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Deep Learning

A recently published review1 can help on summarizing main aspects of deep learning.

1. Models are composed of multiple processing layers:
I multiple layers of abstraction to learn data representations.

2. Improved state-of-the-art in:
I speech recognition, object recognition, object detection;
I drug discovery, genomics.

3. Discovers complex patterns in large datasets:
I backpropagation to change layer parameters;
I representation in each layer is based on previous layer results;

4. Specialized networks for different data;
I deep convolutional networks: image, video, speech;
I recurrent networks: sequential data (text, speech).

1Yann LeCun, Yoshua Bengio, Geoffrey Hinton, Deep Learning, Nature 2015
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Limits of conventional ML techniques

LeCun Bengio and Hinton stress that:

I conventional machine-learning techniques were limited in their ability to process natural
data in their raw form;

I feature extraction is a necessary step for transforming raw data into an internal
representation;

I considerable domain expertise is needed to pick a representation suitable to the task.

On the other side, they consider deep learning methods as representation-learning methods.
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Neural networks as representation learning methods

Data flow:
I input: raw data;
I output: detection/classification distribution probabilities;
I in the process: a layer is fed with data representation learned from previous layer.

Key aspects:
I no a-priori design of features;
I they are learned from data using a general purpose procedure.
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Image Example

edges motifs familiar objects
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Deep learning main results (I)

I Good at discovering intricate structures in high-dimensional data.
I Exhibits superior performances (compared to other ML techniques):

I image and speech recognition;
I prediction of the activity of potential drug molecules;
I analysing particle accelerator data;
I reconstructing brain circuits;
I predicting the effects of mutations in non-coding DNA on gene expression and disease.

I Shows promising results in natural language processing (NLP):
I topic classification, sentiment analysis, question answering and language translation.
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Deep learning main results (II)
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Accuracy on Speech Recognition

Source: Huang, Baker, Reddy, A Historical Perspective of Speech Recognition
GMM: Gaussian Mixture Models, HMM: Hidden Markov Models, DNN: Deep Neural Networks
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How deep is deep learning?

Number of layers in ILSVRC winners, compared to accuracy.
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How deep learning works?

In the following, we will see:
I the effect of adding a fully connected layer to an existing classifier;
I the effect of describing our data in a “wider” hyperspace.

Idea from a blog post: Olah, Neural Networks, Manifolds, and Topology:
http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
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2d example (I)

Define a simple network:

Input #1

Input #2

1

Output
w1

w2

w3

Input
layer

Output
layer

oi =< [xi yi] , [w1 w2]>+w3

Labeled observations: ∀i (xi,yi)→ li

optimize: w = argmin∑i(li−oi)
2
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2d example (II)

Add an hidden layer:
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Hidden layer: evaluated features
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Increase the dimensionality
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Increase the dimensionality
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Convolutional layer (I)

16/21



Convolutional layer (I)
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Convolutional layer (II)
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Pooling layer
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Dropout layer
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Convolutional network
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