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Presenza di indebito utilizzo 

Importo totale del credito compensato  
Importo massimo del credito utilizzato 

Stato del modello 

Regione 

Regione 

Importo totale del credito compensato  

Tasks and techniques 
 

 descriptive  

 clustering 
 k-means 

 relational analysis 

 Self Organizing Maps 

 hierachical clustering 

 mixture model 

 … 

 association rules 

 sequential patterns 

 graph and network analysis 

 dimensionality reduction 

 … 

 

B 
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predictive 

 classification (machine learning) 
 Naive Bayes 

 Decision Trees 

 Neural Networks 

 KNN 

 Support Vectors Machine 

 …  

 regression  

Unsupervised learning 
training samples have no class information 

guess classes or clusters in the data 

we are given inputs but no outputs 

(unlabeled data)  

we learn the “latent” labels 

Supervised learning 
use training samples with known classes 

to classify new data 

we are given examples of inputs and 

associated outputs 

we learn the relationship between them 

A  B 



Different approaches to the 
predictive task 

 

predictive 

 classification (the learned 

attribute is categorical ,“nominal”) 
 Naive Bayes 

 Decision Trees 

 Neural Networks 

 KNN 

 Support Vectors Machine 

 …  

 regression  (the learned attribute 

is numeric) 

infer how to map input to 

output 

 

Statisticians: model the 

process that gave rise to 

data 

ML: make an accurate 

prediction, given the data 

 



Pre–processing  

  

 data understanding and data quality assessment 
 Presence of missing values, outliers, inconsitencies  

 Level of noise 

 Redundance  
 

 data preparation 

 Cleaning  

 Transformation (normalization, discretization, aggregation, 

new variables computation…) 

 Feature extraction 

 Selection / filtering 

Train / Test set splitting 



      

      

X11 X12 X13 … X1d C1 

X21 X22 X23 … X2d C2 

…      

Xn1 Xn2 Xn3 … xnd Cn 
 

 

variable 

observation 

Data representation 

Analysis matrix 

target 



Titanic dataset 
In 2012 Kaggle published this dataset to let researchers test the efficacy 

of their algorithms in predicting survival on the Titanic 

target 



Titanic dataset 

IF sex=‘female’ THEN survive=yes 

ELSE IF sex=‘male’ THEN survive = no 
  

confusion matrix  

   no  yes     classified as  

no  468    81 

yes  109  233 

 

(468 + 233) / (468+109+81+233) = 79% correct 



Titanic dataset 

IF pclass=‘1’ THEN survive=yes 

ELSE IF pclass=‘2’ THEN survive=yes 

ELSE IF pclass=‘3’ THEN survive=no  
  

confusion matrix  

   no  yes     classified as  

no  372  177 

yes  119  223 

 

(372 + 223) / (372+119+223+177) = 67% correct 



Titanic dataset 

Strategy 
 

 For each attribute A: 

 For each value V of that attribute, create a rule: 
1. count how often each class appears 

2. find the most frequent class, c 

3. make a rule "if A=V then Class=c" 

 Calculate the error rate of this rule 

 Pick the attribute whose rules produce the lowest 

error rate 



Titanic dataset 

IF pclass=‘1’ AND sex=‘female’ THEN survive=yes 

IF pclass=‘2’ AND sex=‘female’ THEN survive=yes 

IF pclass=‘3’ AND sex=‘female’ AND age < 4 THEN survive=yes 

IF pclass=‘3’ AND sex=‘female’ AND age >= 4 THEN survive=no 

IF pclass=‘2’ AND sex=‘male’ THEN survive=no 

IF pclass=‘3’ AND sex=‘male’ THEN survive=no 

IF pclass=‘1’ AND sex=‘male’ AND age < 5 THEN survive=yes 

… 



Titanic dataset 

IF pclass=‘1’ AND sex=‘female’ THEN survive=yes 

IF pclass=‘2’ AND sex=‘female’ THEN survive=yes 

IF pclass=‘3’ AND sex=‘female’ AND age < 4 THEN survive=yes 

IF pclass=‘3’ AND sex=‘female’ AND age >= 4 THEN survive=no 

IF pclass=‘2’ AND sex=‘male’ THEN survive=no 

IF pclass=‘3’ AND sex=‘male’ THEN survive=no 

IF pclass=‘1’ AND sex=‘male’ AND age < 5 THEN survive=yes 

… 

We might consider grouping redundant conditions  

IF pclass=‘1’ THEN  

IF sex=‘female’ THEN survive=yes  

IF sex=‘male’ AND age < 5 THEN survive=yes  

IF pclass=‘2’ … Decision Tree 



Learning  

Three core components 
 Representation 

how the data is classified (a hyperplane that separates the two 

classes? a decision tree? a neural network?) 

