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A computer program is said to learn from experience E with respect to some class of tasks T
and performance measure P, if its performance at tasks in T, as measured by P, improves with
experience E.
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Example: handwritten characters recognition

» task class T: recognizing and classifying
handwritten characters within images

> performance measure P: fraction of characters
correctly classified

> training experience E: a database of handwritten
characters with given classifications
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Example: supervised learning

> training experience E: a number of traininig examples £ = {z1,22,23... }
each example is a (input,target) pair: Z; = (X;,Y;)

» task class T: a decision function f able to predict unknown Y from known X

> performance measure P: a loss function L to measure the (non-symmetric) distance

L(f,Z)=d(f(Xi),Y:)

Examples:
> regression
> X is areal-valued scalar or vector
> Y is a scalar real value

> fis able to predict ¥; value from X;
> L is usually the euclidean norm

» classification
> X is a real-valued scalar or vector (features)
> Y is an integer (label) corresponding to a class index

> fis able to provide the probability of X; being in class Y;
> L is usually the negative log-likelihood
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Machine learning Grouping of objects

algorithm .
Fﬂsed on some common
} I clnmn.' iisnic.«

Training set

Predictive model

New Data }
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> Application of computer-enabled algorithm to a data set to find a pattern

» Wide range of tasks: segmentation. classification, clustering, supervised/unsupervised
learning

» Various algorithms: association rules, decision trees, SVM
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Deep Learning

Linear Object
Convolutions Pooling Convs  Classifier Categories / Positions

F4 maps

S2 feature maps

C1 feature maps C3 feature maps

> Application of an Artificial Neural Network to a data set to find a pattern
» Multiple hidden layers (to mimic human brain processes associated to vision/hearing)

» Big data sets and relevant number of variables
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Framework desired features

‘We are interested in:

>

>

>

>

classical machine learning algorithms

deep learning approach (especially convolutional neural network)
high level language (Python)

little/no programming effort

integration with existing pipelines

multi-core CPU and/or many-core GPU support
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Business

Scientific + Decompression  + Aggregation
Engineering « Filtering + Dimension
Web/Soclal » Normalization Reduction

~ Hypathesis
testing

- Model
errors

» Functions for machine learning, deep learning, data analytics

» Optimized for Intel architecture devices (processors, coprocessors, and compatibles)

» C++, Java and Python APIs

» Connectors to popular data sources including Spark and Hadoop

» Open source version under Apache 2.0 license

» Paid versions include premium support.

Decision Making

- Forecasting
» Decision Trees
. Etc
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tatistical moments Naive Bayes Collaborative filtering
Variance matrix svM
QR, SVD, Cholesky Classifier boosting Neural Networks
Apriori
Kmeans
EM GMM

Statistics: min, max, mean, standard deviation, correlation, covariance matrix,
correlation distance matrix, cosine distance matrix

Factorizations: Cholesky, QR, SVD
Dimensionality Reduction: PCA
Classification: Naive Bayes, K-Nearest Neighbors, SVM, multiclass classification

Neural Networks: layers of type: fully-connected, activation, convolutional, normalization,
concat, split, softmax, loss function

Clustering: K-Means, EM for GMM
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Batch processing
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Processing Modes

Append

R=F(D,...D.)

R=FR,..R)

A L

Batch processing
All data is stored in the memory of a single node. An Intel DAAL
function is called to process the data all at once.

Streaming processing

All data does not fit in memory, or when data is arriving piece by
piece. Intel DAAL can process data chunks individually and
combine all partial results at the finalizing stage.

