FigureCanvas

from matplotlib.backends.backend gt4agg import NavigationToolbar2QTAgg as NavigationToolbar
import matplotlib.pyplot as plt

#import random module to generate set
import random

Figure Matplotlib object: this is the backend-independent representation of our plot

Import from the matplotlib.backends.backend_qt4agg the module FigureCanvasQTAgg class, which is
the backend-dependent figure canvas. It contains the backend-specific knowledge to render the
Figure we've drawn.

Note that FigureCanvasQTAgg, other than being a Matplotlib class, is also a Qwidget,

the base class of all user interface objects. So this means we can treat FigureCanvasQTAgg like

a pure Qt widget Object. NavigationToolbar2QTAgg also inherits from QWidget, so it can be used as
Qt objects in a Qapplication.

References:

http://matplotlib.org/api/backend_qt4agg_api.html
http://matplotlib.org/api/pyplot_api.html
http://matplotlib.org/api/figure_api.html#module-matplotlib.figure
https://docs.python.org/2/library/random.html

CINECA

http://matplotlib.org/api/backend_qt4agg_api.html
http://matplotlib.org/api/pyplot_api.html
http://matplotlib.org/api/figure_api.html#module-matplotlib.figure
https://docs.python.org/2/library/random.html

Summer
School on
SCIENTIFIC
VISUALIZATION

Matplotlib and Qt 4/6

class Window(QtGui.QDialog):
def init (self, parent=None):
super (Window, self). init (parent)

#init figure and canvas
self.figure = plt.figure()
self.canvas = FigureCanvas (self.figure)

#init nav toolbar
self.toolbar = NavigationToolbar(self.canvas, self)

Add plot button
self.button = QtGui.QPushButton('Plot")

connect button to custom slot (see later)
self.button.clicked.connect(self.plot)

set the layout

layout = QtGui.QVBoxLayout()
layout.addWidget(self.toolbar)
layout.addWidget(self.canvas)
layout.addWidget(self.button)
self.setLayout (layout)

CINECA

Summer
School on
SCIENTIFIC
VISUALIZATION

Matplotlib and Qt 5/6

our custom slot
def plot(self):
random data
data = [random.random() for i in range(25)]

create an axis
ax = self.fiqgure.add subplot(1l,1,1)

discards the old graph
ax.hold(False)

plot data
ax.plot(data, '*-')

refresh canvas
self.canvas.draw()

CINECA

Summer
A

School on
“ SCIENTIFIC
= VISUALIZATION
Matplotlib and Qt 6/6 -.
@@ simple PyQt and MatplotLib example with Zoom/Pan Exe rC| se
. Modify the previous example adding custom
08 buttons which will act as the navigation toolbar:

0.7

0.6

Plot > plot random dataset

0.5

04 Zoom > activate zoom on canvas
03 Pan > activate pan on canvas
o Home > reset view

0'1[)

Hint #1: you will have to connect your buttons to navigation
toolbar zoom(), pan() and home() methods

Plot

Zoom

Hint #2: open
MatplotlibExample/matplotlibExampleCustom.py

| |
| |
| |
| |

Home

CINECA

Summer
h) School on

u SCIENTIFIC
VISUAUZATION

Resources

[PDF] PyQt whitepaper
http://www.riverbankcomputing.co.uk/static/Docs/PyQt4/pyqt-whitepaper-a4.pdf

[BOOK] Rapid GUI Programming with Python and Qt
http://gt-project.org/books/view/rapid_gui_programming_with_python_and_qt

CINECA

http://www.riverbankcomputing.co.uk/static/Docs/PyQt4/pyqt-whitepaper-a4.pdf
http://qt-project.org/books/view/rapid_gui_programming_with_python_and_qt

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

