i SCAI

SuperComputing Applications and Innovation

HPC and Data Analytics

Riccardo Zanella — r.zanella@cineca. it

SuperCi ing Applications and I ion Department

CINECA

1732

i SCAI

SuperComputing Applications and Innovation

Table of Contents

Machine Learning Background
Efficient machine learning with Python?
Intel Data Analytics Acceleration Library (DAAL)

NVIDIA-based solutions

CINECA

2/32

= SCAI

SuperComputing Applications and Innovation

Learning Algorithm

Definition of Learning Algorithm [Mitchell 1997]"

A computer program is said to learn from experience E with respect to some class of tasks T
and performance measure P, if its performance at tasks in T, as measured by P, improves with
experience E.

CINECA

3/32

= SCAI

SuperComputing Applications and Innovation

Learning Algorithm

Definition of Learning Algorithm [Mitchell 1997]"

A computer program is said to learn from experience E with respect to some class of tasks T
and performance measure P, if its performance at tasks in T, as measured by P, improves with
experience E.

So we need to identify:

» the class of tasks T

CINECA

3/32

i SCAI

SuperComputing Applications and Innovation

Learning Algorithm

Definition of Learning Algorithm [Mitchell 1997]"

A computer program is said to learn from experience E with respect to some class of tasks T
and performance measure P, if its performance at tasks in T, as measured by P, improves with
experience E.

So we need to identify:
» the class of tasks T

» the measure of performance P

CINECA

3/32

i SCAI

SuperComputing Applications and Innovation

Learning Algorithm

Definition of Learning Algorithm [Mitchell 1997]"

A computer program is said to learn from experience E with respect to some class of tasks T
and performance measure P, if its performance at tasks in T, as measured by P, improves with
experience E.

So we need to identify:
» the class of tasks T
» the measure of performance P

» the source of experience E

CINECA

3/32

@ gCAl
s and tion

SuperComputing Application: Iny

Example: checkers game

CINECA

4/32

s SCA
s and tion

SuperComputing Application: Iny

Example: checkers game

> task class T: playing checkers

CINECA

4/32

i SCAI

SuperComputing Applications and Innovation
Example: checkers game @

> task class T: playing checkers

> performance measure P: fraction of games won
against opponents

CINECA

4/32

i SCAI

SuperComputing Applications and Innovation

Example: checkers game

> task class T: playing checkers

> performance measure P: fraction of games won
against opponents

> training experience E: playing practice games
against itself

CINECA

4/32

i SCAI

SuperComputing Applications and Innovation

Example: handwritten characters recognition

CINECA

5/32

= SCAI

SuperComputing Applications and Innovation

Example: handwritten characters recognition

» task class T: recognizing and classifying
handwritten characters within images

CINECA

5/32

= SCAI

SuperComputing Applications and Innovation

Example: handwritten characters recognition

» task class T: recognizing and classifying
handwritten characters within images

> performance measure P: fraction of characters
correctly classified

CINECA

5/32

= SCAI

SuperComputing Applications and Innovation

Example: handwritten characters recognition

» task class T: recognizing and classifying
handwritten characters within images

> performance measure P: fraction of characters
correctly classified

> training experience E: a database of handwritten
characters with given classifications

CINECA

5/32

= SCAI

SuperComputing Applications and Innovation

Example: supervised learning

> training experience E: a number of traininig examples £ = {z;,2,23... }
each example is a (input,target) pair: Z; = (X;,Y;)

CINECA

6/32

= SCAI

SuperComputing Applications and Innovation

Example: supervised learning

> training experience E: a number of traininig examples £ = {z1,22,23... }
each example is a (input,target) pair: Z; = (X;,Y;)

» task class T: a decision function f able to predict unknown Y from known X

CINECA

6/32

= SCAI

SuperComputing Applications and Innovation

Example: supervised learning

> training experience E: a number of traininig examples £ = {z1,22,23... }
each example is a (input,target) pair: Z; = (X;,Y;)

» task class T: a decision function f able to predict unknown Y from known X

> performance measure P: a loss function L to measure the (non-symmetric) distance

L(f,Z)=d(f(Xi),Y:)

CINECA

6/32

i SCAI

SuperComputing Applications and Innovation

Example: supervised learning

> training experience E: a number of traininig examples £ = {z1,22,23... }
each example is a (input,target) pair: Z; = (X;,Y;)
» task class T: a decision function f able to predict unknown Y from known X

> performance measure P: a loss function L to measure the (non-symmetric) distance

L(f,Z)=d(f(Xi),Y:)

Examples:
> regression
> X is areal-valued scalar or vector
> Y is a scalar real value

> fis able to predict ¥; value from X;
> L is usually the euclidean norm

CINECA

6/32

i SCAI

SuperComputing Applications and Innovation

Example: supervised learning

> training experience E: a number of traininig examples £ = {z1,22,23... }
each example is a (input,target) pair: Z; = (X;,Y;)

» task class T: a decision function f able to predict unknown Y from known X

> performance measure P: a loss function L to measure the (non-symmetric) distance

L(f,Z)=d(f(Xi),Y:)

Examples:
> regression
> X is areal-valued scalar or vector
> Y is a scalar real value

> fis able to predict ¥; value from X;
> L is usually the euclidean norm

» classification
> X is a real-valued scalar or vector (features)
> Y is an integer (label) corresponding to a class index

> fis able to provide the probability of X; being in class Y;
> L is usually the negative log-likelihood

CINECA

6/32

i SCAI

SuperComputing Applications and Innovation

Machine Learning

Unsupervised Feature extraction Machine learning Grouping of objects

algorithm .
Fﬂsed on some common
1, } J charagteristics

Predictive model

Training set

CINECA

7/32

i SCAI

SuperComputing Applications and Innovation

Machine Learning

Unsupervised Feature extraction Machine learning Grouping of objects

algorithm .
!ﬂsed on some common
} \ charagteristics

Training set

Predictive model

New Data }

/1
A~

> Application of computer-enabled algorithm to a data set to find a pattern

CINECA

7/32

i SCAI

SuperComputing Applications and Innovation

Machine Learning

Unsupervised Feature extraction

Machine learning Grouping of objects

algorithm .
_.sed on some common
} I chm.- iisnic.«

Training set

New Data }

~
~

> Application of computer-enabled algorithm to a data set to find a pattern

» Wide range of tasks: segmentation. classification, clustering, supervised/unsupervised
learning

CINECA

7/32

i SCAI

SuperComputing Applications and Innovation

Machine Learning

Unsupervised Feature extraction

Machine learning Grouping of objects

algorithm .
Fﬂsed on some common
} I clnmn.' iisnic.«

Training set

Predictive model

New Data }

A
~

> Application of computer-enabled algorithm to a data set to find a pattern

» Wide range of tasks: segmentation. classification, clustering, supervised/unsupervised
learning

» Various algorithms: association rules, decision trees, SVM

CINECA

7/32

i SCAI

SuperComputing Applications and Innovation

Deep Learning

Linear Object
Convolutions Pooling Convs Classifier Categories / Positions

} at (a.y)

