
School on Data Analytics and Deep Learning - Rome

Welcome!

School on Data Analytics and Visualization Deep Learning
Giuseppe Fiameni

June 12th 2017

School on Data Analytics and Deep Learning - Rome

School major topics

● Computing Architecture
● Data Analytics
● Machine Learning
● Programming with R and H20
● Apache Spark
● INTEL Data Analytics Accelerating Library
● Deep Learning
● Convolutional Networks
● Programming with Tensorflow

School on Data Analytics and Deep Learning - Rome

Computing
architectures

School on Data Analytics and Deep Learning - Rome

What does it make a problem be
relevant from the computational

point of view?

School on Data Analytics and Deep Learning - Rome

 Size of computational applications

Computational Dimension:
number of operations needed to solve the problem,

in general is a function of the size of the involved
data structures (n, n2 , n3 , n log n, etc.)

flop - Floating point operations
 indicates an arithmetic floating point operation.

flop/s - Floating points operations per second
 is a unit to measure the speed of a computer.

Computational problems today: 1015 – 1022 flop

One year has about 3 x 107 seconds!

Most powerful computers today have reach a sustained
performance is of the order of Tflop/s - Pflop/s (1012 - 1015

flop/s).

School on Data Analytics and Deep Learning - Rome

 Example: Weather Prediction
Forecasts on a global scale:
● 3D Grid to represent the Earth

✔ Earth's circumference:  40000 km
✔ radius:  6370 km
✔ Earth's surface:  4πr2  5•108 km2

● 6 variables:
✔ temperature
✔ pressure
✔ humidity
✔ wind speed in the 3 Cartesian directions

● cells of 1 km on each side
● 100 slices to see how the variables evolve on the different

levels of the atmosphere
● a 30 seconds time step is required for the simulation with

such resolution
● Each cell requires about 1000 operations per time step

(Navier-Stokes turbulence and various phenomena)

School on Data Analytics and Deep Learning - Rome

Example: Weather Prediction (cont.)

Grid: 5 •108 • 100 = 5 • 1010 cells
● each cell is represented with 8 Byte
● Memory space:

➔ (6 var)•(8 Byte)•(5•1010 cells)  2 • 1012 Byte = 2TB

A 24 hours forecast needs:
➔ 24 • 60 • 2  3•103 time-step
➔ (5•1010 cells) • (103 oper.) • (3•103 time-steps) = 1.5•1017

operations !

A computer with a power of 1Tflop/s will take 1.5•105 sec.
➔ 24 hours forecast will need 2days to run ... but we shall

obtain a very accurate forecast

School on Data Analytics and Deep Learning - Rome

Von Neumann Model

Control

Input Memory Output

Arithm. Logic Unit

 ……… Data

Control

➔ A single instruction is loaded
from memory (fetch) and
decoded

➔ Compute the addresses of
operands

➔ Fetch the operands from
memory;

➔ Execute the instruction ;
➔ Write the result in memory

(store).

Instructions are
processed sequentially

School on Data Analytics and Deep Learning - Rome

Speed of Processors: Clock Cycle and
Frequency

The clock cycle  is defined as the time

between two adjacent pulses of
oscillator that sets the time of the
processor.

The number of these pulses per second is
known as clock speed or clock frequency,
generally measured in GHz (gigahertz, or
billions of pulses per second).

The clock cycle controls the
synchronization of operations in a
computer: All the operations inside the

processor last a multiple of .

Processor  (ns) freq (MHz)

CDC 6600 100 10

Cyber 76 27.5 36,3

IBM ES 9000 9 111

Cray Y-MP C90 4.1 244

Intel i860 20 50

PC Pentium < 0.5 > 2 GHz

Power PC 1.17 850

IBM Power 5 0.52 1.9 GHz

IBM Power 6 0.21 4.7 GHz

Increasing the clock frequency:

The speed of light sets an upper limit to the speed

with which electronic components can operate .

Propagation velocity of a signal in a vacuum:
300.000 Km/s = 30 cm/ns

Heat dissipation problems inside the processor.
Also Quantum tunelling expected to become

important.

