

A Deep Learning primer

Riccardo Zanella - r.zanella@cineca.it

SuperComputing Applications and Innovation Department

Table of Contents

Deep Learning: a review

Representation Learning methods

DL Applications

layers and features

Convolutional Networks

Deep Learning

A recently published review¹ can help on summarizing main aspects of deep learning.

- 1. Models are composed of multiple processing layers:
 - multiple layers of abstraction to learn data representations.
- 2. Improved state-of-the-art in:
 - speech recognition, object recognition, object detection;
 - drug discovery, genomics.
- 3. Discovers complex patterns in large datasets:
 - backpropagation to change layer parameters;
 - representation in each layer is based on previous layer results;
- 4. Specialized networks for different data;
 - deep convolutional networks: image, video, speech;
 - recurrent networks: sequential data (text, speech).

¹Yann LeCun, Yoshua Bengio, Geoffrey Hinton, Deep Learning, Nature 2015

LeCun Bengio and Hinton stress that:

LeCun Bengio and Hinton stress that:

 conventional machine-learning techniques were limited in their ability to process natural data in their raw form;

LeCun Bengio and Hinton stress that:

- conventional machine-learning techniques were limited in their ability to process natural data in their raw form;
- feature extraction is a necessary step for transforming raw data into an internal representation;

LeCun Bengio and Hinton stress that:

- conventional machine-learning techniques were limited in their ability to process natural data in their raw form;
- feature extraction is a necessary step for transforming raw data into an internal representation;
- considerable domain expertise is needed to pick a representation suitable to the task.

LeCun Bengio and Hinton stress that:

- conventional machine-learning techniques were limited in their ability to process natural data in their raw form;
- feature extraction is a necessary step for transforming raw data into an internal representation;
- considerable domain expertise is needed to pick a representation suitable to the task.

On the other side, they consider deep learning methods as representation-learning methods.

Neural networks as representation learning methods

Data flow:

- input: raw data;
- output: detection/classification distribution probabilities;
- ▶ in the process: a layer is fed with data representation learned from previous layer.

Key aspects:

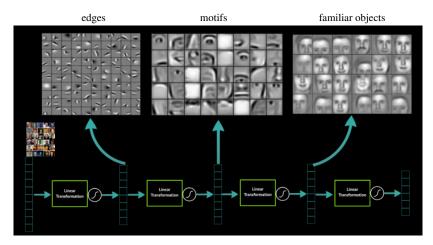
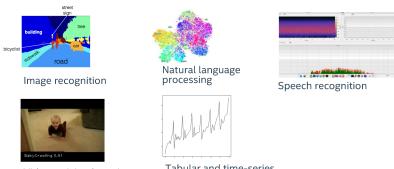
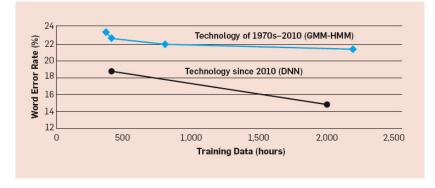

- no a-priori design of features;
- they are learned from data using a general purpose procedure.

Image Example

Deep learning main results (I)

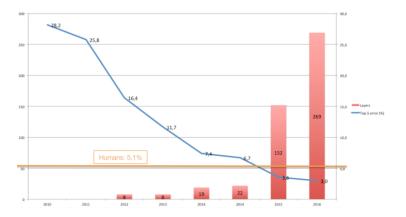

- Good at discovering intricate structures in high-dimensional data.
- Exhibits superior performances (compared to other ML techniques):
 - image and speech recognition;
 - prediction of the activity of potential drug molecules;
 - analysing particle accelerator data;
 - reconstructing brain circuits;
 - predicting the effects of mutations in non-coding DNA on gene expression and disease.
- Shows promising results in natural language processing (NLP):
 - topic classification, sentiment analysis, question answering and language translation.

Deep learning main results (II)


Video activity detection

Tabular and time-series data applications

Accuracy on Speech Recognition


Source: Huang, Baker, Reddy, A Historical Perspective of Speech Recognition GMM: Gaussian Mixture Models, HMM: Hidden Markov Models, DNN: Deep Neural Networks

How deep is deep learning?

