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School major topics

● Computing Architecture
● Data Analytics
● Machine Learning
● Programming with R and H20
● Apache Spark
● INTEL Data Analytics Accelerating Library
● Deep Learning
● Convolutional Networks
● Programming with Tensorflow
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Computing 
architectures
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What does it make a problem be 
relevant from the computational 

point of view?
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 Size of computational applications 

Computational Dimension:   
number of operations  needed to solve the problem, 

in general is a function of the size of the involved
data structures (n, n2 , n3 , n log n, etc.) 

flop - Floating point operations
 indicates an arithmetic floating point operation.

flop/s - Floating points operations per second
 is a unit to measure  the speed of a computer.

    
Computational problems today: 1015 – 1022 flop

One year has about 3 x 107 seconds!

Most powerful computers today have reach a sustained  
performance is of the order of Tflop/s - Pflop/s (1012 - 1015 

flop/s).
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  Example: Weather Prediction
Forecasts on a global scale:
● 3D Grid to represent the Earth

✔ Earth's circumference:      40000 km
✔ radius:    6370 km
✔ Earth's surface:      4πr2      5•108  km2

● 6 variables:  
✔ temperature
✔ pressure
✔ humidity 
✔ wind speed in the 3 Cartesian directions

● cells of 1 km on each side
● 100 slices to see how the variables evolve on the different 

levels of the atmosphere 
● a 30 seconds time step is required for the simulation with 

such resolution
● Each cell requires about 1000 operations per time step 

(Navier-Stokes turbulence and various phenomena)
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Example: Weather Prediction (cont.)

Grid: 5 •108  • 100  = 5 • 1010  cells
●   each cell is represented with 8 Byte  
●   Memory space: 

➔ (6 var)•(8 Byte)•(5•1010 cells)  2 • 1012 Byte = 2TB 

A 24 hours  forecast  needs:
➔ 24 • 60 • 2  3•103   time-step
➔ (5•1010 cells) • (103 oper.) • (3•103 time-steps) = 1.5•1017 

operations !

 

A computer with a power of 1Tflop/s will take 1.5•105 sec.
➔ 24 hours  forecast will  need 2days to run ... but we shall 

obtain a very accurate forecast
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Von Neumann Model

Control

Input Memory Output

Arithm. Logic Unit

     ……… Data

Control

➔ A single instruction is loaded 
from memory (fetch) and 
decoded

➔ Compute the addresses of 
operands

➔ Fetch the operands from 
memory; 

➔ Execute the instruction ;
➔ Write the result in memory 

(store).

Instructions are 
processed sequentially
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Speed of Processors: Clock Cycle and 
Frequency

The clock cycle  is defined as the time 

between two adjacent pulses of 
oscillator that sets the time of the 
processor. 

The number of these pulses per second is 
known as clock speed or clock frequency, 
generally measured in GHz (gigahertz, or 
billions of pulses per second).  

The clock cycle controls the 
synchronization of operations in a 
computer: All the  operations inside the 

processor last a multiple of  .

Processor  (ns) freq (MHz)

CDC 6600 100   10

Cyber 76 27.5   36,3

IBM ES 9000 9 111

Cray Y-MP C90 4.1 244

Intel i860 20   50

PC Pentium < 0.5 > 2 GHz

Power PC 1.17 850

IBM Power 5 0.52     1.9 GHz

IBM Power 6 0.21     4.7 GHz

Increasing the clock frequency:

The speed of light sets an upper limit to the speed 

with which electronic components can operate .

