
TensorFlow basics
Riccardo Zanella – r.zanella@cineca.it

SuperComputing Applications and Innovation Department

1/8

Table of Contents

Basic usage

Graph and Session

A simple example

2/8

TensorFlow: basic usage

import tensorflow as tf

define graph nodes (on default graph)
input1 = tf.constant ([1.0, 1.0, 1.0, 1.0])
input2 = tf.constant ([2.0, 2.0, 2.0, 2.0])
output = tf.add(input1 , input2)

launch a session
sess = tf.Session ()

run graph on session and retrieve results
result = sess.run(output)

close the session
sess.close ()

I graph-related lines
I session-related lines
I evaluation-related lines

3/8

TensorFlow: basic usage

import tensorflow as tf

define graph nodes (on default graph)
input1 = tf.constant ([1.0, 1.0, 1.0, 1.0])
input2 = tf.constant ([2.0, 2.0, 2.0, 2.0])
output = tf.add(input1 , input2)

launch a session
sess = tf.Session ()

run graph on session and retrieve results
result = sess.run(output)

close the session
sess.close ()

I graph-related lines

I session-related lines
I evaluation-related lines

3/8

TensorFlow: basic usage

import tensorflow as tf

define graph nodes (on default graph)
input1 = tf.constant ([1.0, 1.0, 1.0, 1.0])
input2 = tf.constant ([2.0, 2.0, 2.0, 2.0])
output = tf.add(input1 , input2)

launch a session
sess = tf.Session ()

run graph on session and retrieve results
result = sess.run(output)

close the session
sess.close ()

I graph-related lines
I session-related lines

I evaluation-related lines

3/8

TensorFlow: basic usage

import tensorflow as tf

define graph nodes (on default graph)
input1 = tf.constant ([1.0, 1.0, 1.0, 1.0])
input2 = tf.constant ([2.0, 2.0, 2.0, 2.0])
output = tf.add(input1 , input2)

launch a session
sess = tf.Session ()

run graph on session and retrieve results
result = sess.run(output)

close the session
sess.close ()

I graph-related lines
I session-related lines
I evaluation-related lines

3/8

TensorFlow Graph and Session classes

An instance of tf.Graph class:
I represents, as a directed graph, the dataflow of the computation we want to perform;
I graph nodes are called operations (instances of tf.Operation class);

I not necessarily a mathematical operation, but also a variable/constant definition, . . .

I each operation involves zero or more instances of tf.Tensor class, it produces zero or more
instances of same class;

I a tf.Tensor is a multi-dimensional array;
I in these examples we are using the default graph (accessible through

tf.get_default_graph() function).

An instance of tf.Session class:
I is used for running graph nodes;
I may own resources, so use Session.close() method when you are done with it;
I it can be customizable

I you chan choose hardware where evaluation is performed;

I it can provide results of node evaluations through Session.run()) method.

4/8

TensorFlow Graph and Session classes

An instance of tf.Graph class:
I represents, as a directed graph, the dataflow of the computation we want to perform;
I graph nodes are called operations (instances of tf.Operation class);

I not necessarily a mathematical operation, but also a variable/constant definition, . . .

I each operation involves zero or more instances of tf.Tensor class, it produces zero or more
instances of same class;

I a tf.Tensor is a multi-dimensional array;
I in these examples we are using the default graph (accessible through

tf.get_default_graph() function).

An instance of tf.Session class:
I is used for running graph nodes;
I may own resources, so use Session.close() method when you are done with it;
I it can be customizable

I you chan choose hardware where evaluation is performed;

I it can provide results of node evaluations through Session.run()) method.

4/8

Tensors: variables, constants, placeholders

An instance of tf.Variable class:
I implements the mathematical concept of variable;
I maintains it’s value accross different Session.run() calls;
I can be assigned a new value through the function tf.assign() (and others of type

tf.assign...())
I it requires an initialization step.

Other Tensors:
I use tf.constant() function to initialize constant tensors;
I use tf.placeholder() for a tensor that will be fed later during the evaluation.

5/8

Tensors: variables, constants, placeholders

An instance of tf.Variable class:
I implements the mathematical concept of variable;
I maintains it’s value accross different Session.run() calls;
I can be assigned a new value through the function tf.assign() (and others of type

tf.assign...())
I it requires an initialization step.

Other Tensors:
I use tf.constant() function to initialize constant tensors;
I use tf.placeholder() for a tensor that will be fed later during the evaluation.