Distributed processing

Intel DAAL supports a model similar to MapReduce. Slaves in a
cluster process local data (map stage), and then the master process
collects and combines partial results from slaves (reduce stage).
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DAAL data flow
Storage Memory Compute
Q
g @
i —bEH
= Filtering, III . Data hamogemulmn S”VID me3
conversions, and blocking
basic statistics ymm2
Samples, n
DAAL DataSource DAAL NumericTable DAAL Algorithm

Data sources:
> file based (CSV, binary)
» database query (ODBC, SQL)
» Python: numpy array interoperability

Data structures:

> numeric tables
> homogeneous data: dense, sparse, packed, triangular matrix, symmetric matrix
> heterogeneous data: SOA vs AOS

» tensors (n-dimensional matrices)
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Official Intel benchmark results (I)

@eD SC16

Skt-Learn* Optimizations With Intel® MKL... And Intel® DAAL

Intel® Distribution for Python* ships Intel® Data

Speed f Scikit-L Benchmarks . . . .
P O Learn B mar Analytics Acceleration Library with Python

Intel* Distribution for Python® 2017 Update 1 vs. system Python & NumPy/Scikit-Learn

9
E: interfaces, a.k.a. pyDAAL
x
Effect of Intel MKL
6x . Potential Speedup of Scikit-learn* due to
o optimizations for PyDAAL
4x NUmPy* and SCIPy* o PCA, 1M Samples, 200 Features s
> s0c Effect of DAAL
x o 40x optimizati
g ptimizations for
it 2
Di . I l I l I l . % iz Scikit-Learn*
10x 1 111
ox
System Sklearn Intel SKlearn Intel PyDAAL

Pertormanee

ny
Otherbands

. fnconaity.

[Supercomputing 2016 (SC16), November 13-18, 2016, Salt Lake City]
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Official Intel benchmark results (IT)

Distributed Parallelism

PyDAAL Implicit ALS with MpidPy*

* Intel® MPI* accelerates Intel® ox
Distribution for Python (mpi4py*, .
ipypara[[e[*) Scales with MPI, Spark, Dask and
I . ax other distributed computing
* Intel Distribution for Python also engines
supports ax
— PySpark* - Python* interfaces for Spark*,an  ,,
engine for large-scale data processing
— Dask* - flexible parallel computing library for **
numerical computing o 1.7x
2nodes 4nodes 8nodes 16 nodes
s on, o 12668 Il DAAL 2017 Gol, Il P11 nercomnct 1 GB Expernet

[Supercomputing 2016 (SC16), November 13-18, 2016, Salt Lake City]
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> Intel Math Kernel Library (MKL): for BLAS and LAPACK
» Integrated Performance Primitives (IPP) for data compression/decompression
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CINECA

16/32



i SCAI

SuperComputing Applicati

pyDAAL installation

Innovation

Requirements:
> Intel Math Kernel Library (MKL): for BLAS and LAPACK
» Integrated Performance Primitives (IPP) for data compression/decompression

» Threading Building Blocks (TBB) for multicore and many-core parallelism

Installation methods:
1. anaconda Intel channel (Linux)
2. Intel distribution (Windows, Linux, OS X)

3. build from source
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SVM multiclass classification in 11 steps

import numpy as np

# load digits dataset
from sklearn import datasets
digits = datasets.load_digits()

# define training set size
n_samples = len(digits.images)
n_training = int( 0.9 * n_samples )

data = np.ascontiguousarray( digits.data, dtype=np.double )
labels = np.ascontiguousarray( digits.target.reshape(n_samples, 1),

dtype=np.double )

from daal.data_management import HomogenNumericTable

train_data = HomogenNumericTable( datal:n_trainingl )
train_labels = HomogenNumericTable( labels[:n_trainingl )
test_data = HomogenNumericTable( dataln_training:] )
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SVM multiclass classification in 11 steps

import numpy as np

# load digits dataset
from sklearn import datasets
digits = datasets.load_digits()

# define training set size
n_samples = len(digits.images)
n_training = int( 0.9 * n_samples )

data = np.ascontiguousarray( digits.data, dtype=np.double )
labels = np.ascontiguousarray( digits.target.reshape(n_samples, 1),
dtype=np.double )

from daal.data_management import HomogenNumericTable

train_data = HomogenNumericTable( datal:n_trainingl )
train_labels = HomogenNumericTable( labels[:n_trainingl )
test_data = HomogenNumericTable( dataln_training:] )