Propagation velocity of a signal in a vacuum:   
300.000 Km/s = 30 cm/ns

Heat dissipation problems inside the processor. 
Also Quantum tunelling expected to become 

important.
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Other factors that affect Performance

In addition to processor power, other 
factors affect the performance of 
computers:

➔ Size of memory
➔ Bandwidth between processor and 

memory
➔ Bandwidth toward the I/O system
➔ Size and bandwidth of the cache
➔ Latency between processor, 

memory, and I/O system

Data

Addresses

Arithmetic-Logical 

Unit ALU
Control  Unit

Central 

Memory
Devices
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Memory hierarchies

Memory access time: the time required by the 
processor to access data or to write data from / 
to memory

The hierarchy exists because :
• fast memory is expensive and small
• slow memory is cheap and big

Latency
– how long do I have to wait for the data?
– (cannot do anything while waiting)

Throughput
– how many bytes/second. but not 

important if waiting.

Total time = latency + (amount of data / throughput) 

Time to run code = clock cycles running code + clock cycles waiting for 
memory
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Memory access

• Important problem for the 
performance of any computer is 
access to main memory. Fast 
processors are useless if memory 
access is slow!

• Over the years the difference in 
speed between processors and 
main memory has been growing.

Time

P
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ce

Processors

Memory

Gap
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Cache Memory

• High speed, small size memory used as a buffer between the 
main memory and the processor. When used correctly, reduces 
the time spent waiting for data from main memory.

• Present as various “levels” (e.g. L1, L2, L3, etc) according to 
proximity to the functional units of the processor. 

• Cache efficiency depends on the locality of the data references:
– Temporal locality refers to the re-use of data within relatively small 

time frame.
– Spatial locality refers to the use of data within close storage locations 

(e.g. one dimensional array).
• Cache can contain Data, 
    Instructions or both.
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Cache Memory 
(cont.)

● The code performance improves when  the instructions 
that compose a heavy computational kernel (eg. a loop) 
fit  into the cache 

● The same applies to the data, but in this case the work of 
optimization involves also the programmer and not just 
the system software.

Registers     

L1: 2 x 64KB    < 5  

L2: 2 x 4MB    22 cc

L3: 32 MB  160 cc

Memory 128 GB  400 cc

Registers    2 ns

L1 On-chip    4 ns

L2 On-Chip    5 ns

L3 Off-Chip  30 ns

Memory 220 ns

 DEC Alpha 21164 (500 MHz):  

Memory access time

 IBM SP Power 6 (4.7 GHz):  

Memory access time (in clock cycles)
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Cache organization

● The cache is divided into 
slots of the same size (lines)

● Each line contains k 
consecutive memory 
locations, i.e. 4 words.

● When a data is required 
from memory, (if  not 
already in the cache) the 
system loads from memory, 
the entire cache line that 
contains the data,  
overwriting the previous 
contents of the line.

Cache

Memory
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Moore's Law

Empirical law which states that the complexity of devices (number of 
transistors per square inch in microprocessors) doubles every 18 months..
Gordon Moore, INTEL co-founder, 1965

It is estimated that Moore's Law still applies in the near future but 
applied to the number of cores per processor

17
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Parallelism

• Serial Process:
– A process in which its sub-processes happen 

sequentially in time.
– Speed depends only on the rate at which each sub-

process will occur (e.g. processing unit clock speed).

• Parallel Process:
– Process in which multiple sub-processes can be active 

simultaneously.
– Speed depends on execution rate of each sub-process 

AND how many sub-processes can be made to occur 
simultaneously.
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Aspects of parallelism

• It has been recognized for a long time that constant 
performance improvements cannot be obtained just 
by increasing factors such as processor clock speed – 
parallelism is needed.

• Parallelism can be present at many levels:
– Functional parallelism within the CPU
– Pipelining and vectorization
– Multi-processor and multi-core
– Accelerators
– Parallel I/O
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Multiple Functional Units 

Arithmetic logic unit (ALU) executes the operations.

ALU is designed as a set of independent functional units, each in charge 
of executing a different arithmetic or logical operation:

● Add
● Multiply
● Divide
● Integer Add
● Integer Multiply
● Branch… 

 

The functional units can operate in parallel. This aspect represents the 
first level of parallelism. It is a parallelism internal to the single CPU. 
 