Usually a conditional probability distribution P(y|x) or a decision function f (x). 

The set of classifiers(or decision functions) is called the hypothesis space of the 

model.  

 Evaluation 

how to determine if the classifier is a good representation (# of errors 

on some test set? precision and recall? residual sum of squares? 

likelihood?) 

In order to measure how well a function fits the training data, a loss function is 

defined (e.g. quadratic loss function L(Y,f(X))=(Y-f(X))2). The risk function is the 

expected loss of f: E[L(Y,f(X))] and can be estimated from the training data. 

 Optimization 

how to make the model more efficient by reducing the search space 

(greedy search? gradient descent?) 

The training (or learning) algorithm searches among the classifiers in the 

hypothesis space for the highest-scoring one. The choice of optimization 

technique is key to the efficiency of the model. 



Learning  

Three core components 
 

 Representation 

 A set of rules: IF…THEN conditions 

 Evaluation 

 coverage: # of data points that satisfy conditions 

 accuracy = # of correct predictions / coverage 

 Optimization 

 Build rules by finding conditions that maximize 

accuracy 



Decision Trees 

– Each path from the root 

is a rule (easy to interpret) 

– Use Information Gain to 

choose best attribute at 

each node 



Information gain 

The expected information gain is the change in 

information entropy H from a prior state to a state that 

takes some information as given: 

 IG(T,a) = H(T) - H(T|a)  
T = training set; a = an attribute value 

 

 

Higher entropy means the events being measured are 

less predictable (e.g. in a coin toss entropy is 1). 
 

Which attribute do we choose at each level? 

The one with the highest information gain 

i.e. the one that reduces the unpredictability the most 

 
 



Information gain 

How unpredictable is your data? 

 

342/891 survivors in titanic training set 



Information gain 



Information gain 



Information gain - Continuous Attributes 
Consider every possible binary partition; choose the partition with the highest gain 



Building a Decision Tree 

 Assume attributes are discrete 

 Discretize continuous attributes 

 Choose the attribute with the highest Information Gain 

 Create branches for each value of attribute 

 Partition examples on the basis of selected attributes 

 Repeat with remaining attributes 

 Stopping conditions 

 All examples assigned the same label 

 No examples left 

Problems 
 Expensive to train 

 Prone to overfitting 

 perform well on training data, bad on test data 

 pruning can help: remove or aggregate subtrees that provide 

little discriminatory power [are overspecialized …] 



Test 

Is the model able to generalize? Can it deal with 

unseen data, or does it overfit the data? Test on 

hold-out data: 

 split data to be modeled in training and test set 

 train the model on training set 

 evaluate the model on the training set 

 evaluate the model on the test set 

 difference between the fit on training data and test 

data measures the model’s ability to generalize 



Evaluation 

Confusion matrix 

Predicted labels 

(model) 

False True 

True 

labels 

(target) 

False TN FP Specificity  

TN / (FP+TN) 

True FN TP Sensitivity  

TP / (TP+FN) 

Negative 

Predictive 

Value  

TN / (TN + FN) 

Positive 

Predictive 

Value  

TP / (TP + FP) 

Accuracy 
(TP+TN) / 

(TP+FP+TN+FN) 

Recall 

Precision 

F-score = 2*Precision*Recall / (Precision + Recall) 

Error rate = 1 – Precision 

FP rate = 1 – Specificity  

The known class of test 

samples is matched 

against the class 

predicted by the model 



Evaluation  

Accuracy  
Need a baseline 

 Base Rate 

 Accuracy of trivially predicting the most-frequent class 

 Random Rate 

 Accuracy of making a random class assignment 

 Naive Rate 

 Accuracy of some simple default or pre-existing model 

(e.g. “All females survived”) 

 



Kappa coefficient (Cohen's Kappa) 

Measure of agreement between two 

raters 
Kappa measures the percentage of data values in the 

main diagonal of the table and then adjusts these 

values for the amount of agreement that could be 

expected due to chance alone. 