1. enjoy sklearn datasets import module
2. require a contiguous array
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SVM multiclass classification in 11 steps

import numpy as np

# load digits dataset
from sklearn import datasets
digits = datasets.load_digits()

# define training set size
n_samples = len(digits.images)
n_training = int( 0.9 * n_samples )

data = np.ascontiguousarray( digits.data, dtype=np.double )
labels = np.ascontiguousarray( digits.target.reshape(n_samples, 1),
dtype=np.double )

from daal.data_management import HomogenNumericTable

train_data = HomogenNumericTable( datal:n_trainingl )
train_labels = HomogenNumericTable( labels[:n_trainingl )
test_data = HomogenNumericTable( dataln_training:] )

1. enjoy sklearn datasets import module
2. require a contiguous array
3. create instances of HomogenNumericTable
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training algorithm setup

from
from
from

from

daal.algorithms.svm import training as svm_training
daal.algorithms.svm import prediction as svm_prediction
daal.algorithms.multi_class_classifier import training as
multiclass_training

daal.algorithms.classifier import training as training params

kernel = rbf.Batch_Float64DefaultDense ()
kernel.parameter.sigma = 0.001

# Create two class svm classifier

# training alg

twoclass_train_alg = svm_training.Batch_Float64DefaultDense ()
twoclass_train_alg.parameter.kernel = kernel
twoclass_train_alg.parameter.C = 1.0

# prediction alg

twoclass_predict_alg = svm_prediction.Batch_Float64DefaultDense ()
twoclass_predict_alg.parameter.kernel = kernel

# Create a multiclass classifier object (training)

train_alg = multiclass_training.Batch_Float640neAgainstOne ()
train_alg.parameter.nClasses = 10
train_alg.parameter.training = twoclass_train_alg
train_alg.parameter.prediction = twoclass_predict_alg
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from daal.algorithms.svm import training as svm_training

from daal.algorithms.svm import prediction as svm_prediction

from daal.algorithms.multi_class_classifier import training as
multiclass_training

from daal.algorithms.classifier import training as training params
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training phase

# Pass training data and labels
train_alg.input.set(training params.data, train_data)
train_alg.input.set(training_params.labels, train_labels)

# training
model = train_alg.compute().get(training_params.model)
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prediction algorithm setup

from daal.algorithms.multi_class_classifier import prediction as
multiclass_prediction

from daal.algorithms.classifier import prediction as
prediction_params

# Create a multiclass classifier object (prediction)
predict_alg = multiclass_prediction.
Batch_Float64DefaultDenseOneAgainstOne ()
predict_alg.parameter.nClasses = 10
predict_alg.parameter.training = twoclass_train_alg
predict_alg.parameter.prediction = twoclass_predict_alg
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prediction algorithm setup

from daal.algorithms.multi_class_classifier import prediction as
multiclass_prediction

from daal.algorithms.classifier import prediction as
prediction_params

# Create a multiclass classifier object (prediction)
predict_alg = multiclass_prediction.
Batch_Float64DefaultDenseOneAgainstOne ()
predict_alg.parameter.nClasses = 10
predict_alg.parameter.training = twoclass_train_alg
predict_alg.parameter.prediction = twoclass_predict_alg

9. create multi class svm classifier (prediction)
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prediction phase

# Pass a model and input data
predict_alg.input.setModel (prediction_params.model, model)
predict_alg.input.setTable (prediction_params.data, test_data)

# Compute and return prediction results
results = predict_alg.compute().get(prediction_params.prediction)
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» Test description: 1797 samples total (90% training set, 10% test set), 64 features per
sample

> Platform description: Intel Core i5-6300U CPU @ 2.40GHz

sklearn | pyDAAL | speedup
training time [s] 0.161 0.018 8.9
test time [s] 0.017 0.004 43
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Advantages and disadvantages