The compiler analyses the different instructions and determine which 
operations can be done in parallel, without changing the semantics of 
the program.
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Pipelining
● It is a technique where more instructions, 

belonging to a stream of sequential execution, 
overlap their execution

● This technique improves the performance of the 
single processor

● The concept of pipelining is similar to that of 
assembly line in a factory where in a flow line 
(pipe) of assembly stations the elements are 
assembled in a continuous flow.

● All the assembly stations must operate at the 
same processing speed, otherwise the station 
slower becomes the bottleneck of the entire pipe.
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Instructions Pipelining

24

 

The stages are
1: Fetch
2: D1 (main decode)
3: D2 (secondary decode, also called translate)
4: EX (execute)
5: WB (write back to registers and memory)

http://www.gamedev.net/page/resources/_/technical/general-programming/a-
journey-through-the-cpu-pipeline-r3115
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Vector  Computers

● Vector computer architectures adopt a set of vector 
instructions, In conjunction with the scalar instruction set.

● The vector instructions operates on a set of vector 
registers each of which is able to contain more than one 
data element. 

● The vector instructions implement a particular operation 
to be performed on a given set of operands called vector.

● Functional units when executing vector instructions exploit 
pipelining to perform the same operation on all  data 
operands stored on vector registers.

● Data transfer to and from the memory is done through load 
and store operations operating on vector registers.
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CPU Vector units

• Vectorisation performed 
by dedicated hardware on 
chip

• Compiler generates vector 
instructions, when it can, 
from programmer’s code

• Important optimization 
which can lead to 4x, 8x 
speedups according “size” 
of vector unit (e.g. 256 
bit)
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Aspects of parallelism
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Flynn Taxonomy

28

 M. J. Flynn 
Very high speed computing systems, proceedings of the IEEE (1966).
Some computer organizations and their effectiveness, IEEE Transaction on 
Computers.(1972).

"The multiplicity is taken as the maximum 
possible number of simultaneous 
operations (instructions) or operands 
(data) being in the same phase of 
execution at the most constrained 
component of the organization"
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Flynn Taxonomy (cont.)

29

A computer architecture is categorized by the multiplicity 
of hardware used to manipulate streams of instructions 
(sequence of instructions executed by the computer) and 
streams of data (sequence of data used to execute a 
stream of instructions). 
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SIMD Systems

Synchronous parallelism

● SIMD systems presents a 
single control unit

● A single instruction 
operates simultaneously 
on multiple data.

● Array processor and 
vector systems fall in 
this class

CU     Control Unit
PU     Processing Unit
MM    Memory Module
DS     Data stream 
IS       Instruction Stream

DS2

DS1

MM2

MM1

MMn

.

.

.

CU

IS

PU2

PU1

PUn

DSn
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.
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MIMD Systems

31

Asynchronous 
parallelism

● Multiple processors 
execute different 
instructions operating 
on different data.

● Represents the 
multiprocessor version 
of the SIMD class.

● Wide class ranging from 
multi-core systems to 
large MPP systems.
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Multi-core processors

• Because of power, heat dissipation, etc increasing tendency to 
actually lower clock frequency but pack more computing cores 
onto a chip. 

• These cores will share some resources, e.g. memory, network, 
disk, etc but are still capable of independent calculations
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Multi-processor systems

• One way to increase performance is to link (multi-core) 
processors together in clusters, perhaps grouped together 
first in nodes.
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Multi-processor systems

Shared Memory Distributed Memory
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Shared memory systems

All the processors (cores) share the main memory. The 
memory can be addressed globally by all the processors of 
the system

Uniform Memory Access (UMA) model <=> SMP: 
Symmetric Multi Processors 

The memory access is uniform: the processors present the 
same access time to reference any of the memory locations.

Processor-Memory interconnection via common bus, 
crossbar switch, or multistage networks.