} at (.y)

Input data

S2 feature maps at (xk,yk)

fA

C1 feature maps C3 feature maps

CINECA

8/32

i SCAI

SuperComputing Applications and Innovation

Deep Learning

Linear Object
Convolutions Pooling Convs Classifier Categories / Positions

*

S2 feature maps

C1 feature maps C3 feature maps

> Application of an Artificial Neural Network to a data set to find a pattern

CINECA

8/32

i SCAI

SuperComputing Applications and Innovation

Deep Learning

Linear Object
Convolutions Pooling Convs Classifier Categories / Positions

S2 feature maps

o~

C1 feature maps C3 feature maps

> Application of an Artificial Neural Network to a data set to find a pattern

» Multiple hidden layers (to mimic human brain processes associated to vision/hearing)

CINECA

8/32

i SCAI

SuperComputing Applications and Innovation

Deep Learning

Linear Object
Convolutions Pooling Convs Classifier Categories / Positions

F4 maps

S2 feature maps

C1 feature maps C3 feature maps

> Application of an Artificial Neural Network to a data set to find a pattern
» Multiple hidden layers (to mimic human brain processes associated to vision/hearing)

» Big data sets and relevant number of variables

CINECA

8/32

i SCAI

SuperComputing Applications and Innovation

Framework desired features

We are interested in:
» classical machine learning algorithms

» deep learning approach (especially convolutional neural network)

CINECA

9/32

i SCAI

SuperComputing Applications and Innovation

Framework desired features

We are interested in:
» classical machine learning algorithms
» deep learning approach (especially convolutional neural network)
> high level language (Python)

> little/no programming effort

CINECA

9/32

i SCAI

SuperComputing Applications and Innovation

Framework desired features

‘We are interested in:

>

>

>

>

classical machine learning algorithms

deep learning approach (especially convolutional neural network)
high level language (Python)

little/no programming effort

integration with existing pipelines

multi-core CPU and/or many-core GPU support

CINECA

9/32

i SCAI

SuperComputing Applications and Innovation

Intel Data Analytics Acceleration Library (DAAL)

WJH%

Business
Scientific
Engineering
web/Soclal

+ Decompression
« Filtering
« Normalization

+ Aggregation
+ Dimension
Reduction

« Summary
Statistics
= Clustering,

+ Machine
Learning

+ Parameter
Estimation

+ Simulation

« Hypothesls - Forecasting

testing « Decision Trees
- Model - Etc
errors

CINECA

10/32

i SCAI

SuperComputing Applications and Innovation

Intel Data Analytics Acceleration Library (DAAL)

WJH%

::f;,":-,ﬁ + Decompression + Aggregation - Summary - Machine « Hypothesls - Forecasting
Bt + Filtering + Dimension Statistics Learning testing « Decision Trees
Web/Soclal - Normalization Reduction - Clustering, + Parameter =+ Madel + Etc.
Estimation errors
+ Simulation

» Functions for machine learning, deep learning, data analytics

CINECA

10/32

i SCAI

SuperComputing Applications and Innovation

Intel Data Analytics Acceleration Library (DAAL)

WJH%

::f;,":-,ﬁ + Decompression + Aggregation - Summary - Machine « Hypothesls - Forecasting
Bt + Filtering + Dimension Statistics Learning testing « Decision Trees
Web/Soclal - Normalization Reduction - Clustering, + Parameter =+ Madel + Etc.
Estimation errors
+ Simulation

» Functions for machine learning, deep learning, data analytics

» Optimized for Intel architecture devices (processors, coprocessors, and compatibles)

CINECA

10/32

= SCAI

SuperComputing Applications and Innovation

Intel Data Analytics Acceleration Library (DAAL)

WJH%

Business -
Scientific « Decompression + Aggregation = Summary + Machine - Hypothesis . Forecasting
Engineering + Filtering + Dimension Statistics Learning testing + Decision Trees
Weby/Sacial « Normalization Reduction - Clustering. + Parameter - Model . Etc.
Estimation errors
+ Simulation

» Functions for machine learning, deep learning, data analytics

» Optimized for Intel architecture devices (processors, coprocessors, and compatibles)
» C++, Java and Python APIs

CINECA

10/32

i SCAI

SuperComputing Applications and Innovation

Intel Data Analytics Acceleration Library (DAAL)

WJH%

Business i
Scientific « Decompression « Aggregation * Summary « Machine
Engineering + Filtering + Dimension Statistics Learning

web/Social + Normalization Reduction - Clustering, + Parameter

Estimation

+ Simulation

Decision Making

« Hypothesls - Forecasting

testing « Decision Trees

= Model « Etc.

errors

» Functions for machine learning, deep learning, data analytics

» Optimized for Intel architecture devices (processors, coprocessors, and compatibles)

» C++, Java and Python APIs

» Connectors to popular data sources including Spark and Hadoop

CINECA

10/32

i SCAI

SuperComputing Applications and Innovation

Intel Data Analytics Acceleration Library (DAAL)

WM%

Business

Scientific + Decompression + Aggregation
Engineering « Filtering + Dimension
web/Social + Normalization Reduction

= Hypothesis
testing

- Model
errors

» Functions for machine learning, deep learning, data analytics

» Optimized for Intel architecture devices (processors, coprocessors, and compatibles)

» C++, Java and Python APIs

» Connectors to popular data sources including Spark and Hadoop

v

Open source version under Apache 2.0 license

Decision Making

- Forecasting
» Decision Trees
. Etc

CINECA

10/32

= SCAI

SuperComputing Applications and Innovation

Intel Data Analytics Acceleration Library (DAAL)

WM%

Business

Scientific + Decompression + Aggregation
Engineering « Filtering + Dimension
Web/Soclal » Normalization Reduction

~ Hypathesis
testing

- Model
errors

» Functions for machine learning, deep learning, data analytics

» Optimized for Intel architecture devices (processors, coprocessors, and compatibles)

» C++, Java and Python APIs

» Connectors to popular data sources including Spark and Hadoop

» Open source version under Apache 2.0 license

» Paid versions include premium support.