DAAL in general:
v/ very simple installation/setup
v wide range of algorithms (both for machine 1. and for deep 1.)
v good support through dedicated intel forum (even for non paid versions)
v/ DAAL C+ can be called from R and Matlab (see how-to forum posts)
X documentation is sometimes not exhaustive

X examples cover very simple application cases

as a Python user:
v/ comes with Intel Python framework
v/ faster alternative to scikit

X Python interface still in development phase

> not all neural network layers parameters are accessible/modifiable
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NVIDIA Deep Learning Software

CcuDNN TensorRT DeepStream SDK cuBLAS CuSPARSE NCCL
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Tools and libraries for designing and deploying GPU-accelerated deep learning applications.
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» TensorRT optimize, validate and deploy trained neural network for inference to
hyperscale data centers, embedded, or automotive product platforms;

> DeepStream SDK uses TensorRT to deliver fast INT8 precision inference for real-time
video content analysis, supports also FP16 and FP32 precisions;
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Tools and libraries for designing and deploying GPU-accelerated deep learning applications.

>

v

Deep Learning Neural Network library (cuDNN) forward and backward convolution,
pooling, normalization, activation layers;

TensorRT optimize, validate and deploy trained neural network for inference to
hyperscale data centers, embedded, or automotive product platforms;

DeepStream SDK uses TensorRT to deliver fast INT8 precision inference for real-time
video content analysis, supports also FP16 and FP32 precisions;

Linear Algebra (cuBLAS and cuBLAS-XT) accelerated BLAS subroutines for single
and multi-GPU acceleration;

Sparse Linear Algebra (cuSPARSE) supports dense, COO, CSR, CSC, ELL/HYB and
Blocked CSR sparse matrix formats, Level 1,2,3 routines, sparse triangular solver, sparse
tridiagonal solver;
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Tools and libraries for designing and deploying GPU-accelerated deep learning applications.

>

v

Deep Learning Neural Network library (cuDNN) forward and backward convolution,
pooling, normalization, activation layers;

TensorRT optimize, validate and deploy trained neural network for inference to
hyperscale data centers, embedded, or automotive product platforms;

DeepStream SDK uses TensorRT to deliver fast INT8 precision inference for real-time
video content analysis, supports also FP16 and FP32 precisions;

Linear Algebra (cuBLAS and cuBLAS-XT) accelerated BLAS subroutines for single
and multi-GPU acceleration;

Sparse Linear Algebra (cuSPARSE) supports dense, COO, CSR, CSC, ELL/HYB and
Blocked CSR sparse matrix formats, Level 1,2,3 routines, sparse triangular solver, sparse
tridiagonal solver;

Multi-GPU Communications (NCCL, pronounced ”Nickel””) optimized primitives for
collective multi-GPU communication;
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NVIDIA based frameworks

Caffe

B vioson

CNTK

TensorFlow

theano

<
NVIDIA.
CUDA
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TensorFlow

» Google Brain’s second generation machine learning system
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TensorFlow

» Google Brain’s second generation machine learning system

» computations are expressed as stateful dataflow graphs

» automatic differentiation capabilities

> optimization algorithms: gradient and proximal gradient based

» code portability (CPUs, GPUs, on desktop, server, or mobile computing platforms)
» Python interface is the preferred one (Java and C+also exist)

> installation through: virtualenv, pip, Docker, Anaconda, from sources
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Linear regression (I)

import tensorflow as tf
import numpy as np

num_examples = 50
X = np.array([np.linspace(-2,
num_examples)])

x, y =X
x_with_bias = np.array([(1.,

losses = []
training_steps = 50
learning _rate = 0.002

import matplotlib.pyplot as plt

# Set up the data with a noisy linear relationship between X and Y.

4, num_examples), np.linspace(-6, 6,

X += np.random.randn(2, num_examples)

a) for a in x]).astype(np.float32)
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Linear regression (I)

=0 ¥ =

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

# Set up the data with a noisy linear relationship between X and Y.

num_examples

X = np.array([np.linspace(-2, 4, num_examples), np.linspace(-6, 6,
num_examples)])

X += np.random.randn(2,

X

x_with_bias = np.array([(1., a) for a in x]).astype(np.float32)

50

losses

[1

training_steps
learning_rate

= 50
0.002

num_examples)

© {.