School on Data Analytics and Deep Learning - Rome

Other factors that affect Performance

In addition to processor power, other
factors affect the performance of
computers:

➔ Size of memory
➔ Bandwidth between processor and

memory
➔ Bandwidth toward the I/O system
➔ Size and bandwidth of the cache
➔ Latency between processor,

memory, and I/O system

Data

Addresses

Arithmetic-Logical

Unit ALU
Control Unit

Central

Memory
Devices

School on Data Analytics and Deep Learning - Rome

Memory hierarchies

Memory access time: the time required by the
processor to access data or to write data from /
to memory

The hierarchy exists because :
• fast memory is expensive and small
• slow memory is cheap and big

Latency
– how long do I have to wait for the data?
– (cannot do anything while waiting)

Throughput
– how many bytes/second. but not

important if waiting.

Total time = latency + (amount of data / throughput)

Time to run code = clock cycles running code + clock cycles waiting for
memory

School on Data Analytics and Deep Learning - Rome

Memory access

• Important problem for the
performance of any computer is
access to main memory. Fast
processors are useless if memory
access is slow!

• Over the years the difference in
speed between processors and
main memory has been growing.

Time

P
er

fo
rm

an
ce

Processors

Memory

Gap

School on Data Analytics and Deep Learning - Rome

Cache Memory

• High speed, small size memory used as a buffer between the
main memory and the processor. When used correctly, reduces
the time spent waiting for data from main memory.

• Present as various “levels” (e.g. L1, L2, L3, etc) according to
proximity to the functional units of the processor.

• Cache efficiency depends on the locality of the data references:
– Temporal locality refers to the re-use of data within relatively small

time frame.
– Spatial locality refers to the use of data within close storage locations

(e.g. one dimensional array).
• Cache can contain Data,
 Instructions or both.

School on Data Analytics and Deep Learning - Rome

Cache Memory
(cont.)

● The code performance improves when the instructions
that compose a heavy computational kernel (eg. a loop)
fit into the cache

● The same applies to the data, but in this case the work of
optimization involves also the programmer and not just
the system software.

Registers

L1: 2 x 64KB < 5

L2: 2 x 4MB 22 cc

L3: 32 MB 160 cc

Memory 128 GB 400 cc

Registers 2 ns

L1 On-chip 4 ns

L2 On-Chip 5 ns

L3 Off-Chip 30 ns

Memory 220 ns

 DEC Alpha 21164 (500 MHz):

Memory access time

 IBM SP Power 6 (4.7 GHz):

Memory access time (in clock cycles)

School on Data Analytics and Deep Learning - Rome

Cache organization

● The cache is divided into
slots of the same size (lines)

● Each line contains k
consecutive memory
locations, i.e. 4 words.

● When a data is required
from memory, (if not
already in the cache) the
system loads from memory,
the entire cache line that
contains the data,
overwriting the previous
contents of the line.

Cache

Memory

School on Data Analytics and Deep Learning - Rome

Moore's Law

Empirical law which states that the complexity of devices (number of
transistors per square inch in microprocessors) doubles every 18 months..
Gordon Moore, INTEL co-founder, 1965

It is estimated that Moore's Law still applies in the near future but
applied to the number of cores per processor

17

School on Data Analytics and Deep Learning - Rome

Parallelism

• Serial Process:
– A process in which its sub-processes happen

sequentially in time.
– Speed depends only on the rate at which each sub-

process will occur (e.g. processing unit clock speed).

• Parallel Process:
– Process in which multiple sub-processes can be active

simultaneously.
– Speed depends on execution rate of each sub-process

AND how many sub-processes can be made to occur
simultaneously.

School on Data Analytics and Deep Learning - Rome

Parallelism

• Serial Process:
– A process in which its sub-processes happen

sequentially in time.
– Speed depends only on the rate at which each sub-

process will occur (e.g. processing unit clock speed).

