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Learning Algorithm

Definition of Learning Algorithm [Mitchell 1997]1

A computer program is said to learn from experience E with respect to some class of tasks T
and performance measure P, if its performance at tasks in T, as measured by P, improves with
experience E.

So we need to identify:

I the class of tasks T
I the measure of performance P
I the source of experience E
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Example: checkers game

I task class T: playing checkers
I performance measure P: fraction of games won

against opponents
I training experience E: playing practice games

against itself
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Example: handwritten characters recognition

I task class T: recognizing and classifying
handwritten characters within images

I performance measure P: fraction of characters
correctly classified

I training experience E: a database of handwritten
characters with given classifications
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Example: supervised learning

I training experience E: a number of traininig examples E = {z1,z2,z3 . . .}
each example is a (input,target) pair: Zi = (Xi,Yi)

I task class T: a decision function f able to predict unknown Y from known X
I performance measure P: a loss function L to measure the (non-symmetric) distance

L(f ,Zi) = d (f (Xi) ,Yi)

Examples:
I regression

I X is a real-valued scalar or vector
I Y is a scalar real value
I f is able to predict Yi value from Xi
I L is usually the euclidean norm

I classification
I X is a real-valued scalar or vector (features)
I Y is an integer (label) corresponding to a class index
I f is able to provide the probability of Xi being in class Yi
I L is usually the negative log-likelihood
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Machine Learning

I Application of computer-enabled algorithm to a data set to find a pattern
I Wide range of tasks: segmentation. classification, clustering, supervised/unsupervised

learning
I Various algorithms: association rules, decision trees, SVM
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Deep Learning

I Application of an Artificial Neural Network to a data set to find a pattern
I Multiple hidden layers (to mimic human brain processes associated to vision/hearing)
I Big data sets and relevant number of variables
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Framework desired features

We are interested in:
I classical machine learning algorithms
I deep learning approach (especially convolutional neural network)

I high level language (Python)
I little/no programming effort
I integration with existing pipelines
I multi-core CPU and/or many-core GPU support
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Intel Data Analytics Acceleration Library (DAAL)

I Functions for machine learning, deep learning, data analytics
I Optimized for Intel architecture devices (processors, coprocessors, and compatibles)
I C++, Java and Python APIs
I Connectors to popular data sources including Spark and Hadoop
I Open source version under Apache 2.0 license
I Paid versions include premium support.
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Algorithms

Statistics: min, max, mean, standard deviation, correlation, covariance matrix,
correlation distance matrix, cosine distance matrix

Factorizations: Cholesky, QR, SVD

Dimensionality Reduction: PCA

Classification: Naive Bayes, K-Nearest Neighbors, SVM, multiclass classification

Neural Networks: layers of type: fully-connected, activation, convolutional, normalization,
concat, split, softmax, loss function

Clustering: K-Means, EM for GMM
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Processing Modes

Batch processing
All data is stored in the memory of a single node. An Intel DAAL
function is called to process the data all at once.

Streaming processing
All data does not fit in memory, or when data is arriving piece by
piece. Intel DAAL can process data chunks individually and
combine all partial results at the finalizing stage.

Distributed processing
Intel DAAL supports a model similar to MapReduce. Slaves in a
cluster process local data (map stage), and then the master process
collects and combines partial results from slaves (reduce stage).
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DAAL data flow

Data sources:
I file based (CSV, binary)
I database query (ODBC, SQL)
I Python: numpy array interoperability

Data structures:
I numeric tables

I homogeneous data: dense, sparse, packed, triangular matrix, symmetric matrix
I heterogeneous data: SOA vs AOS

I tensors (n-dimensional matrices)
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Official Intel benchmark results (I)

Skt-Learn* Optimizations With Intel® MKL... And Intel® DAAL
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neighbors

Fast K-means GLM GLM net LASSO Lasso path Least angle

regression,

OpenMP

Non-negative

matrix

factorization

Regression by

SGD

Sampling

without

replacement

SVD

Speedups of Scikit-Learn Benchmarks
Intel® Distribution for Python* 2017 Update 1 vs. system Python & NumPy/Scikit-Learn

System info: 32x Intel® Xeon® CPU E5-2698 v3 @ 2.30GHz, disabled HT, 64GB RAM;  Intel® Distribution for Python* 2017 Gold; Intel® MKL 2017.0.0; Ubuntu 14.04.4 LTS; Numpy 1.11.1; scikit-learn 0.17.1. 

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.  Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions.  Any 

change to any of those factors may cause the results to vary.  You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.   * Other brands 

and names are the property of their respective owners.   Benchmark Source: Intel Corporation

K��]u]Ì��]}v�E}�]��W�/v��o[���}u�]o����u�Ç�}��u�Ç�v}��}��]u]Ì���}��Z����u����P����(}��v}v-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not 

guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel 

microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.  Notice revision #20110804 . 