 



Kappa coefficient (Cohen's Kappa) 

Calculation (example) 
 

Evaluation of grant proposals. 

The observed agreement is Pr(a) = (20 + 15) / 50 = 0.70 

To calculate Pr(e) (the probability of random agreement) we note that: 

Rater A said "Yes" to 25 applicants and "No" to 25 applicants. Thus 

rater A said "Yes" 50% of the time. 

Rater B said "Yes" to 30 applicants and "No" to 20 applicants. Thus 

rater B said "Yes" 60% of the time. 

Therefore the probability that both of them would say "Yes" randomly is 

0.50 · 0.60 = 0.30 and the probability that both of them would say "No" 

is 0.50 · 0.40 = 0.20. Thus the overall probability of random agreement 

is Pr(e) = 0.3 + 0.2 = 0.5. 

 



Gain and Lift curves 

Visual aids for evaluating the 

performance of classification models in 

a portion of the population. 

Test output is usually a score. Compute 

percentiles on the score distribution and 

identify the TP in each percentile. 

Lift curve for L’Equité: shows how much 

more likely we are to receive positive 

responses than if we contacted a random 

sample of customers. For example, by 

contacting only 10% of customers based 

on the predictive model we will reach 4 

times as many respondents, as if we use 

no model. 0
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ROC curves 
The ROC provides a means of comparison between 

classification models. The ROC chart shows false positive 

rate (1-specificity) on X-axis, the probability of target=1 when 

its true value is 0, against true positive rate (sensitivity) on Y-

axis, the probability of target=1 when its true value is 1. 

Area under ROC curve is often used as a measure of quality 

of the classification models. A random classifier has an area 

under the curve of 0.5, while AUC for a perfect classifier is 

equal to 1.  

Receiver Operator 

Characteristic (used to 

measure accuracy of 

radar operators) 



Division into training and test sets 

 

 Fixed split 

 Leave out random N% of the data 

 K-fold Cross-Validation 

 Select K folds without replace 

 Leave-One-Out Cross Validation 

 Special case 

 Bootstrap 

 Generate new training sets by sampling with 

replacement 

 



Bootstrap  
 

Given a dataset of size N 

 Draw N samples with replacement to create a new 

dataset 

 Repeat ~1000 times 

 You now have ~1000 sample datasets 

 All drawn from the same population 

 You can compute ~1000 sample statistics 

 You can interpret these as repeated experiments  
 

Very elegant use of computational resources 

The bootstrap allows you to simulate repeated statistical 

experiments 

Statistics computed from bootstrap samples are typically 

unbiased estimators 

 



Ensembles  

Combining classifiers 
The output of a set of classifiers can be combined to 

derive a stronger classifier 

(e.g. average results from different models) 

 Better classification performance than individual 

classifiers 

 More resilience to noise  

 Time consuming 

 Models become difficult to explain 



Bagging  

 Draw N bootstrap samples 

 Retrain the model on each sample 

 Average the results 

 Regression: Averaging 

 Classification: Majority vote 

Works great for overfit models 

Boosting:  instead of selecting data points randomly, 

favor the misclassified points 

 Initialize the weights 

 Repeat: 

Resample with respect to weights 

Retrain the model 

Recompute weights 

The disadvantage of boosting, relative to big data, is that it’s inherently 

sequential (weights in time t depend from weights in time t-1; while in bagging 

everything can go parallel) 

 



Random forest 

Ensemble method based on decision trees 
Repeat k times: 

 Draw a bootstrap sample from the dataset 

 Train a decision tree 

   Until the tree is maximum size 

Choose next leaf node 

Select m attributes at random from the p available 

Pick the best attribute/split as usual 

 Measure out-of-bag error 

Evaluate against the samples that were not selected in the 

bootstrap 

Provides measures of strength (inverse error rate), correlation 

between trees, and variable importance 

Make a prediction by majority vote among the k trees  



Random Forests 

 

 General and powerful technique 

 Easy to parallelize  

 Trees are built independently  

 Work on categorical attributes  

 Handles “small n big p” problems naturally  

 A subset of attributes are selected by importance 

 Avoids overfitting (ensemble of models) 

 



Decision Trees and Random Forests 

 

 Representation 

 Decision Trees 

 Sets of decision trees with majority vote 

 Evaluation 

 Accuracy 

 Random forests: out-of-bag error 

 Optimization 

 Information Gain or Gini Index to measure impurity and 

select best attributes  



Agenda  

 Introduction to Supervised Learning: Decision Trees  

 Information gain and Entropy 

 Overfitting 

 Evaluation 

 Train and test splitting 

 Accuracy, Precision and Recall 

 Lift and ROC curves 

 Ensembles  

 Bootstrap  

 Bagging and Boosting   

 Random Forests 

 Other approaches – overview  

 Model selection 



Classification algorithms 

 
  probabilistic classifiers 

 symbolic algorithms 

 example-based classifiers 

 support vector machines 

 neural networks 

  

 regression methods 

 ... 
 