5/8

approx. minimization of a univariate functional (I)

import tensorflow as tf
import numpy as np

define variable and placeholders
a_op = tf.placeholder(tf.float32 , shape =(1))
b_op = tf.placeholder(tf.float32 , shape =(1))
x_op = tf.Variable([2.0], dtype=tf.float32)

y_op = a_op * x_op **2 + b_op * x_op

optimizer = tf.train.AdamOptimizer (0.1)
min_step = optimizer.minimize(y_op)

init_op = tf.global_variables_initializer ()

6/8

approx. minimization of a univariate functional (I)

import tensorflow as tf
import numpy as np

define variable and placeholders
a_op = tf.placeholder(tf.float32 , shape =(1))
b_op = tf.placeholder(tf.float32 , shape =(1))
x_op = tf.Variable([2.0], dtype=tf.float32)

y_op = a_op * x_op **2 + b_op * x_op

optimizer = tf.train.AdamOptimizer (0.1)
min_step = optimizer.minimize(y_op)

init_op = tf.global_variables_initializer ()

Define tensors: placeholders for a and b parameters, variable for x.

6/8

approx. minimization of a univariate functional (I)

import tensorflow as tf
import numpy as np

define variable and placeholders
a_op = tf.placeholder(tf.float32 , shape =(1))
b_op = tf.placeholder(tf.float32 , shape =(1))
x_op = tf.Variable([2.0], dtype=tf.float32)

y_op = a_op * x_op **2 + b_op * x_op

optimizer = tf.train.AdamOptimizer (0.1)
min_step = optimizer.minimize(y_op)

init_op = tf.global_variables_initializer ()

Overloaded operators will call pointwise math operations: what we are actually calling is:

y_op = tf.add(tf.multiply(tf.pow(x_op , 2), a_op),
tf.multiply(x_op , b_op))

6/8

approx. minimization of a univariate functional (I)

import tensorflow as tf
import numpy as np

define variable and placeholders
a_op = tf.placeholder(tf.float32 , shape =(1))
b_op = tf.placeholder(tf.float32 , shape =(1))
x_op = tf.Variable([2.0], dtype=tf.float32)

y_op = a_op * x_op **2 + b_op * x_op

optimizer = tf.train.AdamOptimizer (0.1)
min_step = optimizer.minimize(y_op)

init_op = tf.global_variables_initializer ()

Define optimization method, pass the function to be optimized.

6/8

approx. minimization of a univariate functional (I)

import tensorflow as tf
import numpy as np

define variable and placeholders
a_op = tf.placeholder(tf.float32 , shape =(1))
b_op = tf.placeholder(tf.float32 , shape =(1))
x_op = tf.Variable([2.0], dtype=tf.float32)

y_op = a_op * x_op **2 + b_op * x_op

optimizer = tf.train.AdamOptimizer (0.1)
min_step = optimizer.minimize(y_op)

init_op = tf.global_variables_initializer ()

Define an operation for variables initialization.

6/8

approx. minimization of a univariate functional (II)

launch a session
sess = tf.Session ()

initialize variables
sess.run(init_op)

a = [1.0]
b = [-2.0]
y = []
for ii in range(100):

_,y_p = sess.run([min_step , y_op],
feed_dict = { a_op: a, b_op: b })

y.append(y_p)

x = sess.run(x_op)

sess.close ()

7/8

approx. minimization of a univariate functional (II)

launch a session
sess = tf.Session ()

initialize variables
sess.run(init_op)

a = [1.0]
b = [-2.0]
y = []
for ii in range(100):

_,y_p = sess.run([min_step , y_op],
feed_dict = { a_op: a, b_op: b })

y.append(y_p)

x = sess.run(x_op)

sess.close ()

Define a session and initialize all variables of the graph.

7/8

approx. minimization of a univariate functional (II)

launch a session
sess = tf.Session ()

initialize variables
sess.run(init_op)

a = [1.0]
b = [-2.0]
y = []
for ii in range(100):

_,y_p = sess.run([min_step , y_op],
feed_dict = { a_op: a, b_op: b })

y.append(y_p)

x = sess.run(x_op)

sess.close ()

Define some Python variables: function parameters a and b and a vector y to hold function value
at each iteration.

7/8

approx. minimization of a univariate functional (II)

launch a session
sess = tf.Session ()

initialize variables
sess.run(init_op)

a = [1.0]
b = [-2.0]
y = []
for ii in range(100):

_,y_p = sess.run([min_step , y_op],
feed_dict = { a_op: a, b_op: b })

y.append(y_p)

x = sess.run(x_op)

sess.close ()

Implement main loop: note the Python dictionary feed_dict and the return values of sess.run()
method.

7/8

approx. minimization of a univariate functional (II)

launch a session
sess = tf.Session ()

initialize variables
sess.run(init_op)

a = [1.0]
b = [-2.0]
y = []
for ii in range(100):

_,y_p = sess.run([min_step , y_op],
feed_dict = { a_op: a, b_op: b })

y.append(y_p)

x = sess.run(x_op)

sess.close ()

Retrieve the estimated value of the minimum point.

7/8

approx. minimization of a univariate functional (III)

import matplotlib.pyplot as plt

print('solution: %f, (true: %f)'
% (x, - np.divide(b, np.multiply([a], 2.0))))

plt.plot(y)
plt.xlabel('iterations ')
plt.ylabel('function value')
plt.show()

Estimated value is 1.002937, real is 1.0.

8/8

	Basic usage
	Graph and Session
	A simple example