Effect of Intel MKL 

optimizations for 

NumPy* and SciPy*

1 1.11
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Potential Speedup of Scikit-learn* due to 

PyDAAL
PCA, 1M Samples, 200 Features

Effect of DAAL 

optimizations for 

Scikit-Learn*

Intel® Distribution for Python* ships Intel® Data 

Analytics Acceleration Library with Python 

interfaces, a.k.a. pyDAAL

[Supercomputing 2016 (SC16), November 13-18, 2016, Salt Lake City]

14/32



Official Intel benchmark results (II)

Distributed Parallelism

� Intel® MPI* accelerates Intel® 
Distribution for Python (mpi4py*, 
ipyparallel*)

� Intel Distribution for Python also 
supports
± PySpark* - Python* interfaces for Spark*, an 

engine for large-scale data processing

± Dask* - flexible parallel computing library for 
numerical computing 1.7x 2.2x 3.0x 5.3x

0x

1x

2x

3x

4x

5x

6x

2 nodes 4 nodes 8 nodes 16 nodes

PyDAAL Implicit ALS with Mpi4Py*

Scales with MPI, Spark, Dask and 

other distributed computing 

engines

Configuration Info: Hardware (each node): Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30GHz, 2x18 cores, HT is ON, RAM 128GB; Versions: Oracle Linux Server 6.6, Intel® DAAL 2017 Gold, Intel® MPI 5.1.3; Interconnect: 1 GB Ethernet.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.  Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions.  

Any change to any of those factors may cause the results to vary.  You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.   * 

Other brands and names are the property of their respective owners.   Benchmark Source: Intel Corporation

K��]u]Ì��]}v�E}�]��W�/v��o[���}u�]o����u�Ç�}��u�Ç�v}��}��]u]Ì���}��Z����u����P����(}��v}v-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel 

does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to 

Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.  Notice revision #20110804 . 

[Supercomputing 2016 (SC16), November 13-18, 2016, Salt Lake City]
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pyDAAL installation

Requirements:
I Intel Math Kernel Library (MKL): for BLAS and LAPACK
I Integrated Performance Primitives (IPP) for data compression/decompression
I Threading Building Blocks (TBB) for multicore and many-core parallelism

Installation methods:

1. anaconda Intel channel (Linux)

2. Intel distribution (Windows, Linux, OS X)

3. build from source
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SVM multiclass classification in 11 steps

import numpy as np

# load digits dataset
from sklearn import datasets
digits = datasets.load_digits ()

# define training set size
n_samples = len(digits.images)
n_training = int( 0.9 * n_samples )

data = np.ascontiguousarray( digits.data , dtype=np.double )
labels = np.ascontiguousarray( digits.target.reshape(n_samples , 1),

dtype=np.double )

from daal.data_management import HomogenNumericTable

train_data = HomogenNumericTable( data[: n_training] )
train_labels = HomogenNumericTable( labels [: n_training] )

test_data = HomogenNumericTable( data[n_training :] )

1. enjoy sklearn datasets import module
2. require a contiguous array
3. create instances of HomogenNumericTable
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training algorithm setup

from daal.algorithms.svm import training as svm_training
from daal.algorithms.svm import prediction as svm_prediction
from daal.algorithms.multi_class_classifier import training as

multiclass_training
from daal.algorithms.classifier import training as training_params

kernel = rbf.Batch_Float64DefaultDense ()
kernel.parameter.sigma = 0.001

# Create two class svm classifier
# training alg
twoclass_train_alg = svm_training.Batch_Float64DefaultDense ()
twoclass_train_alg.parameter.kernel = kernel
twoclass_train_alg.parameter.C = 1.0
# prediction alg
twoclass_predict_alg = svm_prediction.Batch_Float64DefaultDense ()
twoclass_predict_alg.parameter.kernel = kernel

# Create a multiclass classifier object (training)
train_alg = multiclass_training.Batch_Float64OneAgainstOne ()
train_alg.parameter.nClasses = 10
train_alg.parameter.training = twoclass_train_alg
train_alg.parameter.prediction = twoclass_predict_alg

4. define kernel and kernel parameters
5. create two class svm classifier
6. create multi class svm classifier (training)
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training phase

# Pass training data and labels
train_alg.input.set(training_params.data , train_data)
train_alg.input.set(training_params.labels , train_labels)

# training
model = train_alg.compute ().get(training_params.model)

7. set input data and labels

8. start training and get model
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prediction algorithm setup

from daal.algorithms.multi_class_classifier import prediction as
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prediction phase

# Pass a model and input data
predict_alg.input.setModel(prediction_params.model , model)
predict_alg.input.setTable(prediction_params.data , test_data)

# Compute and return prediction results
results = predict_alg.compute ().get(prediction_params.prediction)

10. set input model and data

11. start prediction and get labels
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Benchmark results

I Test description: 1797 samples total (90% training set, 10% test set), 64 features per
sample

I Platform description: Intel Core i5-6300U CPU @ 2.40GHz

sklearn pyDAAL speedup
training time [s] 0.161 0.018 8.9
test time [s] 0.017 0.004 4.3
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Advantages and disadvantages

DAAL in general:

3 very simple installation/setup

3 wide range of algorithms (both for machine l. and for deep l.)