• Parallel Process:
– Process in which multiple sub-processes can be active

simultaneously.
– Speed depends on execution rate of each sub-process

AND how many sub-processes can be made to occur
simultaneously.

School on Data Analytics and Deep Learning - Rome

Aspects of parallelism

• It has been recognized for a long time that constant
performance improvements cannot be obtained just
by increasing factors such as processor clock speed –
parallelism is needed.

• Parallelism can be present at many levels:
– Functional parallelism within the CPU
– Pipelining and vectorization
– Multi-processor and multi-core
– Accelerators
– Parallel I/O

School on Data Analytics and Deep Learning - Rome

Multiple Functional Units

Arithmetic logic unit (ALU) executes the operations.

ALU is designed as a set of independent functional units, each in charge
of executing a different arithmetic or logical operation:

● Add
● Multiply
● Divide
● Integer Add
● Integer Multiply
● Branch…

The functional units can operate in parallel. This aspect represents the
first level of parallelism. It is a parallelism internal to the single CPU.

The compiler analyses the different instructions and determine which
operations can be done in parallel, without changing the semantics of
the program.

School on Data Analytics and Deep Learning - Rome

Aspects of parallelism

• It has been recognized for a long time that constant
performance improvements cannot be obtained just
by increasing factors such as processor clock speed –
parallelism is needed.

• Parallelism can be present at many levels:
– Functional parallelism within the CPU
– Pipelining and vectorization
– Multi-processor and multi-core
– Accelerators
– Parallel I/O

School on Data Analytics and Deep Learning - Rome

Pipelining
● It is a technique where more instructions,

belonging to a stream of sequential execution,
overlap their execution

● This technique improves the performance of the
single processor

● The concept of pipelining is similar to that of
assembly line in a factory where in a flow line
(pipe) of assembly stations the elements are
assembled in a continuous flow.

● All the assembly stations must operate at the
same processing speed, otherwise the station
slower becomes the bottleneck of the entire pipe.

School on Data Analytics and Deep Learning - Rome

Instructions Pipelining

24

The stages are
1: Fetch
2: D1 (main decode)
3: D2 (secondary decode, also called translate)
4: EX (execute)
5: WB (write back to registers and memory)

http://www.gamedev.net/page/resources/_/technical/general-programming/a-
journey-through-the-cpu-pipeline-r3115

School on Data Analytics and Deep Learning - Rome

Vector Computers

● Vector computer architectures adopt a set of vector
instructions, In conjunction with the scalar instruction set.

● The vector instructions operates on a set of vector
registers each of which is able to contain more than one
data element.

● The vector instructions implement a particular operation
to be performed on a given set of operands called vector.

● Functional units when executing vector instructions exploit
pipelining to perform the same operation on all data
operands stored on vector registers.

● Data transfer to and from the memory is done through load
and store operations operating on vector registers.

School on Data Analytics and Deep Learning - Rome

CPU Vector units

• Vectorisation performed
by dedicated hardware on
chip

• Compiler generates vector
instructions, when it can,
from programmer’s code

• Important optimization
which can lead to 4x, 8x
speedups according “size”
of vector unit (e.g. 256
bit)

School on Data Analytics and Deep Learning - Rome

Aspects of parallelism

• It has been recognized for a long time that constant
performance improvements cannot be obtained just
by increasing factors such as processor clock speed –
parallelism is needed.

• Parallelism can be present at many levels:
– Functional parallelism within the CPU
– Pipelining and vectorization
– Multi-processor and multi-core
– Accelerators
– Parallel I/O

School on Data Analytics and Deep Learning - Rome

Flynn Taxonomy

28

 M. J. Flynn
Very high speed computing systems, proceedings of the IEEE (1966).
Some computer organizations and their effectiveness, IEEE Transaction on
Computers.(1972).

"The multiplicity is taken as the maximum
possible number of simultaneous
operations (instructions) or operands
(data) being in the same phase of
execution at the most constrained
component of the organization"

School on Data Analytics and Deep Learning - Rome

Flynn Taxonomy (cont.)

