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What is R 
 R is “GNU S”: a language and environment for data 

manipulation, calculation and graphical display. 
  a suite of operators for calculations on arrays 

  a large, coherent, integrated collection of intermediate tools for interactive 

data analysis, 

  graphical facilities for data analysis and display  

  a well developed programming language which includes conditionals, 

loops, user defined recursive functions and input and output facilities.  

 The core of R is an interpreted computer language. 
  It allows branching and looping as well as modular programming using 

functions.  
  Most of the user-visible functions in R are written in R, calling upon a 

smaller set of internal primitives.  
  It is possible for the user to interface to procedures written in C, C++ or 

FORTRAN languages for efficiency, and also to write additional primitives. 

 



R Console and evaluation 
 At the R prompt we type expressions. The <- symbol is 

the assignment operator. 
 > x <- 5 

 > print(x) 

 [1] 5 

 > x 

 [1] 5 

 The grammar of the language determines whether an 

expression is complete or not. 

 > x <- ## Incomplete expression 

 The # character indicates a comment. 

 When a complete expression is entered at the prompt, it 

is evaluated and the result of the evaluated expression is 

returned. The result may be auto-printed. 
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Objects 
 

 R has six basic or “atomic” classes of objects 
 character 

 numeric (real numbers) 

 integer 

 complex 

 factor 

 logical (True/False) 

 The most basic object is a vector 
 A vector can only contain objects of the same class 

 BUT: The one exception is a list, which is represented as a vector but 

can contain objects of different classes (indeed, that’s usually why we 

use them) 

 Empty vectors can be created with the vector() function. 



Coercion 

 When different objects are mixed in a vector, coercion 

occurs so that every element in the vector is of the same 

class. 

 Objects can be explicitly coerced from one class to 

another using the as.* functions, if available. 
 > x <- 0:6 

 > class(x) 

 [1] "integer" 

 > as.numeric(x) 

 Nonsensical coercion results in NAs. 



 

Attributes 
 

 R objects can have attributes 
 names, rownames, colnames, dimnames 

 dimensions (e.g. matrices, arrays) 

 class 

 length 

 other user-defined attributes/metadata 

 Attributes of an object can be accessed using the 

attributes() function. 



Factors 

 Factors are used to represent categorical data. Factors 

can be unordered or ordered.  

 Using factors with labels is better than using integers 

because factors are self-describing 

 The order of the levels can be set using the levels 

argument to factor(). This can be important in linear 

modelling because the first level is used as the baseline 

level. 
 > x <- factor(c("yes", "yes", "no", "yes", "no"), 

 levels = c("yes", "no")) 
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Vectors 

 The c() function can be used to create vectors of objects. 
 > x <- c(0.5, 0.6) ## numeric 

 > x <- c(TRUE, FALSE) ## logical 

 > x <- c("a", "b", "c") ## character 

 > x <- 9:29 ## integer 

 Using the vector() function 
 x <- vector("numeric", length = 10) 

 [1] 0 1 2 3 4 5 6 



Lists 

 Lists are a special type of vector that can contain 

elements of different classes. Lists are a very important 

data type in R and should be examined carefully. 
x <- list(1, "a", TRUE, 1 + 4i) 

 Lists can contain also other lists, matrices, vector or a 

combination of these 

 Lots of the modeling functions (like t.test() for the t test or 

lm() for linear models) produce lists as their return values 
 



Subsetting 
  Some operators can be used to extract subsets of R 

objects. 
 [ always returns an object of the same class as the original: it can be 

used to select more than one element (there is one exception) 

 [[ is used to extract elements of a list or a data frame; it can only be 

used to extract a single element and the class of the returned object will 

not necessarily be a list or a data frame 

 $ is used to extract elements of a list (or data frame) by name: 

       > x <- c("a", "b", "c", "c", "d", "a") 

 > x[1] 

 [1] "a" 

 > x[2] 

 [1] "b" 

 > x[1:4] 