Each processor can provide local caches,

Shared memory systems can not support a high number of 
processors
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Distributed memory 
systems

36

● The memory is physically distributed among the processors (local 
memory)

● Each processor can access directly only to its own local memory
● NO-Remote Memory Access  (NORMA) model 

● Communication among different processors occurs via a specific 
communication protocol (message passing).

● The messages are routed on the interconnection network In 
general distributed memory systems can scale-up from a small 
number of processors  O(10^2) to huge numbers of processors 
O(10^6)
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NUMA systems

Non Uniform Memory Access  (NUMA) model 

● Memory is physically distributed among all the processors 
(each processor has its own local memory) but the collection 
of the different local  memories forms a global address space 
accessible by all the processors.

The time each processor needs to access the memory is not 
uniform:
• access time  is faster if the processor accesses its own local 

memory;
• when accessing the memory of the remote processors delay 

occurs, due to the interconnection network crossing.
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Interconnection network

● It is the set of links (cables) that define how the different 
processors of a parallel computer are connected between 
themselves and with the memory unit.

● The time required to transfer the data depends on the type of  
interconnection.

● The transfer time is called the communication time.

Features of an interconnection network:
● Bandwidth: identifies the amount of data that can be sent per 

unit time on the network. Bandwidth must be maximized. 

● Latency: identifies the time required to route a message 
between two processors. Latency is defined also as the time 
needed to transfer a message of length zero. Latency must be 
minimized. 
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MESH Topology

Some variations of the mesh 
model have wrap-around type 
connections between the nodes 
to the edges of the mesh (torus 
topology).

The Cray T3E adopts a 3D 
torus topology IBM BG/Q 
adopts a 5D torus topology

Toroidal Topology

Example network
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Commodity Interconnects

40

Gig Ethernet

Myrinet

Infiniband

QsNet

SCI

To
ru

s

Clos

Fat tree
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Aspects of parallelism

• It has been recognized for a long time that constant 
performance improvements cannot be obtained just 
by increasing factors such as processor clock speed – 
parallelism is needed.

• Parallelism can be present at many levels:
– Functional parallelism within the CPU
– Pipelining and vectorization
– Multi-processor and multi-core
– Accelerators
– Parallel I/O
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Recent HPC Trends – 
accelerators/GPUs

• Co-processors or 
accelerators have been 
around for a while but it 
was only when Nvidia 
released CUDA did GPUs 
become interesting for HPC 
(2006).

• GPGPUs or simply GPUs 
work in a different way to 
conventional CPUs. 
Emphasis on stream 
processing.

• Acceleration can be 
significant but depends on 
application.

Features Tesla K80¹

GPU 2x Kepler GK210

Peak double precision 
floating
point performance

2.91 Tflops (GPU Boost 
Clocks)
1.87 Tflops (Base 
Clocks)

Peak single precision 
floating
point performance

8.74 Tflops (GPU Boost 
Clocks)
5.6 Tflops (Base Clocks)

Memory bandwidth 
(ECC off)²

480 GB/sec (240 GB/sec 
per GPU)

Memory size (GDDR5) 24 GB (12GB per GPU)

CUDA cores 4992 ( 2496 per GPU)

 See more at: http://www.nvidia.com/object/tesla-servers.html#sthash.ENyyzyxw.dpuf 
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Recent HPC Trends-
Accelerators/Intel Xeon PHI (MIC)

• Also an accelerator but 
more similar to a 
conventional multicore 
CPU.

• Current version, Knight’s 
Corner (KNC) has 57-61 
1.0-1.2 GHz cores, 8-16GB 
RAM. 512 bit vector unit.

• Cores connected in a ring 
topology and MPI 
possible.

• No need to write CUDA or 
OpenCL as Intel 
compilers will compile 
Fortran or C code for the 
MIC.