8
-75 -50 -25

0.0

1. generate noisy input data

2. set slack variables and fix algorithm parameters
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Linear regression (II)

# Start of graph description

# Set up all the tensors, variables, and operations.

A = tf.constant(x_with_bias)

target = tf.constant (np.transpose([yl]).astype (np.float32))
weights = tf.Variable(tf.random_normal([2, 1], 0, 0.1))

yhat = tf.matmul (A, weights)
yerror = tf.sub(yhat, target)
loss = tf.nn.12_loss(yerror)

update_weights =
tf.train.GradientDescentOptimizer (learning_rate).minimize(loss)

sess = tf.Session()
sess.run( tf.global_variables_initializer() )
for _ in range(training_steps):

# Repeatedly run the operations, updating variables
sess.run( update_weights )
losses.append( sess.run( loss ) )
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Linear regression (II)

# Start of graph description

# Set up all the tensors, variables, and operations.

A = tf.constant(x_with_bias)

target = tf.constant (np.transpose([yl]).astype (np.float32))
weights = tf.Variable(tf.random_normal([2, 1], 0, 0.1))

yhat = tf.matmul (A, weights)
yerror = tf.sub(yhat, target)
loss = tf.nn.12_loss(yerror)

update_weights =
tf.train.GradientDescentOptimizer (learning_rate).minimize(loss)

sess = tf.Session()
sess.run( tf.global_variables_initializer() )
for _ in range(training_steps):

# Repeatedly run the operations, updating variables
sess.run( update_weights )
losses.append( sess.run( loss ) )

3. define tensorflow constants and variables
4. define nodes
5. start evaluation
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Linear regression (I1)

# Training is done, get the final values
betas = sess.run( weights )
yhat = sess.run( yhat )
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Linear regression (I1)

# Trai
betas
yhat =

ning is done, get the final values

= sess.run( weights
sess.run( yhat )
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Benchmark results

» MNIST dataset of handwritten digits:

> training set: 60k samples, 784 features per sample (MNIST)
> test set: 10k samples, 784 features per sample (MNIST)
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Benchmark results

» MNIST dataset of handwritten digits:
> training set: 60k samples, 784 features per sample (MNIST)
> test set: 10k samples, 784 features per sample (MNIST)

» Convolutional NN: two conv. layers, two fully conn. layers (plus reg.) ~ 3m variables
convolutional layer  convolutional layer

with non-linearities  with non-linearities
plus subsampling plus subsampling

fully connected layer fully connected layer

input image
(28 x 28)

(14 x 14 x 32) (7 x 7% 64) (1024) output probabilities
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Benchmark results (II)

Optimization method:
» stochastic gradient descent (batch size: 50 examples)
> fixed learning rate
» 2000 iterations
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Benchmark results (II)

Optimization method:
» stochastic gradient descent (batch size: 50 examples)
> fixed learning rate
» 2000 iterations
Platforms:
> (1) Intel Core i5-6300U CPU @2.4GHz
> (2) 2 x Intel Xeon 2630 v3 @2.4GHz
> (3) Nvidia Tesla K40

PL(1) | PL(2) | PL(3)
training time [s] | 3307.2 866.1 191.8
test time [s] 119 1.7 1.2

Same code achieves 3.8x when running in 1 GALILEO node
and 17.2x on a single GPU (training phase). J
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Advantages and disadvantages

TensorFlow in general:
v/ very simple installation/setup
v/ plenty of tutorials, exhaustive documentation
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