29

A computer architecture is categorized by the multiplicity
of hardware used to manipulate streams of instructions
(sequence of instructions executed by the computer) and
streams of data (sequence of data used to execute a
stream of instructions).

School on Data Analytics and Deep Learning - Rome

SIMD Systems

Synchronous parallelism

● SIMD systems presents a
single control unit

● A single instruction
operates simultaneously
on multiple data.

● Array processor and
vector systems fall in
this class

CU Control Unit
PU Processing Unit
MM Memory Module
DS Data stream
IS Instruction Stream

DS2

DS1

MM2

MM1

MMn

.

.

.

CU

IS

PU2

PU1

PUn

DSn

.

.

.

School on Data Analytics and Deep Learning - Rome

MIMD Systems

31

Asynchronous
parallelism

● Multiple processors
execute different
instructions operating
on different data.

● Represents the
multiprocessor version
of the SIMD class.

● Wide class ranging from
multi-core systems to
large MPP systems.

.

.

.

.

.

.

.

.

.

IS2

CU2

IS2

PU2 MM2

DS2

PU1 MM1

DS1

PUn MMn

DSn

CU1

CUn

ISn

IS1

IS1

ISn

CU Control Unit
PU Processing Unit
MM Memory Module
DS Data stream
IS Instruction Stream

School on Data Analytics and Deep Learning - Rome

Multi-core processors

• Because of power, heat dissipation, etc increasing tendency to
actually lower clock frequency but pack more computing cores
onto a chip.

• These cores will share some resources, e.g. memory, network,
disk, etc but are still capable of independent calculations

School on Data Analytics and Deep Learning - Rome

Multi-processor systems

• One way to increase performance is to link (multi-core)
processors together in clusters, perhaps grouped together
first in nodes.

School on Data Analytics and Deep Learning - Rome

Multi-processor systems

Shared Memory Distributed Memory

School on Data Analytics and Deep Learning - Rome

Shared memory systems

All the processors (cores) share the main memory. The
memory can be addressed globally by all the processors of
the system

Uniform Memory Access (UMA) model <=> SMP:
Symmetric Multi Processors

The memory access is uniform: the processors present the
same access time to reference any of the memory locations.

Processor-Memory interconnection via common bus,
crossbar switch, or multistage networks.

Each processor can provide local caches,

Shared memory systems can not support a high number of
processors

School on Data Analytics and Deep Learning - Rome

Distributed memory
systems

36

● The memory is physically distributed among the processors (local
memory)

● Each processor can access directly only to its own local memory
● NO-Remote Memory Access (NORMA) model

● Communication among different processors occurs via a specific
communication protocol (message passing).

● The messages are routed on the interconnection network In
general distributed memory systems can scale-up from a small
number of processors O(10^2) to huge numbers of processors
O(10^6)

School on Data Analytics and Deep Learning - Rome

NUMA systems

Non Uniform Memory Access (NUMA) model

● Memory is physically distributed among all the processors
(each processor has its own local memory) but the collection
of the different local memories forms a global address space
accessible by all the processors.

The time each processor needs to access the memory is not
uniform:
• access time is faster if the processor accesses its own local

memory;
• when accessing the memory of the remote processors delay

occurs, due to the interconnection network crossing.

School on Data Analytics and Deep Learning - Rome

Interconnection network

● It is the set of links (cables) that define how the different
processors of a parallel computer are connected between
themselves and with the memory unit.

● The time required to transfer the data depends on the type of
interconnection.

● The transfer time is called the communication time.

Features of an interconnection network:
● Bandwidth: identifies the amount of data that can be sent per

unit time on the network. Bandwidth must be maximized.

● Latency: identifies the time required to route a message
between two processors. Latency is defined also as the time
needed to transfer a message of length zero. Latency must be
minimized.

School on Data Analytics and Deep Learning - Rome

MESH Topology

Some variations of the mesh
model have wrap-around type
connections between the nodes
to the edges of the mesh (torus
topology).