 [1] "a" "b" "c" "c" 



Subsetting a list: an example 

 > x <- list(foo = 1:4, bar = 0.6) 

 > x[1] 

 $foo 

 [1] 1 2 3 4 

 > x[[1]] 

 [1] 1 2 3 4 

 > x$bar 

 [1] 0.6 

 > x[["bar"]] 

 [1] 0.6 

 > x["bar"] 

 $bar 

 [1] 0.6 
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Missing values 

 Missing values are denoted by NA or NaN for undefined 

mathematical operations. 

 is.na() is used to test objects if they are NA 

 is.nan() is used to test for NaN 

 NA values have a class also, so there are integer NA, 

character NA, etc. 

 A NaN value is also NA but the converse is not true 

 > x <- c(1, 2, NA, 10, 3) 

 > is.na(x) 

 [1] FALSE FALSE TRUE FALSE FALSE 



Removing missing values  

 Missing values (NAs) can be easily removed 
 > x <- c(1, 2, NA, 4, NA, 5) 

 > bad <- is.na(x) 

 > x[!bad] 

 [1] 1 2 4 5 

 

 > x <- c(1, 2, NA, 4, NA, 5) 

 > na.omit(x) 

     [1] 1 2 4 5 
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Matrices 
 Matrices are vectors with a dimension attribute. The 

dimension attribute is itself an integer vector of length 2 

(nrow, ncol) 
>m <- matrix(nrow = 2, ncol = 3) 

 Matrices are constructed column-wise, so entries can be 

thought of starting in the “upper left” corner and running 

down the columns. 
 > m <- matrix(1:6, nrow = 2, ncol = 3) 

 Matrices can be created by column-binding or row-

binding with cbind() and rbind(). 
 > x <- 1:3 

 > y <- 10:12 

 > cbind(x, y) 



Subsetting a matrix 

 Matrices can be subsetted in the usual way with (i,j) type 

indices. 
 > x <- matrix(data=1:6, nrow=2, ncol=3) 

 > x[1, 2] 

 [1] 3 

 > x[2, 1] 

 [1] 2 

 If the index is missing, the entire row (column) will be 

selected 
> x[1, ] 

[1] 1 3 5 

> x[, 2] 

[1] 3 4 

 



Data Frames 

 Used to store tabular data 

 Can be considered as a special type of list where every 

element of the list has to have the same length 

 Each element of the list can be thought as a column and 

the length of each element is the number of rows. 

 Unlike matrices, they can store different classes of 

objects in each column 

 Data frames also have special attributes called names 

and row.names 

 Data frames are usually created by calling read.table() or 

read.csv() 

 Can be converted to a matrix by calling data.matrix() 
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Functions and operators 

 Functions do things with data 
 “Input”: function arguments (0,1,2,…) 

 “Output”: function result (exactly one) 

 Example: 

 add = function(a,b)  

 { result = a+b 

 return(result) } 

 Operators: 

 Short-cut writing for frequently used functions of one or 

two arguments.  
 Examples: + - * / ! & | %% 

 



Grouping and if() statements 

Grouped expressions 
 R is an expression language in the sense that its only command type is a 

function or expression which returns a result. 

 Commands may be grouped together in braces, {expr 1, . . ., expr m}, in 

which case the value of the group is the result of the last expression in the 

group evaluated. 

 if() statement 
 The language has available a conditional construction of the form 

      if (expr 1) {expr 2}  

      else {expr 3} 

   where (expr 1) must evaluate to a logical value  

 a vectorized version of the if/else construct, the ifelse function: this has 

the form ifelse(condition, yes=a, no=b) 

 



Repetitive executions 

 for() loops, repeat and while 
 for(name in (expr 1)) {expr 2} 

   where name is the loop variable, expr 1 is a vector expression, (often a 
sequence like 1:20), and expr 2 is often a grouped expression with its sub-
expression. expr 2 is repeatedly evaluated as name ranges through the values 
in the vector result of expr 1. 