Decision Making

- Forecasting
» Decision Trees
. Etc

CINECA

10/32

i SCAI

SuperComputing Applications and Innovation

Algorithms

Pre-processing || Transformation Analysis Modeling Validation Decision Making
®a &
” o, 'g‘ I” oy
W: @, il = =
PCA

c Linear regression
(De-)Compression Statistical moments Naive Bayes Callaborative filtering
Variance matrix SVM
QR, SVD, Cholesky Classifier boosting Neural Networks
Apriori
Kmeans
EMGMM

CINECA

11/32

i SCAI

SuperComputing Applications and Innovation

Algorithms

Pre-processing |-} Transformation Analysis Modeling Validation Decision Making

> o
N4 P & il s,
il 5 s
PCA Linear regression
(De-)Compression Statistical moments Naive Bayes Callaborative filtering
Variance matrix SVM
QR, SVD, Cholesky Classifier boosting Neural Networks
Apriori
Kmeans
EMGMM

Statistics: min, max, mean, standard deviation, correlation, covariance matrix,
correlation distance matrix, cosine distance matrix

CINECA

11/32

i SCAI

SuperComputing Applications and Innovation

Algorithms

Pre-processing |-} Transformation Analysis Modeling Validation Decision Making

> o
N4 P & il s,
il 5 s
PCA Linear regression
(De-)Compression Statistical moments Naive Bayes Callaborative filtering
Variance matrix SVM
QR, SVD, Cholesky Classifier boosting Neural Networks
Apriori
Kmeans
EMGMM

Statistics: min, max, mean, standard deviation, correlation, covariance matrix,
correlation distance matrix, cosine distance matrix

Factorizations: Cholesky, QR, SVD

CINECA

11/32

i SCAI

SuperComputing Applications and Innovation

Algorithms

Pre-processing |-} Transformation Analysis Modeling Validation Decision Making

> o
N4 P & il s,
il 5 s
PCA Linear regression
(De-)Compression Statistical moments Naive Bayes Callaborative filtering
Variance matrix SVM
QR, SVD, Cholesky Classifier boosting Neural Networks
Apriori
Kmeans
EMGMM

Statistics: min, max, mean, standard deviation, correlation, covariance matrix,
correlation distance matrix, cosine distance matrix

Factorizations: Cholesky, QR, SVD
Dimensionality Reduction: PCA

CINECA

11/32

i SCAI

SuperComputing Applications and Innovation

Algorithms

Pre-processing |-} Transformation Analysis Modeling Validation Decision Making

> o
N4 P & il s,
il 5 s
PCA Linear regression
(De-)Compression Statistical moments Naive Bayes Callaborative filtering
Variance matrix SVM
QR, SVD, Cholesky Classifier boosting Neural Networks
Apriori
Kmeans
EM GMM

Statistics: min, max, mean, standard deviation, correlation, covariance matrix,
correlation distance matrix, cosine distance matrix

Factorizations: Cholesky, QR, SVD
Dimensionality Reduction: PCA

Classification: Naive Bayes, K-Nearest Neighbors, SVM, multiclass classification

CINECA

11/32

i SCAI

SuperComputing Applications and Innovation

Algorithms

B pre-processing || Transformation Analysis Modeling e Decision Making
y LY <
- <
? '.;a: o, & ..(I||||I|. -
e, . . ==

P
(De-)Compression s

cA Linear regression

tatistical moments Naive Bayes Collaborative filtering
Variance matrix svM
QR, SVD, Cholesky Classifier boosting Neural Networks
Apriori
Kmeans
EM GMM

Statistics: min, max, mean, standard deviation, correlation, covariance matrix,
correlation distance matrix, cosine distance matrix

Factorizations: Cholesky, QR, SVD
Dimensionality Reduction: PCA
Classification: Naive Bayes, K-Nearest Neighbors, SVM, multiclass classification

Neural Networks: layers of type: fully-connected, activation, convolutional, normalization,
concat, split, softmax, loss function

CINECA

11/32

i SCAI

SuperComputing Applications and Innovation

Algorithms

B pre-processing || Transformation Analysis Modeling e Decision Making
y LY <
- <
? '.;a: o, & ..(I||||I|. -
e, . . ==

P
(De-)Compression s

cA Linear regression

tatistical moments Naive Bayes Collaborative filtering
Variance matrix svM
QR, SVD, Cholesky Classifier boosting Neural Networks
Apriori
Kmeans
EM GMM

Statistics: min, max, mean, standard deviation, correlation, covariance matrix,
correlation distance matrix, cosine distance matrix

Factorizations: Cholesky, QR, SVD
Dimensionality Reduction: PCA
Classification: Naive Bayes, K-Nearest Neighbors, SVM, multiclass classification

Neural Networks: layers of type: fully-connected, activation, convolutional, normalization,
concat, split, softmax, loss function

Clustering: K-Means, EM for GMM

CINECA

11/32

= SCAI

SuperComputing Applications and Innovation

Processing Modes

CINECA

12/32

i SCAI

SuperComputing Applications and Innovation

Processing Modes

Append

R=F(D,...D.)

A L

Batch processing

All data is stored in the memory of a single node. An Intel DAAL

function is called to process the data all at once.

CINECA

12/32

i SCAI

SuperComputing Applications and Innovation

Processing Modes

Append

R=F(D,...D.)

by D, Dy SiRi

Siv1 = T(5,D)
R.=F(S..)

A L

Batch processing
All data is stored in the memory of a single node. An Intel DAAL
function is called to process the data all at once.

Streaming processing

All data does not fit in memory, or when data is arriving piece by
piece. Intel DAAL can process data chunks individually and
combine all partial results at the finalizing stage.

CINECA

12/32

i SCAI

SuperComputing Applications and Innovation

Processing Modes

Append

R=F(D,...D.)

R=FR,..R)

A L

Batch processing
All data is stored in the memory of a single node. An Intel DAAL
function is called to process the data all at once.

Streaming processing

All data does not fit in memory, or when data is arriving piece by
piece. Intel DAAL can process data chunks individually and
combine all partial results at the finalizing stage.

Distributed processing

Intel DAAL supports a model similar to MapReduce. Slaves in a
cluster process local data (map stage), and then the master process
collects and combines partial results from slaves (reduce stage).

CINECA

12/32

= SCAI

SuperComputing Applications and Innovation

DAAL data flow

Storage Memory Compute

Q: III.

k] (inteD.

."Q“ Ymml xmn

Filtering, Data humogemulmn S| M D
conversions, and blocking
basic statistics ymm2
Samples, n
DAAL DataSource DAAL NumericTable DAAL Algorithm

CINECA

13/32

= SCAI

SuperComputing Applications and Innovation

DAAL data flow

Storage Memory Compute

Q: III.

k] (inteD.

."Q“ 11 Ymml xmn

g o

z Filtering, I' Data homogenization i/ SIM D ymm3
conversions, and blocking
basic statistics ymm2

Samples, n
DAAL DataSource DAAL NumericTable DAAL Algorithm

Data sources:
> file based (CSV, binary)
» database query (ODBC, SQL)
» Python: numpy array interoperability

CINECA

13/32

i SCAI

SuperComputing Applications and Innovation

DAAL data flow
Storage Memory Compute
Q
g @
i —bEH
= Filtering, III . Data hamogemulmn S”VID me3
conversions, and blocking
basic statistics ymm2
Samples, n
DAAL DataSource DAAL NumericTable DAAL Algorithm

Data sources:
> file based (CSV, binary)
» database query (ODBC, SQL)
» Python: numpy array interoperability

Data structures:

> numeric tables
> homogeneous data: dense, sparse, packed, triangular matrix, symmetric matrix
> heterogeneous data: SOA vs AOS

» tensors (n-dimensional matrices)
CINECA

13/32

i SCAI

SuperComputing Applications and Innovation

Official Intel benchmark results (I)

@eD SC16

Skt-Learn* Optimizations With Intel® MKL... And Intel® DAAL

Intel® Distribution for Python* ships Intel® Data

Speed f Scikit-L Benchmarks
P O Learn B mar Analytics Acceleration Library with Python

Intel* Distribution for Python® 2017 Update 1 vs. system Python & NumPy/Scikit-Learn

9
E: interfaces, a.k.a. pyDAAL
x
Effect of Intel MKL
6x . Potential Speedup of Scikit-learn* due to
o optimizations for PyDAAL
4x NUmPy* and SCIPy* o PCA, 1M Samples, 200 Features s
> s0c Effect of DAAL
x o 40x optimizati
g ptimizations for
it 2
Di . I l I l I l . % iz Scikit-Learn*
10x 1 111
ox
System Sklearn Intel SKlearn Intel PyDAAL

Pertormanee

ny
Otherbands

. fnconaity.