The Cray T3E adopts a 3D
torus topology IBM BG/Q
adopts a 5D torus topology

Toroidal Topology

Example network

School on Data Analytics and Deep Learning - Rome

Commodity Interconnects

40

Gig Ethernet

Myrinet

Infiniband

QsNet

SCI

To
ru

s

Clos

Fat tree

School on Data Analytics and Deep Learning - Rome

Aspects of parallelism

• It has been recognized for a long time that constant
performance improvements cannot be obtained just
by increasing factors such as processor clock speed –
parallelism is needed.

• Parallelism can be present at many levels:
– Functional parallelism within the CPU
– Pipelining and vectorization
– Multi-processor and multi-core
– Accelerators
– Parallel I/O

School on Data Analytics and Deep Learning - Rome

Recent HPC Trends –
accelerators/GPUs

• Co-processors or
accelerators have been
around for a while but it
was only when Nvidia
released CUDA did GPUs
become interesting for HPC
(2006).

• GPGPUs or simply GPUs
work in a different way to
conventional CPUs.
Emphasis on stream
processing.

• Acceleration can be
significant but depends on
application.

Features Tesla K80¹

GPU 2x Kepler GK210

Peak double precision
floating
point performance

2.91 Tflops (GPU Boost
Clocks)
1.87 Tflops (Base
Clocks)

Peak single precision
floating
point performance

8.74 Tflops (GPU Boost
Clocks)
5.6 Tflops (Base Clocks)

Memory bandwidth
(ECC off)²

480 GB/sec (240 GB/sec
per GPU)

Memory size (GDDR5) 24 GB (12GB per GPU)

CUDA cores 4992 (2496 per GPU)

 See more at: http://www.nvidia.com/object/tesla-servers.html#sthash.ENyyzyxw.dpuf

School on Data Analytics and Deep Learning - Rome

Recent HPC Trends-
Accelerators/Intel Xeon PHI (MIC)

• Also an accelerator but
more similar to a
conventional multicore
CPU.

• Current version, Knight’s
Corner (KNC) has 57-61
1.0-1.2 GHz cores, 8-16GB
RAM. 512 bit vector unit.

• Cores connected in a ring
topology and MPI
possible.

• No need to write CUDA or
OpenCL as Intel
compilers will compile
Fortran or C code for the
MIC.

• ~ 1-2 Tflops

http://www.nvidia.com/object/cuda_home_new.html

School on Data Analytics and Deep Learning - Rome

Recent HPC Trends -
Accelerators

• GPUs and MICs are attracting interest in HPC because
of high performance and efficiency (i.e. Flops/watt).

• Currently, they need to be attached to host CPUs via
the PCIe bus (a standard PC-like connection).

• Both device families have limitations:
– low device memory

– slow transfer rate via PCIe link

– difficulty in programming (particularly CUDA).

– speedup is highly application and data dependent.

• But future models are likely to be

 standalone models (e.g Knight’s Landing)

 and with faster connections (Nvlink).

School on Data Analytics and Deep Learning - Rome

Aspects of parallelism

• It has been recognized for a long time that constant
performance improvements cannot be obtained just
by increasing factors such as processor clock speed –
parallelism is needed.

• Parallelism can be present at many levels:
– Functional parallelism within the CPU
– Pipelining and vectorization
– Multi-processor and multi-core
– Accelerators
– Parallel I/O

School on Data Analytics and Deep Learning - Rome

Parallel I/O
● Parallel I/O means using many I/O resources in a

coordinated way to solve a single problem more
quickly

Parallel I/O is becoming mandatory for applications
● “It’s not working like it used to?”
● A single BG/L compute node has no more than 60

Mbyte/sec of I/O bandwidth
● But the whole machine might have 30 Gbyte/sec of I/O

bandwidth!