3 good support through dedicated intel forum (even for non paid versions)

3 DAAL C++ can be called from R and Matlab (see how-to forum posts)

7 documentation is sometimes not exhaustive

7 examples cover very simple application cases

as a Python user:

3 comes with Intel Python framework

3 faster alternative to scikit
7 Python interface still in development phase

I not all neural network layers parameters are accessible/modifiable
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NVIDIA Deep Learning Software

Tools and libraries for designing and deploying GPU-accelerated deep learning applications.

I Deep Learning Neural Network library (cuDNN) forward and backward convolution,
pooling, normalization, activation layers;

I TensorRT optimize, validate and deploy trained neural network for inference to
hyperscale data centers, embedded, or automotive product platforms;

I DeepStream SDK uses TensorRT to deliver fast INT8 precision inference for real-time
video content analysis, supports also FP16 and FP32 precisions;

I Linear Algebra (cuBLAS and cuBLAS-XT) accelerated BLAS subroutines for single
and multi-GPU acceleration;

I Sparse Linear Algebra (cuSPARSE) supports dense, COO, CSR, CSC, ELL/HYB and
Blocked CSR sparse matrix formats, Level 1,2,3 routines, sparse triangular solver, sparse
tridiagonal solver;

I Multi-GPU Communications (NCCL, pronounced ”Nickel”) optimized primitives for
collective multi-GPU communication;
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NVIDIA based frameworks
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TensorFlow

I Google Brain’s second generation machine learning system

I computations are expressed as stateful dataflow graphs
I automatic differentiation capabilities
I optimization algorithms: gradient and proximal gradient based
I code portability (CPUs, GPUs, on desktop, server, or mobile computing platforms)
I Python interface is the preferred one (Java and C++also exist)
I installation through: virtualenv, pip, Docker, Anaconda, from sources
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Linear regression (I)

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

# Set up the data with a noisy linear relationship between X and Y.
num_examples = 50
X = np.array([np.linspace(-2, 4, num_examples), np.linspace(-6, 6,

num_examples)])
X += np.random.randn(2, num_examples)
x, y = X
x_with_bias = np.array ([(1., a) for a in x]).astype(np.float32)

losses = []
training_steps = 50
learning_rate = 0.002
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1. generate noisy input data

2. set slack variables and fix algorithm parameters
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Linear regression (II)

# Start of graph description
# Set up all the tensors , variables , and operations.
A = tf.constant(x_with_bias)
target = tf.constant(np.transpose ([y]).astype(np.float32))
weights = tf.Variable(tf.random_normal ([2, 1], 0, 0.1))

yhat = tf.matmul(A, weights)
yerror = tf.sub(yhat , target)
loss = tf.nn.l2_loss(yerror)

update_weights =
tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)

sess = tf.Session ()
sess.run( tf.global_variables_initializer () )
for _ in range(training_steps):

# Repeatedly run the operations , updating variables
sess.run( update_weights )
losses.append( sess.run( loss ) )

3. define tensorflow constants and variables

4. define nodes

5. start evaluation
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Linear regression (III)

# Training is done , get the final values
betas = sess.run( weights )
yhat = sess.run( yhat )
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Benchmark results

I MNIST dataset of handwritten digits:
I training set: 60k samples, 784 features per sample (MNIST)
I test set: 10k samples, 784 features per sample (MNIST)

I Convolutional NN: two conv. layers, two fully conn. layers (plus reg.) ≈ 3m variables

input image
(28× 28)

convolutional layer
with non-linearities
plus subsampling

(14× 14× 32)

convolutional layer
with non-linearities
plus subsampling

(7× 7× 64)

fully connected layer

(1024)

fully connected layer

output probabilities
(10)

1
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I training set: 60k samples, 784 features per sample (MNIST)
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Benchmark results (II)

Optimization method:
I stochastic gradient descent (batch size: 50 examples)
I fixed learning rate
I 2000 iterations

Platforms:
I (1) Intel Core i5-6300U CPU @2.4GHz
I (2) 2 x Intel Xeon 2630 v3 @2.4GHz
I (3) Nvidia Tesla K40

PL (1) PL (2) PL (3)
training time [s] 3307.2 866.1 191.8
test time [s] 11.9 1.7 1.2

Same code achieves 3.8x when running in 1 GALILEO node
and 17.2x on a single GPU (training phase).
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Advantages and disadvantages

TensorFlow in general:

3 very simple installation/setup

3 plenty of tutorials, exhaustive documentation

3 tools for exporting (partially) trained graphs (see MetaGraph)

3 debugger, graph flow visualization

as a Python user:

3 “Python API is the most complete and the easiest to use”

3 numpy interoperability

7 lower level than pyDAAL (?)
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