[Supercomputing 2016 (SC16), November 13-18, 2016, Salt Lake City]

CINECA

14/32

i SCAI

SuperComputing Applications and Innovation

Official Intel benchmark results (IT)

Distributed Parallelism

PyDAAL Implicit ALS with MpidPy*

* Intel® MPI* accelerates Intel® ox
Distribution for Python (mpi4py*, .
ipypara[[e[*) Scales with MPI, Spark, Dask and
I . ax other distributed computing
* Intel Distribution for Python also engines
supports ax
— PySpark* - Python* interfaces for Spark*,an ,,
engine for large-scale data processing
— Dask* - flexible parallel computing library for **
numerical computing o 1.7x
2nodes 4nodes 8nodes 16 nodes
s on, o 12668 Il DAAL 2017 Gol, Il P11 nercomnct 1 GB Expernet

[Supercomputing 2016 (SC16), November 13-18, 2016, Salt Lake City]

CINECA

15/32

i SCAI

SuperComputing Applicati

pyDAAL installation

Innovation

Requirements:
> Intel Math Kernel Library (MKL): for BLAS and LAPACK
» Integrated Performance Primitives (IPP) for data compression/decompression

» Threading Building Blocks (TBB) for multicore and many-core parallelism

CINECA

16/32

i SCAI

SuperComputing Applicati

pyDAAL installation

Innovation

Requirements:
> Intel Math Kernel Library (MKL): for BLAS and LAPACK
» Integrated Performance Primitives (IPP) for data compression/decompression

» Threading Building Blocks (TBB) for multicore and many-core parallelism

Installation methods:
1. anaconda Intel channel (Linux)
2. Intel distribution (Windows, Linux, OS X)

3. build from source

CINECA

16/32

i SCAI

SuperComputing Applications and Innovation

SVM multiclass classification in 11 steps

import numpy as np

load digits dataset
from sklearn import datasets
digits = datasets.load_digits()

define training set size
n_samples = len(digits.images)
n_training = int(0.9 * n_samples)

data = np.ascontiguousarray(digits.data, dtype=np.double)
labels = np.ascontiguousarray(digits.target.reshape(n_samples, 1),

dtype=np.double)

from daal.data_management import HomogenNumericTable

train_data = HomogenNumericTable(datal:n_trainingl)
train_labels = HomogenNumericTable(labels[:n_trainingl)
test_data = HomogenNumericTable(dataln_training:])

CINECA

17/32

i SCAI

SuperComputing Applications and Innovation

SVM multiclass classification in 11 steps

import numpy as np

load digits dataset
from sklearn import datasets
digits = datasets.load_digits()

define training set size
n_samples = len(digits.images)
n_training = int(0.9 * n_samples)

data = np.ascontiguousarray(digits.data, dtype=np.double)
labels = np.ascontiguousarray(digits.target.reshape(n_samples, 1),

dtype=np.double)

from daal.data_management import HomogenNumericTable

train_data = HomogenNumericTable(datal:n_trainingl)
train_labels = HomogenNumericTable(labels[:n_trainingl)
test_data = HomogenNumericTable(dataln_training:])

1. enjoy sklearn datasets import module

CINECA

17/32

i SCAI

SuperComputing Applications and Innovation

SVM multiclass classification in 11 steps

import numpy as np

load digits dataset
from sklearn import datasets
digits = datasets.load_digits()

define training set size
n_samples = len(digits.images)
n_training = int(0.9 * n_samples)

data = np.ascontiguousarray(digits.data, dtype=np.double)
labels = np.ascontiguousarray(digits.target.reshape(n_samples, 1),
dtype=np.double)

from daal.data_management import HomogenNumericTable

train_data = HomogenNumericTable(datal:n_trainingl)
train_labels = HomogenNumericTable(labels[:n_trainingl)
test_data = HomogenNumericTable(dataln_training:])

1. enjoy sklearn datasets import module
2. require a contiguous array

CINECA

17/32

i SCAI

SuperComputing Applications and Innovation

SVM multiclass classification in 11 steps

import numpy as np

load digits dataset
from sklearn import datasets
digits = datasets.load_digits()

define training set size
n_samples = len(digits.images)
n_training = int(0.9 * n_samples)

data = np.ascontiguousarray(digits.data, dtype=np.double)
labels = np.ascontiguousarray(digits.target.reshape(n_samples, 1),
dtype=np.double)

from daal.data_management import HomogenNumericTable

train_data = HomogenNumericTable(datal:n_trainingl)
train_labels = HomogenNumericTable(labels[:n_trainingl)
test_data = HomogenNumericTable(dataln_training:])

1. enjoy sklearn datasets import module
2. require a contiguous array
3. create instances of HomogenNumericTable
CINECA

17/32

i SCAI

SuperComputing Applications and Innovation

training algorithm setup

from
from
from

from

daal.algorithms.svm import training as svm_training
daal.algorithms.svm import prediction as svm_prediction
daal.algorithms.multi_class_classifier import training as
multiclass_training

daal.algorithms.classifier import training as training params

kernel = rbf.Batch_Float64DefaultDense ()
kernel.parameter.sigma = 0.001

Create two class svm classifier

training alg

twoclass_train_alg = svm_training.Batch_Float64DefaultDense ()
twoclass_train_alg.parameter.kernel = kernel
twoclass_train_alg.parameter.C = 1.0

prediction alg

twoclass_predict_alg = svm_prediction.Batch_Float64DefaultDense ()
twoclass_predict_alg.parameter.kernel = kernel

Create a multiclass classifier object (training)

train_alg = multiclass_training.Batch_Float640neAgainstOne ()
train_alg.parameter.nClasses = 10
train_alg.parameter.training = twoclass_train_alg
train_alg.parameter.prediction = twoclass_predict_alg