Naïve Bayes  

KNN  

SVM  

Decision trees, decision rules  

Perceptron, Backpropagation, 
RBF 

Linear regression, 
Logistic regression  



Regression 

Model of continuous attributes as functions of other attributes. 

The constructed model can be used for prediction (e.g., a 
model to predict the sales of a product given its price) 

Many problems solvable by linear regression, where attribute 
Y (response variable) is modeled as a linear function of other 
attribute(s) X (predictor variable(s)): 

 

 

 

Coefficients a and bi are computed from the samples using the 
least square method, that minimizes the error on the training 
set. 



Lasso Regression 

In Lasso regression we have a penalty, but whereas in Ridge 

regression, the penalty is the sum of the squares of the coefficients, 

here it's the sum of the absolute values of the coefficients.  

This penalty has the effect of forcing some of the coefficient 

estimates to be exactly equal to zero when the tuning parameter 

lambda is sufficiently large. 

 Hence the lasso performs variable selection. 

 We say that the lasso yields sparse models (models that involve 

only a subset of the variables). 

 As in ridge regression, selecting a good value of lambda for the 

lasso is critical; cross-validation is the method of choice. 

 



Polynomial regression 

Create new variables X1 = X, X2 = X2; etc and then treat as multiple 

linear regression. 

Not really interested in the coefficients; more interested in the fitted 

function values at any value x0. 

We either fix the degree d at some reasonably low value, else use 

cross-validation to choose d. 

Caveat: polynomials have notorious tail behavior – very bad for 

extrapolation. 

Piecewise Polynomials 

Instead of a single polynomial in X over its whole 

domain, we can rather use different polynomials 

in regions defined by knots. 

Better to add constraints to the polynomials, e.g. 

continuity. Splines have the maximum amount of 

continuity. They are both local and smooth. 



Splines 
Linear Splines 

A linear spline with knots at Pk (k = 1; … ;k) is a piecewise linear 

polynomial continuous at each knot.  

You can represent this as a linear expansion in basis functions, 

transformations of the variables. In this case, the basis function is just the 

variable itself.  

You make one of these functions, these transformations, at each of the 

knots. And you throw them in as additional variables. 

So now, when you fit a linear model with a global linear function plus one of 

these basis functions in, each of them gets a coefficient. What you get is a 

function that's allowed to change its slope at the knot. 



Extensions of the Linear Model 

 

 P>N   

 Ridge, Lasso regression, stepwise selection, PCR, … 

 Additivity  

 interaction terms, …  use Decision Trees   

 Linearity  

 polynomials, step functions, splines, local regression, GAM, … 

 Qualitative response 

  use classifiers (Decision Trees, Neural Networks, …) 

 Binary response 

 logistic regression 



Logistic regression 

You want to produce a categorical output 

 (survived / not survived) and still use this 

 numerical technique 

Predict survival (y-axis) from (normalized) 

age (x-axis) 
 

 Maps any number to the range (0,1) 

 Interpret the result as a probability (what is the probability a 

passenger survived?) 

 Interpret categorical classes numerically  

The optimization maximizes the probability of correct classification 



Decision Trees and Regression Trees 

A tree where 

internal node  = test on a single attribute 

branch   = an outcome of the test 

leaf node  = class or class distribution 

A? 

B? C? 

D? Yes 

One rule is generated for each path in the tree from the 

root to a leaf 

divide (split) criterion 



Symbolic classifiers 

The key step is the choice of the condition on which to operate the 

partition, a choice which is generally made according to an 

information gain or entropy criterion.  
 

“Fully grown” tree may be prone to overfitting, as some branches 

may be too specific to the training data. Most DT learning methods 

thus include a method for growing the tree and one for pruning it, 

that is, for removing the overly specific branches.  
  