Number of layers in ILSVRC winners, compared to accuracy.

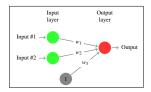
How deep learning works?

In the following, we will see:

- the effect of adding a fully connected layer to an existing classifier;
- the effect of describing our data in a "wider" hyperspace.

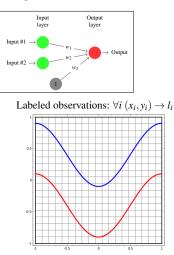
How deep learning works?

In the following, we will see:


- the effect of adding a fully connected layer to an existing classifier;
- the effect of describing our data in a "wider" hyperspace.

Idea from a blog post: Olah, **Neural Networks, Manifolds, and Topology**: http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

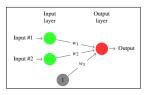
Define a simple network:

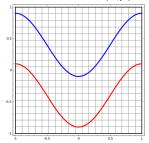


$o_i = < [x_i \ y_i], [w_1 \ w_2] > +w_3$



Define a simple network:

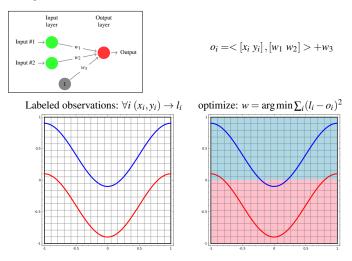




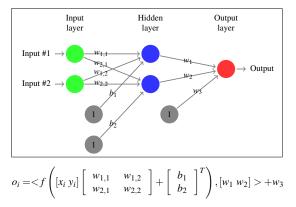
Define a simple network:

Labeled observations: $\forall i (x_i, y_i) \rightarrow l_i$

$$o_i = \langle [x_i \ y_i], [w_1 \ w_2] \rangle + w_3$$

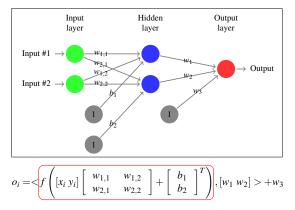

optimize:
$$w = \arg\min\sum_i (l_i - o_i)^2$$

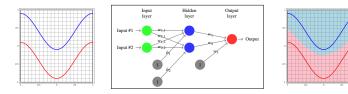
Define a simple network:


64

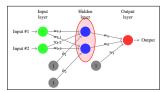
12/21

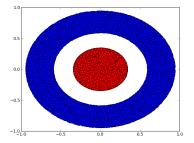
Add an hidden layer:



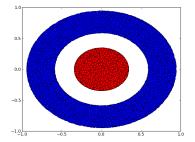

Add an hidden layer:

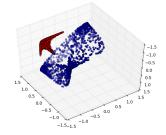
Hidden layer: evaluated features



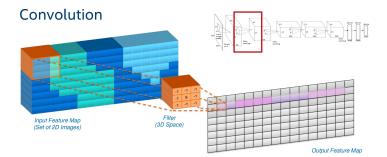


Increase the dimensionality

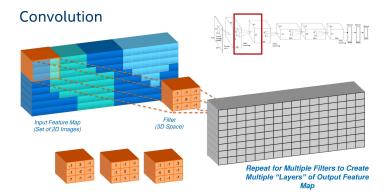




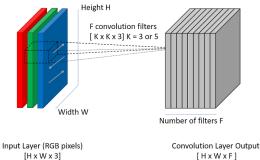
Increase the dimensionality



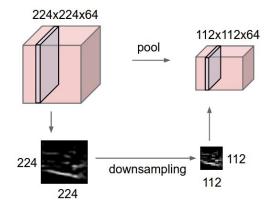
Convolutional layer (I)



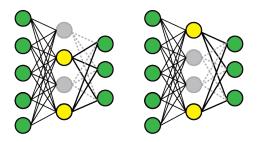
Convolutional layer (I)



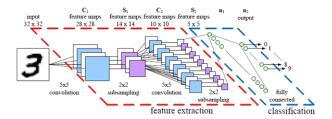
Convolutional layer (II)


[HxWxF] assuming stride=1 and zero padding

Pooling layer



Dropout layer



Convolutional network