CINECA

18/32

i SCAI

SuperComputing Applications and Innovation

training algorithm setup

from daal.algorithms.svm import training as svm_training

from daal.algorithms.svm import prediction as svm_prediction

from daal.algorithms.multi_class_classifier import training as
multiclass_training

from daal.algorithms.classifier import training as training params

kernel = rbf.Batch_Float64DefaultDense ()
kernel.parameter.sigma = 0.001

Create two class svm classifier

training alg

twoclass_train_alg = svm_training.Batch_Float64DefaultDense ()
twoclass_train_alg.parameter.kernel = kernel
twoclass_train_alg.parameter.C = 1.0

prediction alg

twoclass_predict_alg = svm_prediction.Batch_Float64DefaultDense ()
twoclass_predict_alg.parameter.kernel = kernel

Create a multiclass classifier object (training)

train_alg = multiclass_training.Batch_Float640neAgainstOne ()
train_alg.parameter.nClasses = 10
train_alg.parameter.training = twoclass_train_alg
train_alg.parameter.prediction = twoclass_predict_alg

4. define kernel and kernel parameters

CINECA

18/32

i SCAI

SuperComputing Applications and Innovation

training algorithm setup

from daal.algorithms.svm import training as svm_training

from daal.algorithms.svm import prediction as svm_prediction

from daal.algorithms.multi_class_classifier import training as
multiclass_training

from daal.algorithms.classifier import training as training params

kernel = rbf.Batch_Float64DefaultDense ()
kernel.parameter.sigma = 0.001

Create two class svm classifier

training alg

twoclass_train_alg = svm_training.Batch_Float64DefaultDense ()
twoclass_train_alg.parameter.kernel = kernel
twoclass_train_alg.parameter.C = 1.0

prediction alg

twoclass_predict_alg = svm_prediction.Batch_Float64DefaultDense ()
twoclass_predict_alg.parameter.kernel = kernel

Create a multiclass classifier object (training)

train_alg = multiclass_training.Batch_Float640neAgainstOne ()
train_alg.parameter.nClasses = 10
train_alg.parameter.training = twoclass_train_alg
train_alg.parameter.prediction = twoclass_predict_alg

4. define kernel and kernel parameters

5. create two class svm classifier
CINECA

18/32

i SCAI

SuperComputing Applications and Innovation

training algorithm setup

from
from
from

from

daal.algorithms.svm import training as svm_training
daal.algorithms.svm import prediction as svm_prediction
daal.algorithms.multi_class_classifier import training as
multiclass_training

daal.algorithms.classifier import training as training params

kernel = rbf.Batch_Float64DefaultDense ()
kernel.parameter.sigma = 0.001

Create two class svm classifier

training alg

twoclass_train_alg = svm_training.Batch_Float64DefaultDense ()
twoclass_train_alg.parameter.kernel = kernel
twoclass_train_alg.parameter.C = 1.0

prediction alg

twoclass_predict_alg = svm_prediction.Batch_Float64DefaultDense ()
twoclass_predict_alg.parameter.kernel = kernel

Create a multiclass classifier object (training)

train_alg = multiclass_training.Batch_Float640neAgainstOne ()
train_alg.parameter.nClasses = 10
train_alg.parameter.training = twoclass_train_alg
train_alg.parameter.prediction = twoclass_predict_alg

4. define kernel and kernel parameters
5. create two class svm classifier
6. create multi class svm classifier (training)

CINECA

18/32

i SCAI

SuperComputing Applications and Innovation

training phase

Pass training data and labels
train_alg.input.set(training params.data, train_data)
train_alg.input.set(training_params.labels, train_labels)

training
model = train_alg.compute().get(training_params.model)

CINECA

19/32

i SCAI

SuperComputing Applications and Innovation

training phase

Pass training data and labels
train_alg.input.set(training params.data, train_data)
train_alg.input.set(training _params.labels, train_labels)

training
model = train_alg.compute().get(training_params.model)

7. set input data and labels

CINECA

19/32

= SCAI

SuperComputing Applications and Innovation

training phase

Pass training data and labels
train_alg.input.set(training params.data, train_data)
train_alg.input.set(training_params.labels, train_labels)

training
model = train_alg.compute().get(training_params.model)

7. set input data and labels
8. start training and get model

CINECA

19/32

i SCAI

SuperComputing Applications and Innovation

prediction algorithm setup

from daal.algorithms.multi_class_classifier import prediction as
multiclass_prediction

from daal.algorithms.classifier import prediction as
prediction_params

Create a multiclass classifier object (prediction)
predict_alg = multiclass_prediction.
Batch_Float64DefaultDenseOneAgainstOne ()
predict_alg.parameter.nClasses = 10
predict_alg.parameter.training = twoclass_train_alg
predict_alg.parameter.prediction = twoclass_predict_alg

CINECA

20/32

i SCAI

SuperComputing Applications and Innovation

prediction algorithm setup

from daal.algorithms.multi_class_classifier import prediction as
multiclass_prediction

from daal.algorithms.classifier import prediction as
prediction_params

Create a multiclass classifier object (prediction)
predict_alg = multiclass_prediction.
Batch_Float64DefaultDenseOneAgainstOne ()
predict_alg.parameter.nClasses = 10
predict_alg.parameter.training = twoclass_train_alg
predict_alg.parameter.prediction = twoclass_predict_alg

9. create multi class svm classifier (prediction)

CINECA

20/32

i SCAI

SuperComputing Applications and Innovation

prediction phase

Pass a model and input data
predict_alg.input.setModel (prediction_params.model, model)
predict_alg.input.setTable (prediction_params.data, test_data)

Compute and return prediction results
results = predict_alg.compute().get(prediction_params.prediction)

CINECA

21/32

i SCAI

SuperComputing Applications and Innovation

prediction phase

Pass a model and input data
predict_alg.input.setModel (prediction_params.model, model)
predict_alg.input.setTable (prediction_params.data, test_data)

Compute and return prediction results
results = predict_alg.compute().get(prediction_params.prediction)

10. set input model and data

CINECA

21/32

i SCAI

SuperComputing Applications and Innovation

prediction phase

Pass a model and input data
predict_alg.input.setModel (prediction_params.model, model)
predict_alg.input.setTable (prediction_params.data, test_data)

Compute and return prediction results
results = predict_alg.compute().get(prediction_params.prediction)

10. set input model and data

11. start prediction and get labels

CINECA

21/32

i SCAI

SuperComputing Applicati

Benchmark results

and Innovation

» Test description: 1797 samples total (90% training set, 10% test set), 64 features per
sample

> Platform description: Intel Core i5-6300U CPU @ 2.40GHz

sklearn | pyDAAL | speedup
training time [s] 0.161 0.018 8.9
test time [s] 0.017 0.004 43

CINECA

22/32

= SCAI

SuperComputing Applications and Innovation

Advantages and disadvantages

DAAL in general:

CINECA

23/32

i SCAI

SuperComputing Applications and Innovation

Advantages and disadvantages

DAAL in general:

v/ very simple installation/setup

CINECA

23/32

i SCAI

SuperComputing Applications and Innovation

Advantages and disadvantages

DAAL in general:
v/ very simple installation/setup

v wide range of algorithms (both for machine 1. and for deep 1.)