The decision tree method characterizes an observation in terms of 

a logical combination of features, which is simply a statement on 

the observation’s attributes, and does not involve any numeric 

computation. 
 

A decision tree can be considered as a set of rules, since each 

path between the root and a leaf node specifies a set of conjoined 

conditions upon the outcome at the leaf.  

 



Symbolic classifiers 

Pros: 

Easy to interpret (*) 

Simple: a process of inverse deduction is applied, all possible 

inductions are evaluated (mirroring human decision-making)  

Handle qualitative predictors without the need to create dummy 

variables 

 

Cons: 

Computationally expensive 

Low predictive accuracy (*) 

Prone to overfitting (*) 

Deterministic approach (no weighting of attributes) 

Not all problems can be dealt with logic and set of rules (no 

known success cases e.g. in image recognition) 

 

(*) random forests are not considered here 



Neural Networks 

Biologically inspired. 

A neural network is a set of connected input/output units where 
each connection has an associated weight and an activation 
function. 

The weights are adjusted during the training phase, in order to 
correctly predict the class label for samples. 

The simplest type of NN classifier is the perceptron, which is a 
linear classifier. 



Neural Networks 
A nonlinear NN is a network with one ore more 
additional “layers” of units, that represent higher-order 
interactions between features. 

The introduction of a sigmoidal activation function 
enable the backpropagation of the error and 
multilayer perceptrons. 

Radial Basis Functions are NN with a single hidden 
layer of units whose activation function is a basis 
function (Gaussian or other). 

Recently the raise in computing power and in data 
volume available for training and the new technology of 
autoencoder, enabled the “deep” learning. 

Deep learning typically refers to a set of machine 
learning algorithms that infer deep hierarchical models 
that capture highly non-linear relationships of low level 
(unstructured) input data to form high level concepts.  

 

hidden layer/s 

input layer 

output layer 



Neural Networks 

Pros: 

 High predictive accuracy 

 No assumptions of normality, linearity, variable 
independence, … (no need to understand the underlying 
data) 

 Capture many kinds of non linear relationships, allowing to 
model phenomena which otherwise would be very difficult or 
impossible to model 

 Effectivness in dealing with noisy data and incomplete data 

Cons: 

 Black boxes 

 Local optimization (local minima in the error surface) 

 Require significative computing power for large dataset 

 Fail to fullly simulate human brain (e.g. in the “common 
sense” or intuitive concepts) 

 For complex phenomena need a lot of training data 



Bayesian classification 

The classification problem may be formalized using a-

posteriori probabilities: 

 

P(C|X)  = probability that the sample tuple  

        X=<x1,…,xk> is of class C 

 

Idea: assign to sample X the class label C such that 

P(C|X) is maximal 



Estimating a-posteriori probabilities 

Bayes theorem: 

P(C|X) = P(X|C)·P(C) / P(X) 

 

P(X) is constant for all classes 

P(C) = relative freq of class C samples 

 

C such that P(C|X) is maximum = C such that P(X|C)·P(C) is 

maximum 

 

Problem: computing P(X|C) is unfeasible! 



Naïve Bayesian Classification 

Naïve assumption: attribute independence 

P(x1,…,xk|C) = P(x1|C)·…·P(xk|C) 

 

If i-th attribute is categorical: 

P(xi|C) is estimated as the relative freq of samples having 

value xi as i-th attribute in class C 

If i-th attribute is continuous: 

  P(xi|C) is estimated thru a Gaussian density function 

 

Computationally easy in both cases 



k-nearest neighbors (KNN) 

Rely on the category labels attached to the k training 
observations that are most similar to the test observation. 

Don’t build an explicit representation of each category. 

Need to define a distance metric and criteria for assigning a 
category, given the categories assigned to its k nearest 
neighbors:  

 majority class among the k nearest neighbors 

 use a distance-weighted criteria, so that the further a 
neighbor is from the observation, the less it contributes in the 
decision to assign that neighbor’s category 



k-nearest neighbors (KNN) 

Pros: 

 Intuitive approach 

 No training required (lazy learning) 

 Can (implicitly) represent very complex 
models 

 Naturally handles multiclass classification 

 

Cons: 

More time consuming in the application 
phase 

Subject to the curse of dimensionality 
 



Support Vector Machines (SVM) 

Find, among all the surfaces 1, 2, …  
in d-dimensional space that separate 
the positive from the negative training 
examples (decision surfaces), the i 
that separates the positives from the 
negatives by the widest possible 
margin (such that the separation 
property is invariant with respect to the 
widest possible traslation of i). 

