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Deep Learning

A recently published review! can help on summarizing main aspects of deep learning.

1. Models are composed of multiple processing layers:
> multiple layers of abstraction to learn data representations.
2. Improved state-of-the-art in:

> speech recognition, object recognition, object detection;
> drug discovery, genomics.

3. Discovers complex patterns in large datasets:

> backpropagation to change layer parameters;
> representation in each layer is based on previous layer results;

4. Specialized networks for different data;

> deep convolutional networks: image, video, speech;
> recurrent networks: sequential data (text, speech).

Yann LeCun, Yoshua Bengio, Geoffrey Hinton, Deep Learning, Nature 2015
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Limits of conventional ML techniques

LeCun Bengio and Hinton stress that:
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Limits of conventional ML techniques

LeCun Bengio and Hinton stress that:

>

conventional machine-learning techniques were limited in their ability to process natural
data in their raw form;

feature extraction is a necessary step for transforming raw data into an internal
representation;

considerable domain expertise is needed to pick a representation suitable to the task.
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Limits of conventional ML techniques

LeCun Bengio and Hinton stress that:

» conventional machine-learning techniques were limited in their ability to process natural
data in their raw form;

» feature extraction is a necessary step for transforming raw data into an internal
representation;

> considerable domain expertise is needed to pick a representation suitable to the task.

On the other side, they consider deep learning methods as representation-learning methods.
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Neural networks as representation learning methods

Data flow:
> input: raw data;
» output: detection/classification distribution probabilities;

> in the process: a layer is fed with data representation learned from previous layer.

Key aspects:
> no a-priori design of features;

> they are learned from data using a general purpose procedure.
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Deep learning main results (I)

> Good at discovering intricate structures in high-dimensional data.

» Exhibits superior performances (compared to other ML techniques):

>

>
>
>
>

image and speech recognition;

prediction of the activity of potential drug molecules;

analysing particle accelerator data;

reconstructing brain circuits;

predicting the effects of mutations in non-coding DNA on gene expression and disease.

» Shows promising results in natural language processing (NLP):

>

topic classification, sentiment analysis, question answering and language translation.
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Deep learning main results (II)
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Speech recognition

Image recognition

Tabular and time-series

Video activity detection data applications
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Accuracy on Speech Recognition

24
= *.\ Technology of 1970s-2010 (GMM-HMM)
g 22 < =y
[
é 20
5 18 *—__ Technology since 2010 (DNN)
-
B
w
- 16 \.
g 14

12

0 500 1,000 1,500 2,000 2,500

Training Data (hours)

Source: Huang, Baker, Reddy, A Historical Perspective of Speech Recognition
GMM: Gaussian Mixture Models, HMM: Hidden Markov Models, DNN: Deep Neural Networks
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How deep is deep learning?
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How deep learning works?

In the following, we will see:
» the effect of adding a fully connected layer to an existing classifier;

> the effect of describing our data in a “wider” hyperspace.
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How deep learning works?

In the following, we will see:
» the effect of adding a fully connected layer to an existing classifier;

> the effect of describing our data in a “wider” hyperspace.

Idea from a blog post: Olah, Neural Networks, Manifolds, and Topology:
http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
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2d example (I)

Define a simple network:

Input Output
layer layer

Input #1 — . pp— TS
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2d example (I)

Define a simple network:

Input Output
layer layer
Input #1 —
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2d example (I)

Define a simple network:

Input Output
layer layer
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2d example (I)

Define a simple network:

Tnput
layer

Input #1 —

Input #2 —
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Output
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Labeled observations: Vi (x;,y;) — i
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2d example (II)
Add an hidden layer:
Input Hidden Output
layer layer layer
Input #1 —
Input #2 —

T
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2d example (II)
Add an hidden layer:
Input Hidden Output
layer layer layer
Input #1 —
Input #2 —
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Hidden layer: evaluated features

Input Hidden Output
layer layer layer

Tnput #1 — .
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Hidden layer: evaluated features

Input
layer

Output
layer

Hidden
layer
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Increase the dimensionality
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Convolutional layer (I)

Convolution

Input Feature Map

(Set of 2D Images) (3D Space)

Output Feature Map
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Convolutional layer (I)

Convolution

Input Feature Map
(Set of 2D Images) (3D Space)

Egﬂ gﬂﬂ EEE Repeat for Multiple Filters to Create
7 [ ] EIKEER EIEIEL Multiple “Layers” of Output Feature
Map
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Convolutional layer (II)

Height H

F convolution filters
[KxKx3]K=3o0r5

/
Width W
Number of filters F

Input Layer (RGB pixels) Convolution Layer Output
[HxW x3] [HxWxF]
assuming stride=1 and zero padding
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Poohng layer

224x224x64

|

112x112x64
pool
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Convolutional network

N cubsampl B =0 N\ % folly N\

N\ ubsampling NN connected -~
fearre extraction classification
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