CINECA

23/32

i SCAI

SuperComputing Applications and Innovation

Advantages and disadvantages

DAAL in general:
v/ very simple installation/setup
v wide range of algorithms (both for machine 1. and for deep 1.)

v good support through dedicated intel forum (even for non paid versions)

CINECA

23/32

i SCAI

SuperComputing Applications and Innovation

Advantages and disadvantages

DAAL in general:
v/ very simple installation/setup
v wide range of algorithms (both for machine 1. and for deep 1.)
v good support through dedicated intel forum (even for non paid versions)
v/ DAAL C+ can be called from R and Matlab (see how-to forum posts)

CINECA

23/32

i SCAI

SuperComputing Applications and Innovation

Advantages and disadvantages

DAAL in general:

v

*x NN N

very simple installation/setup

wide range of algorithms (both for machine 1. and for deep 1.)

good support through dedicated intel forum (even for non paid versions)
DAAL C# can be called from R and Matlab (see how-to forum posts)

documentation is sometimes not exhaustive

CINECA

23/32

i SCAI

SuperComputing Applications and Innovation

Advantages and disadvantages

DAAL in general:

v

x X N NN

very simple installation/setup

wide range of algorithms (both for machine 1. and for deep 1.)

good support through dedicated intel forum (even for non paid versions)
DAAL C# can be called from R and Matlab (see how-to forum posts)
documentation is sometimes not exhaustive

examples cover very simple application cases

CINECA

23/32

i SCAI

SuperComputing Applications and Innovation

Advantages and disadvantages

DAAL in general:
v/ very simple installation/setup
wide range of algorithms (both for machine 1. and for deep 1.)
good support through dedicated intel forum (even for non paid versions)
DAAL C# can be called from R and Matlab (see how-to forum posts)

documentation is sometimes not exhaustive

xX X NN SN

examples cover very simple application cases

as a Python user:

v/ comes with Intel Python framework

CINECA

23/32

i SCAI

SuperComputing Applications and Innovation

Advantages and disadvantages

DAAL in general:
v/ very simple installation/setup
wide range of algorithms (both for machine 1. and for deep 1.)
good support through dedicated intel forum (even for non paid versions)
DAAL C# can be called from R and Matlab (see how-to forum posts)

documentation is sometimes not exhaustive

xX X NN SN

examples cover very simple application cases

as a Python user:
v/ comes with Intel Python framework

v/ faster alternative to scikit

CINECA

23/32

i SCAI

SuperComputing Applications and Innovation

Advantages and disadvantages

DAAL in general:
v/ very simple installation/setup
v wide range of algorithms (both for machine 1. and for deep 1.)
v good support through dedicated intel forum (even for non paid versions)
v/ DAAL C+ can be called from R and Matlab (see how-to forum posts)
X documentation is sometimes not exhaustive

X examples cover very simple application cases

as a Python user:
v/ comes with Intel Python framework
v/ faster alternative to scikit

X Python interface still in development phase

> not all neural network layers parameters are accessible/modifiable

CINECA

23/32

i SCAI

SuperComputing Applications and Innovation

NVIDIA Deep Learning Software

CcuDNN TensorRT DeepStream SDK cuBLAS CuSPARSE NCCL

\ g
mE - G
oEE—

Tools and libraries for designing and deploying GPU-accelerated deep learning applications.

CINECA

24/32

i SCAI

SuperComputing Applications and Innovation

NVIDIA Deep Learning Software

TensorRT DeepStream SDK

5 o
3 v |
‘ oo
>

cuBLAS CcuSPARSE NCCL

Tools and libraries for designing and deploying GPU-accelerated deep learning applications.

> Deep Learning Neural Network library (cuDNN) forward and backward convolution,

pooling, normalization, activation layers;

CINECA

24/32

i SCAI

SuperComputing Applications and Innovation

NVIDIA Deep Learning Software

TensorRT DeepStream SDK cuBLAS cuSPARSE NCCL
* [;
: o Gpuse lopuzn

»]
Tools and libraries for designing and deploying GPU-accelerated deep learning applications.

> Deep Learning Neural Network library (cuDNN) forward and backward convolution,
pooling, normalization, activation layers;

» TensorRT optimize, validate and deploy trained neural network for inference to
hyperscale data centers, embedded, or automotive product platforms;

CINECA

24/32

i SCAI

SuperComputing Applications and Innovation

NVIDIA Deep Learning Software

TensorRT DeepStream SDK cuBLAS NCCL
‘Q * [
= [opuz: [epuzi

»]
Tools and libraries for designing and deploying GPU-accelerated deep learning applications.

> Deep Learning Neural Network library (cuDNN) forward and backward convolution,
pooling, normalization, activation layers;

» TensorRT optimize, validate and deploy trained neural network for inference to
hyperscale data centers, embedded, or automotive product platforms;

> DeepStream SDK uses TensorRT to deliver fast INT8 precision inference for real-time
video content analysis, supports also FP16 and FP32 precisions;

CINECA

24/32

= SCAI

SuperComputing Applications and Innovation

NVIDIA Deep Learning Software

CcuDNN TensorRT DeepStream SDK cuBLAS CuSPARS| NCCL

EEEERLY

Tools and libraries for designing and deploying GPU-accelerated deep learning applications.
> Deep Learning Neural Network library (cuDNN) forward and backward convolution,
pooling, normalization, activation layers;

>

» TensorRT optimize, validate and deploy trained neural network for inference to
hyperscale data centers, embedded, or automotive product platforms;

> DeepStream SDK uses TensorRT to deliver fast INT8 precision inference for real-time
video content analysis, supports also FP16 and FP32 precisions;

> Linear Algebra (cuBLAS and cuBLAS-XT) accelerated BLAS subroutines for single
and multi-GPU acceleration;

CINECA

24/32

i SCAI

SuperComputing Applications and Innovation

NVIDIA Deep Learning Software

CcuDNN TensorRT DeepStream SDK cuBLAS CUSPARSE NCCL

| S L]
% 7 [wvoec e === K- (7
W * [E= W A =
S e [Pus) - [GPuzE

o

Tools and libraries for designing and deploying GPU-accelerated deep learning applications.

>

v

Deep Learning Neural Network library (cuDNN) forward and backward convolution,
pooling, normalization, activation layers;

TensorRT optimize, validate and deploy trained neural network for inference to
hyperscale data centers, embedded, or automotive product platforms;

DeepStream SDK uses TensorRT to deliver fast INT8 precision inference for real-time
video content analysis, supports also FP16 and FP32 precisions;

Linear Algebra (cuBLAS and cuBLAS-XT) accelerated BLAS subroutines for single
and multi-GPU acceleration;

Sparse Linear Algebra (cuSPARSE) supports dense, COO, CSR, CSC, ELL/HYB and
Blocked CSR sparse matrix formats, Level 1,2,3 routines, sparse triangular solver, sparse
tridiagonal solver;

CINECA

24/32

i SCAI

SuperComputing Applicati

and Innovation

NVIDIA Deep Learning Software

CcuDNN TensorRT DeepStream SDK cuBLAS CUSPARSE NCCL

| S L]
& 7 | NvoEC § 3 =233 RO I GPUO - 6PUT -
G * (] [R
| | W ‘ R G

Tools and libraries for designing and deploying GPU-accelerated deep learning applications.