If the positives and the negatives are linearly separable, the decision 
surfaces are (d-1)-hyperplanes. 

The “best” decision surface is determined by only a small set of training 
examples, called the support vectors. 

We can soften the definition of margin to allow for missclassified points. 
Simple models tend to generalize better.  

 



Support Vector Machines (SVM) 

Pros: 

 Can model complex non linear relationships 

 Robust to noise (because of margin 
maximization) 

 

Cons: 

 Time consuming in the multiclass 
classification task 

 Doesn’t provide calss probability (as logistic) 

 Doesn’t provide feature selection 

 Hard to interpret 
 



Overview of Classifiers  

probabilistic classifiers 
look at the distribution of features and compute probability of each class 

symbolic algorithms 
characterize an observation in terms of a logical combination of features, which is a 
statement on the observation’s attributes, and does not involve any numeric 
computation 

example-based classifiers  
don’t learn through induction (no explicit model of the class is built), only memorize 
the observations in the training set and their features 

regression methods  
approximation of a real-valued function by means of a function that fits the training 
data 

neural networks  
network of input/output units where each connection has an associated weight 

support vector machines  
 identify the surface that separates the positives from the negatives by the widest 
possible margin 

 … 



Model selection 

There is not a general rule, main criteria are based on:  

 the target variable  

 quantitative (Regression, Regression Trees, KNN) 

 categorical (Logistic Regression, SVM, DT, Naive Bayes, 
NN, KNN, Rocchio, ...) 

 the main objective  

 prediction accuracy (Random Forests, classifiers’ comitee, 
Neural Networks) 

 interpretability (Linear Regression, Decision Trees) 
 

but should also be taken into account: the data quality (noise and 
missing values), the dimensionality, the computational effort, ... 

 



Trees versus Linear models 

True linear boudary 

True non-linear 
boudary 

Linear model Tree-based model 



Bias-Variance Trade-off 

The bias is how far off on the average the model is from the truth. 

The variance is how much the estimate varies around its average. 

Typically as the flexibility of the model increases, its variance 
increases, and its bias decreases. So choosing the flexibility 
based on average test error amounts to a bias-variance trade-off. 

expected prediction error  



Training versus Test set performance 



Model building – a workflow 

1. Identify the model [or subset of models] that suit your task.  

2. Start with the simplest specification. 

3. For each model fit the parameters and tune the degree of 
complexity by means of a cross-validation process(*) on the 
training set. 

4. Use the test set to assess [and compare] the performances / 
generalization of the fully-specified model. 

 

(*) the hold-out method can be used, instead of cross-validation, 
by identifying a validation set, as well as a test set, at the 
beginning of the process 

 

An application of this process is in early stopping, where the 
candidate models are successive iterations of the same network 
(or boosted models), and training stops when the error on the 
validation set grows, choosing the previous model. 

 



Model stacking 
Instead of selecting the best performing algorithm, 
combine their results.  

Each learner has a different approach, makes different 
assumptions and produces a judgement. 

Combining judgements in a final decision is another 
classification problem where the input is no longer the 
original set of attributes, but the set of judgements made 
by the classifiers. 

It’s a metalearning process: learning on the learners’ 
output. 

The metalearner can be any learner, eg a decision tree, or 
a simple weighted majority voting. Weights are learned 
from the test set and are higher for the better performing 
learners (those that correctly predicted the class with a 
higher frequency). 

 

 



Machine learning – the hype 

Traditionally, the only way to get a computer to do something was to 
write down an algorithm explaining how, in painstaking detail. But 
machine-learning algorithms are different: they figure it out on their 
own, by making inferences from data. And the more data they have, 
the better they get. Now we don’t have to program computers; they 
program themselves. Learners turn data into algorithms. 

Homo sapiens is the species that adapts the world to itself instead of 
adapting itself to the world. Machine learning is the newest chapter 
in this million-year saga: with it, the world senses what you want and 
changes accordingly, without you having to lift a finger. 

Science’s predictions are limited to what we can systematically 
observe and tractably model. Big data and machine learning greatly 
expand that scope.  

 

[The Master Algorithm by Pedro Domingos] 

 

 



Tools for classification / predictive 
modelling 

(among many others) 