I/O software determines how well we can make use of
the available I/O hardware

School on Data Analytics and Deep Learning - Rome

Organization of I/O Software

I/O components layered to provide
needed functionality (I/O stacks)

● Common APIs allow combination
of components

Parallel file system
organizes hardware into
single, fast storage space

● I/O middleware matches to
programming model, provides
optimizations

● Example: collective I/O
operations in MPI-IO

High-level I/O libraries (HLLs)
provide usability

High-level I/O LibraryHigh-level I/O Library

I/O Middleware (MPI-IO)I/O Middleware (MPI-IO)

Parallel File System (POSIX)Parallel File System (POSIX)

I/O HardwareI/O Hardware

ApplicationApplication

School on Data Analytics and Deep Learning - Rome

High-level I/O Libraries

Provide structured data storage
● Multidimensional, typed datasets
● Attributes of data, provenance

Metadata is placed in the file itself,
simplifying data movement, archiving

Two good examples
● HDF5 – first to use MPI-IO, widely used
● PnetCDF – parallel API for netCDF data

School on Data Analytics and Deep Learning - Rome

Performance and Scalability

Goal: Minimize the time applications spend
performing I/O-related operations

● Maximize time applications spend computing

End-to-end I/O performance includes
● Concurrent access to files

− For real application access patterns
● Metadata operations

− Creating files, traversing directories, etc.
● Overhead of all I/O software layers

− Features aren’t free

School on Data Analytics and Deep Learning - Rome

Parallel File Systems

Three popular parallel file
system solutions

● GPFS
● Lustre
● PVFS/PVFS2

All capable of 10GByte/sec+
I/O rates, given adequate
storage hardware and easy
access patterns

Clients
(1000s-10,000s)

I/O devices or servers
(10s-1000s)

Storage or System
Network

...

...

School on Data Analytics and Deep Learning - Rome

Complication: I/O Access Patterns

Application I/O is often complex, not just big blocks
● Ignoring ghost cells, extracting subarrays
●Additional data stored by high-level I/O libraries
●These result in noncontiguous I/O

I/O interfaces determine ability to extract performance
●Define the knowledge that the I/O system has to work with

Standard (POSIX) file system interface does not allow for efficient
noncontiguous access

School on Data Analytics and Deep Learning - Rome

SmartPhone PlayStation IBM BG/q

Freq. 2.7 GHz 1.6GHz 1.GHz

Core 4 8 163840

Peak Perf. 2TF/s 1.84TF/s 2PF/s

RAM (GB) 3 8 2048

Disk (GB) 128 500 2048

Power
(watt) 3-5 140 1000000

Cost 650€ 300€ 20M€

School on Data Analytics and Deep Learning - Rome

Real HPC Crisis is with
Software

• A supercomputer application is usually much more long-
lived than hardware
– Hardware typically 4-5 years
– FORTRAN and C still main programming models (hasn’t changed

much since the 1970s)
• Porting applications to Petaflop systems is a major

challenge.
– New parallelization strategies are needed.
– Not just program code – some datasets cannot scale to

thousands of cores.
– Also using supercomputer systems hasnt changed. Users are still

expected to know UNIX and batch systems

School on Data Analytics and Deep Learning - Rome

Speed-up

● Linear increase in performance for a
constant database size and load, and
proportional increase of the system
components (CPU, memory, disk)

School on Data Analytics and Deep Learning - Rome

Scale-up

● Sustained performance for a linear
increase of database size and load, and
proportional increase of components

School on Data Analytics and Deep Learning - Rome

Parallel Architectures
for Data Processing

● Three main alternatives, depending on
how processors,memory and disk are
interconnected

● Shared-memory computer
● Shared-disk cluster
● Shared-nothing cluster

DeWitt, D. and Gray, J. “Parallel database systems: the
future of high performance database systems”. ACM
Communications, 35(6), 85-98, 1992.