>

v

Deep Learning Neural Network library (cuDNN) forward and backward convolution,
pooling, normalization, activation layers;

TensorRT optimize, validate and deploy trained neural network for inference to
hyperscale data centers, embedded, or automotive product platforms;

DeepStream SDK uses TensorRT to deliver fast INT8 precision inference for real-time
video content analysis, supports also FP16 and FP32 precisions;

Linear Algebra (cuBLAS and cuBLAS-XT) accelerated BLAS subroutines for single
and multi-GPU acceleration;

Sparse Linear Algebra (cuSPARSE) supports dense, COO, CSR, CSC, ELL/HYB and
Blocked CSR sparse matrix formats, Level 1,2,3 routines, sparse triangular solver, sparse
tridiagonal solver;

Multi-GPU Communications (NCCL, pronounced ”Nickel””) optimized primitives for
collective multi-GPU communication;

CINECA

24/32

i SCAI

SuperComputing Applications and Innovation

NVIDIA based frameworks

Caffe

B vioson

CNTK

TensorFlow

theano

<
NVIDIA.
CUDA

CINECA

25/32

= SCAI

SuperComputing Applications and Innovation

TensorFlow

» Google Brain’s second generation machine learning system

CINECA

26/32

i SCAI

SuperComputing Applications and Innovation

TensorFlow

» Google Brain’s second generation machine learning system

» computations are expressed as stateful dataflow graphs

CINECA

26/32

i SCAI

SuperComputing Applications and Innovation

TensorFlow

» Google Brain’s second generation machine learning system
» computations are expressed as stateful dataflow graphs

» automatic differentiation capabilities

CINECA

26/32

i SCAI

SuperComputing Applications and Innovation

TensorFlow

» Google Brain’s second generation machine learning system
» computations are expressed as stateful dataflow graphs
» automatic differentiation capabilities

> optimization algorithms: gradient and proximal gradient based

CINECA

26/32

i SCAI

SuperComputing Applications and Innovation
TensorFlow
» Google Brain’s second generation machine learning system

v

v

v

v

computations are expressed as stateful dataflow graphs
automatic differentiation capabilities
optimization algorithms: gradient and proximal gradient based

code portability (CPUs, GPUs, on desktop, server, or mobile computing platforms)

CINECA

26/32

i SCAI

SuperComputing Applications and Innovation

TensorFlow

v

v

v

v

v

Google Brain’s second generation machine learning system

computations are expressed as stateful dataflow graphs

automatic differentiation capabilities

optimization algorithms: gradient and proximal gradient based

code portability (CPUs, GPUs, on desktop, server, or mobile computing platforms)

Python interface is the preferred one (Java and C+also exist)

CINECA

26/32

i SCAI

SuperComputing Applications and Innovation

TensorFlow

» Google Brain’s second generation machine learning system

» computations are expressed as stateful dataflow graphs

» automatic differentiation capabilities

> optimization algorithms: gradient and proximal gradient based

» code portability (CPUs, GPUs, on desktop, server, or mobile computing platforms)
» Python interface is the preferred one (Java and C+also exist)

> installation through: virtualenv, pip, Docker, Anaconda, from sources

CINECA

26/32

i SCAI

SuperComputing Applications and Innovation

Linear regression (I)

import tensorflow as tf
import numpy as np

num_examples = 50
X = np.array([np.linspace(-2,
num_examples)])

x, y =X
x_with_bias = np.array([(1.,

losses = []
training_steps = 50
learning _rate = 0.002

import matplotlib.pyplot as plt

Set up the data with a noisy linear relationship between X and Y.

4, num_examples), np.linspace(-6, 6,

X += np.random.randn(2, num_examples)

a) for a in x]).astype(np.float32)

CINECA

27/32

i SCAI

SuperComputing Applications and Innovation

Linear regression (I)

import tensorflow as tf
import numpy as np

import matplotlib.pyplot as plt

num_examples = 50
X = np.array([np.linspace(-2,
num_examples)])

x, y =X
x_with_bias = np.array([(1.,

Set up the data with a noisy linear relationship between X and Y

4, num_examples), np.linspace(-6, 6,

X += np.random.randn(2, num_examples)

a) for a in x]).astype(np.float32)

losses = []
training_steps = 50
learning _rate = 0.002

{.

8
-75 -50 -25 00 25 50 75

1. generate noisy input data

CINECA

27/32

i SCAI

SuperComputing Applications and Innovation

Linear regression (I)

=0 ¥ =

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

Set up the data with a noisy linear relationship between X and Y.

num_examples

X = np.array([np.linspace(-2, 4, num_examples), np.linspace(-6, 6,
num_examples)])

X += np.random.randn(2,

X

x_with_bias = np.array([(1., a) for a in x]).astype(np.float32)

50

losses

[1

training_steps
learning_rate

= 50
0.002

num_examples)

© {.

8
-75 -50 -25

0.0

1. generate noisy input data

2. set slack variables and fix algorithm parameters

CINECA

27/32

i SCAI

SuperComputing Applications and Innovation

Linear regression (II)

Start of graph description

Set up all the tensors, variables, and operations.

A = tf.constant(x_with_bias)

target = tf.constant (np.transpose([yl]).astype (np.float32))
weights = tf.Variable(tf.random_normal([2, 1], 0, 0.1))

yhat = tf.matmul (A, weights)
yerror = tf.sub(yhat, target)
loss = tf.nn.12_loss(yerror)

update_weights =
tf.train.GradientDescentOptimizer (learning_rate).minimize(loss)

sess = tf.Session()
sess.run(tf.global_variables_initializer())
for _ in range(training_steps):

Repeatedly run the operations, updating variables
sess.run(update_weights)
losses.append(sess.run(loss))

CINECA

28/32

i SCAI

SuperComputing Applications and Innovation

Linear regression (II)

Start of graph description

Set up all the tensors, variables, and operations.

A = tf.constant(x_with_bias)

target = tf.constant (np.transpose([yl]).astype (np.float32))
weights = tf.Variable(tf.random_normal([2, 1], 0, 0.1))

yhat = tf.matmul (A, weights)
yerror = tf.sub(yhat, target)
loss = tf.nn.12_loss(yerror)

update_weights =
tf.train.GradientDescentOptimizer (learning_rate).minimize(loss)

sess = tf.Session()
sess.run(tf.global_variables_initializer())
for _ in range(training_steps):

Repeatedly run the operations, updating variables
sess.run(update_weights)
losses.append(sess.run(loss))

3. define tensorflow constants and variables

CINECA

28/32

i SCAI

SuperComputing Applications and Innovation

Linear regression (II)

Start of graph description

Set up all the tensors, variables, and operations.