• ~ 1-2 Tflops

http://www.nvidia.com/object/cuda_home_new.html
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Recent HPC Trends - 
Accelerators

• GPUs and MICs are attracting interest in HPC because 
of high performance and efficiency (i.e. Flops/watt). 

• Currently, they need to be attached to host CPUs via 
the PCIe bus (a standard PC-like connection).

• Both device families have limitations:
– low device memory

– slow transfer rate via PCIe link

– difficulty in programming (particularly CUDA).

– speedup is highly application and data dependent.

• But future models are likely to be 

    standalone models (e.g Knight’s Landing) 

    and with faster connections (Nvlink).



School on Data Analytics and Deep Learning - Rome

Aspects of parallelism

• It has been recognized for a long time that constant 
performance improvements cannot be obtained just 
by increasing factors such as processor clock speed – 
parallelism is needed.

• Parallelism can be present at many levels:
– Functional parallelism within the CPU
– Pipelining and vectorization
– Multi-processor and multi-core
– Accelerators
– Parallel I/O
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Parallel I/O
● Parallel I/O means using many I/O resources in a 

coordinated way to solve a single problem more 
quickly

Parallel I/O is becoming mandatory for applications
● “It’s not working like it used to?”
● A single BG/L compute node has no more than 60 

Mbyte/sec of I/O bandwidth
● But the whole machine might have 30 Gbyte/sec of I/O 

bandwidth!

I/O software determines how well we can make use of 
the available I/O hardware
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Organization of I/O Software

I/O components layered to provide 
needed functionality (I/O stacks)

● Common APIs allow combination 
of components

Parallel file system
organizes hardware into
single, fast storage space

● I/O middleware matches to 
programming model, provides 
optimizations

● Example: collective I/O 
operations in MPI-IO

High-level I/O libraries (HLLs) 
provide usability

High-level I/O LibraryHigh-level I/O Library

I/O Middleware (MPI-IO)I/O Middleware (MPI-IO)

Parallel File System (POSIX)Parallel File System (POSIX)

I/O HardwareI/O Hardware

ApplicationApplication
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High-level I/O Libraries

Provide structured data storage
● Multidimensional, typed datasets
● Attributes of data, provenance

Metadata is placed in the file itself,
simplifying data movement, archiving

Two good examples
● HDF5 – first to use MPI-IO, widely used
● PnetCDF – parallel API for netCDF data
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Performance and Scalability

Goal: Minimize the time applications spend 
performing I/O-related operations

● Maximize time applications spend computing

End-to-end I/O performance includes
● Concurrent access to files

− For real application access patterns
● Metadata operations

− Creating files, traversing directories, etc.
● Overhead of all I/O software layers

− Features aren’t free
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Parallel File Systems

Three popular parallel file 
system solutions

● GPFS
● Lustre
● PVFS/PVFS2

All capable of 10GByte/sec+ 
I/O rates, given adequate 
storage hardware and easy 
access patterns

Clients
(1000s-10,000s)

I/O devices or servers
(10s-1000s)

Storage or System
Network

...

...
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Complication: I/O Access Patterns

Application I/O is often complex, not just big blocks
● Ignoring ghost cells, extracting subarrays
●Additional data stored by high-level I/O libraries
●These result in noncontiguous I/O

I/O interfaces determine ability to extract performance
●Define the knowledge that the I/O system has to work with

Standard (POSIX) file system interface does not allow for efficient 
noncontiguous access
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SmartPhone PlayStation IBM BG/q

Freq. 2.7 GHz 1.6GHz 1.GHz

# Core 4 8 163840

Peak Perf. 2TF/s 1.84TF/s 2PF/s

RAM (GB) 3 8 2048

Disk (GB) 128 500 2048

Power 
(watt) 3-5 140 1000000

Cost 650€ 300€ 20M€
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Real HPC Crisis is with 
Software