School on Data Analytics and Deep Learning - Rome

Shared Memory
● All memory and disk are
shared

● Symmetric Multiprocessor
(SMP)

● Recent: Non Uniform
Memory

+ Simple for apps, fast
com., load balancing
- Complex interconnect
limits extensibility, cost

● For write-intensive workloads,
not for big data

School on Data Analytics and Deep Learning - Rome

Shared Disk

● Disk is shared, memory is
private

● Storage Area Network (SAN)
to interconnect memory and
disk (block level)

● Needs distributed lock
manager (DLM) for cache
coherence

+ Simple for apps,
extensibility
- Complex DLM, cost
● For write-intensive workloads or
big data

School on Data Analytics and Deep Learning - Rome

Shared Nothing

● No sharing of memory or
disk across nodes

● No need for DLM
● But needs data

partitioning
+ highest extensibility,
cost
- updates, distributed
trans

● For big data (read
intensive)

School on Data Analytics and Deep Learning - Rome

Simple Model for Parallel Data
Shared-nothing architecture

● The most general and scalable
Set-oriented

● Each dataset D is represented by a table of rows
Key-value

● Each row is represented by a <key, value> pair where
➔Key uniquely identifies the value in D
➔Value is a list of (attribute name : attribute value)

Can represent structured (relational) data or
NoSQL data

● But graph is another story (see Pregel, DEX or Spark)
Examples

● <row-id#5, (part-id:5, part-name:iphone5, supplier:Apple)>
● <doc-id#10, (content:<html> html text … </html>)>
● <akeyword, (doc-id:id1, doc-id:id2, doc-id:id10)>

School on Data Analytics and Deep Learning - Rome

Data Partitioning

Vertical partitioning
● Basis for column

stores (e.g.
MonetDB): efficient
for OLAP queries

● Easy to compress,
e.g. using Bloom
filters

Horizontal partitioning
(sharding)

● Shards can be stored
(and replicated) at
different nodes

School on Data Analytics and Deep Learning - Rome

Sharding Schemes

(1) Map Only(1) Map Only
(4) Point to Point or

Map-Communication

(4) Point to Point or

Map-Communication
(3) Iterative Map Reduce

or Map-Collective

(3) Iterative Map Reduce
or Map-Collective

(2) Classic
MapReduce

(2) Classic
MapReduce

InputInput

mapmap

reducereduce

InputInput

mapmap

 reducereduce

IterationsIterations
InputInput

OutputOutput

mapmap

 Local

Graph

BLAST Analysis
Local Machine
Learning
Pleasingly Parallel

High Energy
Physics (HEP)
Histograms
Distributed search
Recommender
Engines

Expectation
maximization
Clustering e.g. K-
means
Linear Algebra,
PageRank

Classic MPI
PDE Solvers and
Particle Dynamics
Graph Problems

MapReduce and Iterative Extensions (Spark, Twister) MPI, Giraph

Integrated Systems such as Hadoop + Harp with
Compute and Communication model separated

Courtesy of Prof. Geoffrey Charles Fox – Indiana University

School on Data Analytics and Deep Learning - Rome

The End

School on Data Analytics and Deep Learning - Rome

HPC vs HTC

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Size of computational applications
	Example: Weather Prediction
	Example: Weather Prediction / 1
	von Neumann Model
	Speed of Processors: Clock Cycle and Frequency
	Other factors that affect Performance
	Memory hierarchies
	Memory access
	Cache Memory
	Cache Memory / 1
	Cache organisation
	Moore's Law
	Aspects of parallelism
	Slide 19
	Slide 20
	Multiple Functional Units
	Slide 22
	Pipelining
	Instruction Pipelining
	Vector Computers
	CPU Vector units
	Slide 27
	Flynn Taxonomy
	Slide 29
	SIMD Systems
	MIMD Systems
	Multi-core processors
	Multi-processor systems
	Slide 34
	Shared memory systems
	Distributed memory systems
	NUMA systems
	Interconnection network
	Slide 39
	Slide 40
	Slide 41
	Recent HPC Trends – accelerators/GPUs
	Recent HPC Trends-Accelerators/Intel Xeon PHI (MIC)
	Recent HPC Trends - Accelerators
	Slide 47
	Parallel I/O
	Organization of I/O Software
	High-level I/O Libraries
	Slide 51
	Parallel File Systems
	Complication: I/O Access Patterns
	Qualche confronto…
	Real HPC Crisis is with Software
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	4 Forms of MapReduce
	Slide 75
	Slide 76