A = tf.constant(x_with_bias)

target = tf.constant (np.transpose([yl]).astype (np.float32))
weights = tf.Variable(tf.random_normal([2, 1], 0, 0.1))

yhat = tf.matmul (A, weights)
yerror = tf.sub(yhat, target)
loss = tf.nn.12_loss(yerror)

update_weights =

tf.train.GradientDescentOptimizer (learning_rate).minimize(loss)

sess = tf.Session()
sess.run(tf.global_variables_initializer())
for _ in range(training_steps):

Repeatedly run the operations, updating variables
sess.run(update_weights)
losses.append(sess.run(loss))

3. define tensorflow constants and variables

4. define nodes

CINECA

28/32

i SCAI

SuperComputing Applications and Innovation

Linear regression (II)

Start of graph description

Set up all the tensors, variables, and operations.

A = tf.constant(x_with_bias)

target = tf.constant (np.transpose([yl]).astype (np.float32))
weights = tf.Variable(tf.random_normal([2, 1], 0, 0.1))

yhat = tf.matmul (A, weights)
yerror = tf.sub(yhat, target)
loss = tf.nn.12_loss(yerror)

update_weights =
tf.train.GradientDescentOptimizer (learning_rate).minimize(loss)

sess = tf.Session()
sess.run(tf.global_variables_initializer())
for _ in range(training_steps):

Repeatedly run the operations, updating variables
sess.run(update_weights)
losses.append(sess.run(loss))

3. define tensorflow constants and variables
4. define nodes
5. start evaluation
CINECA

28/32

i SCAI

SuperComputing Applications and Innovation

Linear regression (I1)

Training is done, get the final values
betas = sess.run(weights)
yhat = sess.run(yhat)

CINECA

29/32

i SCAI

SuperComputing Applications and Innovation

Linear regression (I1)

Trai
betas
yhat =

ning is done, get the final values

= sess.run(weights
sess.run(yhat)

)

180

140

4 10 20 30 40 50
Training steps

CINECA

29/32

i SCAI

SuperComputing Applications and Innovation

Benchmark results

» MNIST dataset of handwritten digits:

> training set: 60k samples, 784 features per sample (MNIST)
> test set: 10k samples, 784 features per sample (MNIST)

CINECA

30/32

i SCAI

SuperComputing Applications and Innovation

Benchmark results

» MNIST dataset of handwritten digits:
> training set: 60k samples, 784 features per sample (MNIST)
> test set: 10k samples, 784 features per sample (MNIST)

» Convolutional NN: two conv. layers, two fully conn. layers (plus reg.) ~ 3m variables
convolutional layer convolutional layer

with non-linearities with non-linearities
plus subsampling plus subsampling

fully connected layer fully connected layer

input image
(28 x 28)

(14 x 14 x 32) (7 x 7% 64) (1024) output probabilities

CINECA

30/32

i SCAI

SuperComputing Applications and Innovation

Benchmark results (II)

Optimization method:
» stochastic gradient descent (batch size: 50 examples)
> fixed learning rate
» 2000 iterations

CINECA

31/32

i SCAI

SuperComputing Applications and Innovation

Benchmark results (II)

Optimization method:
» stochastic gradient descent (batch size: 50 examples)
> fixed learning rate
» 2000 iterations
Platforms:
> (1) Intel Core i5-6300U CPU @2.4GHz
> (2) 2 x Intel Xeon 2630 v3 @2.4GHz
> (3) Nvidia Tesla K40

CINECA

31/32

i SCAI

SuperComputing Applications and Innovation

Benchmark results (II)

Optimization method:
» stochastic gradient descent (batch size: 50 examples)
> fixed learning rate
» 2000 iterations
Platforms:
> (1) Intel Core i5-6300U CPU @2.4GHz
> (2) 2 x Intel Xeon 2630 v3 @2.4GHz
> (3) Nvidia Tesla K40

PL(1) | PL(2) | PL(3)
training time [s] | 3307.2 866.1 191.8
test time [s] 119 1.7 1.2

CINECA

31/32

i SCAI

SuperComputing Applications and Innovation

Benchmark results (II)

Optimization method:
» stochastic gradient descent (batch size: 50 examples)
> fixed learning rate
» 2000 iterations
Platforms:
> (1) Intel Core i5-6300U CPU @2.4GHz
> (2) 2 x Intel Xeon 2630 v3 @2.4GHz
> (3) Nvidia Tesla K40

PL(1) | PL(2) | PL(3)
training time [s] | 3307.2 866.1 191.8
test time [s] 119 1.7 1.2

Same code achieves 3.8x when running in 1 GALILEO node
and 17.2x on a single GPU (training phase). J

CINECA

31/32

i SCAI

SuperComputing Applications and Innovation

Advantages and disadvantages

TensorFlow in general:

CINECA

32/32

i SCAI

SuperComputing Applications and Innovation

Advantages and disadvantages

TensorFlow in general:

v/ very simple installation/setup

CINECA

32/32

i SCAI

SuperComputing Applications and Innovation

Advantages and disadvantages

TensorFlow in general:
v/ very simple installation/setup

v/ plenty of tutorials, exhaustive documentation

CINECA

32/32

i SCAI

SuperComputing Applications and Innovation

Advantages and disadvantages

TensorFlow in general:
v/ very simple installation/setup
v/ plenty of tutorials, exhaustive documentation

v/ tools for exporting (partially) trained graphs (see MetaGraph)

CINECA

32/32

i SCAI

SuperComputing Applications and Innovation

Advantages and disadvantages

TensorFlow in general:
v/ very simple installation/setup
v/ plenty of tutorials, exhaustive documentation
v/ tools for exporting (partially) trained graphs (see MetaGraph)

v/ debugger, graph flow visualization

CINECA

32/32

i SCAI

SuperComputing Applications and Innovation

Advantages and disadvantages

TensorFlow in general:
v/ very simple installation/setup
v/ plenty of tutorials, exhaustive documentation
v/ tools for exporting (partially) trained graphs (see MetaGraph)

v/ debugger, graph flow visualization

as a Python user:

v/ “Python API is the most complete and the easiest to use”

CINECA

32/32

i SCAI

SuperComputing Applications and Innovation

Advantages and disadvantages

TensorFlow in general:
v/ very simple installation/setup
v/ plenty of tutorials, exhaustive documentation
v/ tools for exporting (partially) trained graphs (see MetaGraph)

v/ debugger, graph flow visualization

as a Python user:
v/ “Python API is the most complete and the easiest to use”

v/~ numpy interoperability

CINECA

32/32

i SCAI

SuperComputing Applications and Innovation

Advantages and disadvantages

TensorFlow in general:
v/ very simple installation/setup
v/ plenty of tutorials, exhaustive documentation
v/ tools for exporting (partially) trained graphs (see MetaGraph)

v/ debugger, graph flow visualization

as a Python user:
v/ “Python API is the most complete and the easiest to use”
v/~ numpy interoperability
X lower level than pyDAAL (?)

CINECA

32/32

	Machine Learning Background
	Efficient machine learning with Python?
	Intel Data Analytics Acceleration Library (DAAL)
	NVIDIA-based solutions