Other looping facilities include the repeat() statement and 
the while() statement. The break statement can be used 
to terminate any loop, possibly abnormally. This is the only 
way to terminate repeat() loops. 

The next statement can be used to discontinue one 
particular cycle and skip to the “next”. 

 



Branching 

 if (logical expression) { 

      statements 

      } else { alternative statements} 
 

 if ( test_expression1) { 

      statement1 

      } else if ( test_expression2) { 

      statement2 

       } else  statement3 
 

NB: else branch is optional 
 



Loops 

Very useful when similar tasks need to be performed 

multiple times 
 Monte Carlo Simulation 

 Cross-Validation (delete one and etc.) 

 

 for(i in 1:10) { 

          print(i*i) 

            } 

 

 i=1 

     while(i<=10) { 

              print(i*i) 

              i=i+sqrt(i) 

                } 
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Reading and writing data 
 

 There are a few principal functions reading data into R. 
 read.table, read.csv: tabular data 

 readLines: lines of a text file 

 source: R code files (inverse of dump) 

 dget: R code files (inverse of dput) 

 load: saved workspaces 

 

 There are analogous functions for writing data to files 
 write.table 

 writeLines 

 dump 

 dput 

 save 

 



 

read.table (1) 
 

 read.table is one of the most used functions for reading 

data. The most important arguments are: 
 file, the name of a file, or a connection 

 header, logical indicating if the file has a header line 

 sep, a string indicating how the columns are separated 

 colClasses, a character vector indicating the class of each column in the 

dataset 

 nrows, the number of rows in the dataset 

 comment.char, a character string indicating the comment character 

 skip, the number of lines to skip from the beginning 

 stringsAsFactors, should character variables be coded as factors? 



read.table (2) 

 For small and moderately sized datasets, the function 

may be called without specifying any other argument 
 data <- read.table("foo.txt") 

 R will automatically: 
 skip lines that begin with a # (such setting may be modified) 

 figure out how many rows the file has 

 assign a type to each column of the table 

 read.csv is identical to read.table, but the default 

separator is a comma. 



Reading larger datasets (1) 

 With much larger datasets, the following precautions will 

make life easier and prevent R from choking. 
 Make a rough calculation of the memory required to store 

the dataset. If the dataset is larger than the available RAM, 

no further stops can be executed. 

 Set comment.char = "" if there are no commented lines in 

the file 

 Set quote = “” 

 Hint: always read the help pages! 
 Example: ?read.table 

 Once a R package is loaded, it will be possible to read the help 

page of every function contained in such package 
 



Reading larger datasets (2) 
 Know your system 

 In general, when using R with larger datasets, it’s useful to know a few 

things about the system used. 

 How much memory is available? 

 What other applications are in use? 

 Are there other users logged into the same system? 

 What operating system? 

 Is the OS 32 or 64 bit? 

 Calculating Memory Requirements 
 Having a data frame with 1,500,000 rows and 120 columns, with 

numeric data. Roughly, how much memory is required to store this data 

frame? 

  1,500,000 × 120 × 8 bytes/numeric = 1440000000 bytes= 

  = 1440000000 /2^20 bytes/MB = 1,373.29 MB= 

  = 1.34 GB 
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lapply, sapply, apply 

Useful when similar tasks need to be performed multiple 

times for all elements of a list or for all columns of an 

array. 
 May be easier and much faster than “for” loops 

 lapply(li, function) 
 To each element of the list li, the function function is applied.  

 The result is a list whose elements are the individual function results. 