• A supercomputer application is usually much more long-
lived than hardware
– Hardware typically 4-5 years
– FORTRAN and C still main programming models (hasn’t changed 

much since the 1970s)
• Porting applications to Petaflop systems is a major 

challenge.
– New parallelization strategies are needed.
– Not just program code – some datasets cannot scale to 

thousands of cores. 
– Also using supercomputer systems hasnt changed. Users are still 

expected to know UNIX and batch systems
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Speed-up

● Linear increase in performance for a 
constant database size and load, and 
proportional increase of the system 
components (CPU, memory, disk)
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Scale-up

● Sustained performance for a linear 
increase of database size and load, and 
proportional increase of components
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Parallel Architectures 
for Data Processing

● Three main alternatives, depending on 
how processors,memory and disk are 
interconnected

● Shared-memory computer
● Shared-disk cluster
● Shared-nothing cluster

DeWitt, D. and Gray, J. “Parallel database systems: the 
future of high performance database systems”. ACM 
Communications, 35(6), 85-98, 1992.
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Shared Memory
● All memory and disk are 
shared

● Symmetric Multiprocessor 
(SMP)

● Recent: Non Uniform 
Memory

+ Simple for apps, fast 
com., load balancing
- Complex interconnect 
limits extensibility, cost

● For write-intensive workloads, 
not for big data
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Shared Disk

● Disk is shared, memory is 
private

● Storage Area Network (SAN) 
to interconnect memory and 
disk (block level)

● Needs distributed lock 
manager (DLM) for cache 
coherence

+ Simple for apps, 
extensibility
- Complex DLM, cost
● For write-intensive workloads or 
big data



School on Data Analytics and Deep Learning - Rome

Shared Nothing

● No sharing of memory or 
disk across nodes

● No need for DLM
● But needs data 

partitioning
+ highest extensibility, 
cost
- updates, distributed 
trans

● For big data (read 
intensive)
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Simple Model for Parallel Data
Shared-nothing architecture

● The most general and scalable
Set-oriented

● Each dataset D is represented by a table of rows
Key-value

● Each row is represented by a <key, value> pair where
➔Key uniquely identifies the value in D
➔Value is a list of (attribute name : attribute value)

Can represent structured (relational) data or 
NoSQL data

● But graph is another story (see Pregel, DEX or Spark)
Examples

● <row-id#5, (part-id:5, part-name:iphone5, supplier:Apple)>
● <doc-id#10, (content:<html> html text … </html>)>
● <akeyword, (doc-id:id1, doc-id:id2, doc-id:id10)>
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Data Partitioning

Vertical partitioning
● Basis for column 

stores (e.g. 
MonetDB): efficient 
for OLAP queries

● Easy to compress, 
e.g. using Bloom 
filters

Horizontal partitioning 
(sharding)

● Shards can be stored 
(and replicated) at 
different nodes
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Sharding Schemes



  

(1) Map Only(1) Map Only
(4) Point to Point or 

Map-Communication

(4) Point to Point or 

Map-Communication
(3) Iterative Map Reduce 

or Map-Collective

(3) Iterative Map Reduce 
or Map-Collective

(2) Classic 
MapReduce

(2) Classic 
MapReduce

     

InputInput

      

mapmap
   

     
     

reducereduce

  

InputInput

      

mapmap

   

     
     reducereduce

IterationsIterations
InputInput

 

OutputOutput

     

mapmap

    Local

Graph

BLAST Analysis
Local Machine 
Learning
Pleasingly Parallel

High Energy 
Physics (HEP) 
Histograms
Distributed search
Recommender 
Engines

Expectation 
maximization 
Clustering e.g. K-
means
Linear Algebra, 
PageRank

Classic MPI
PDE Solvers and 
Particle Dynamics
Graph Problems

MapReduce and Iterative Extensions (Spark, Twister) MPI, Giraph

Integrated Systems such as Hadoop + Harp with 
Compute and Communication model separated

Courtesy of Prof. Geoffrey Charles Fox – Indiana University
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The End
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HPC vs HTC
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