 > li = list("klaus","martin","georg") 

 > lapply(li, toupper) 

 > [[1]] 

 > [1] "KLAUS" 

 > [[2]] 

 > [1] "MARTIN" 

 > [[3]] 

 > [1] "GEORG" 

 



apply 

 apply( arr, margin, fun ) 

 Apply the function fun along some dimensions of the 

array arr, according to margin (1=rows, 2=columns), and 

return a vector or array of the appropriate size. 
> x 

     [,1] [,2] [,3] 

[1,]    5    7    0 

[2,]    7    9    8 

[3,]    4    6    7 

[4,]    6    3    5 

> apply(x, 1, sum) 

[1] 12 24 17 14 

> apply(x, 2, sum) 

[1] 22 25 20  

 



  

Parallel Computing with R 
 Under some circumstances, a R job can be speeded up 

 Several ways of parallelization are available 

 Such methods can be divided in four broad categories: 
 lapply-based (shared memory and distributed memory) 

 foreach-based (shared memory and distributed memory) 

 Poor man's parallelism 

 Hands-off parallelism 

 Parallel jobs with R & MPI based R packages 
  parallel, doParallel, foreach  

  Rmpi,doMPI,foreach  

  Rmpi,snow,snowfall  

 



Parallelization parameters 

 How many cores? 
 If Rstudio is launched via RCM, only the cores of the visualization node 

used can be exploited (up to 20) 

 How many nodes? 
 If a qsub (Batch or Interactive) job is submitted, more than a single 

computing node can be exploited 

 The job will be queued and scheduled as any PBS Batch job 

 Careful! If too many resources are requested, the priority of the process 

launched will be lowered 

 How much memory? 
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Using R on PICO 

 R can be used within HPC environments 
 PBS Batch jobs: running R using qsub batch instructions 

 Interactive PBS Batch jobs: interactive qsub 

 Graphical sessions: R & Rstudio via RCM 

 Some examples will be given using PICO 
 One of Cineca’s HPC clusters 

 Made of 74 nodes of different types 
 54 Compute nodes 

 4 Visualization nodes 

 2 Login nodes 

 14 other nodes 

 1080 cores available for computational tasks (Batch jobs only) 

 http://www.hpc.cineca.it/content/pico-user-guide 
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H2O 
Open Source Technology 
H2O was written from scratch in Java and seamlessly integrates with the 

most popular open source products like Apache Hadoop® and Spark™ to 

give customers the flexibility to solve their most challenging data problems. 

Easy-to-use WebUI and Familiar Interfaces  
Set up and get started quickly using either H2O’s intuitive web-based 

Flow graphical user interface or familiar programming environments 

like R, Python, Java, Scala, JSON, and through our powerful APIs.  

Data Agnostic Support for all Common Database 

and File Types 
Easily explore and model big data from within Microsoft Excel, 

R Studio, Tableau and more. Connect to data from HDFS, S3, 

SQL and NoSQL data sources. Install and deploy anywhere, in 

the cloud, on premise, on workstations, servers or clusters. 

. 



H2O 
Data Agnostic Support for all Common Database 

and File Types 
Easily explore and model big data from within Microsoft Excel, R Studio, 

Tableau and more. Connect to data from HDFS, S3, SQL and NoSQL data 

sources. Install and deploy anywhere, in the cloud, on premise, on 

workstations, servers or clusters. 

Massively Scalable Big Data Analysis 
Train a model on complete data sets, not just small samples, and 

iterate and develop models in real-time with H2O’s rapid in-memory 

distributed parallel processing. 

Real-time Data Scoring 
Rapidly deploy models to production via plain-old Java objects 

(POJO) or model-optimized Java objects (MOJO). Score new 

data against models for accurate predictions in any 

environment. Enjoy faster scoring and better predictions than 

any other technology. 



Parallelization (qsub jobs) 

 How to manage parallelization in qsub jobs? 
 The resources needed can be directly specified within the code: 

 Number of nodes 

 Number of processors per node 

 Memory needed 

 Maximum job time 

 The number of cores to exploit must also be specified within the R code 

by using the built-in functions of the R packages mentioned before 

 

 

 



PICO login  

 Open a SSH client 

 Press ENTER 

 Connect to Remote Host: 
 Host Name: login.pico.cineca.it 

 User Name: the personal User Name 

 Port Number: the default one 

 Authentication Method: <Profile Settings> 

 Enter the given Password 
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