
Profiling Techniques and Tools

Tools and techniques for performance
analysis

Piero Lanucara, Andy Emerson,
Alessandro Marani SCAI team

14/07/2017 1
Profiling Techniques and Tools,

Summer School 2017

Contents

• Motivations
• Manual Methods

– Measuring execution time
– Profiling PMPI

• Performance Tools
– gprof
– Papi
– Scalasca, Vtune and other packages

• Some advice

14/07/2017 2

Motivations for performance
profiling

• Efficient programming on HPC architectures
is difficult
– because modern HPC architectures are

complex:
• different types and speeds of memory

(memory hierarchies)
• presence of accelerators such as MICs, FPGAs

and GPUs
• mutiple filesystem technologies (local, gpfs,

SSD, etc)
• network topologies
• PARALLELISM !

• For programmers it is essential to use
profiling tools in order to optimise and
parallelise their applications. Just using –O3
is not usually enough.

• Even for users (rather than programmers) it
may be useful to profile in order to choose
the best build, hardware and input options.

14/07/2017 3

Measuring execution time
without source code

• UNIX/Linux users often use the time command.
• This has the advantages that the source code does not need to be

re-compiled and has no overhead (i.e. non-intrusive). Note the
different formats of the UNIX and the bash versions.

• In a script, convenient to report on the wall time using date.

14/07/2017 4

/usr/bin/time ./a.out

0.00user 0.00system 0:10.07elapsed 0%CPU (0avgtext+0avgdata

848maxresident)k inputs+0outputs (0major+259minor)pagefaults 0swaps

time ./a.out

real 0m10.695s

user 0m0.001s

sys 0m0.006s

start_time=$(date +"%s")

...

end_time=$(date +"%s")

walltime=$(($end_time-$start_time))

echo "walltime $walltime"

Using time
• For running benchmarks we are normally most interested

in the elapsed or walltime, i.e. the difference between
program start and program finish (for parallel programs this
means when all tasks and threads have finished).

• But the various time commands can also give other useful
information on resources used:

14/07/2017 5

/usr/bin/time ./loop

40.90user 0.00system 0:41.00elapsed 99%CPU

(0avgtext+0avgdata 848maxresident)k

0inputs+0outputs

(0major+284minor)pagefaults 0swaps

/usr/bin/time ./sleep

0.00user 0.00system 0:10.00elapsed 0%CPU

(0avgtext+0avgdata 848maxresident)k

0inputs+0outputs

(0major+259minor)pagefaults 0swaps

In the first example we have
kept the CPU busy with
99% of the CPU used.
In the second example the
CPU has been sent to sleep!

Using top and MPI programs

• For MPI programs convenient to log onto the node where
the program is running and use the top command.

14/07/2017 6

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

8462 aemerson 20 0 12.284g 102952 64044 R 102.9 0.1 14:18.64 namd2

8460 aemerson 20 0 12.284g 96320 57064 R 96.5 0.1 14:17.86 namd2

8461 aemerson 20 0 12.284g 104240 65024 R 96.5 0.1 14:18.58 namd2

8463 aemerson 20 0 12.283g 100728 62076 R 96.5 0.1 14:18.85 namd2

8464 aemerson 20 0 12.284g 105200 65816 R 96.5 0.1 14:18.58 namd2

8465 aemerson 20 0 12.284g 102668 63400 R 96.5 0.1 14:19.09 namd2

8466 aemerson 20 0 12.284g 105540 66424 R 96.5 0.1 14:18.42 namd2

8467 aemerson 20 0 12.283g 102896 64240 R 96.5 0.1 14:19.20 namd2

In this way you can check that you really are running a parallel program and multiple
cores are being used in a “balanced” fashion(i.e. %CPU=~100%).
top is also useful for the checking the memory required for each process.

OpenMP threads

For OpenMP the top command can give something like this

14/07/2017 7

Tasks: 337 total, 6 running, 331 sleeping, 0 stopped, 0 zombie

%Cpu(s): 93.1 us, 0.1 sy, 0.0 ni, 6.8 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st

KiB Mem: 13174488+total, 14130592 used, 11761428+free, 1232 buffers

KiB Swap: 32767996 total, 0 used, 32767996 free. 6393776 cached Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

4419 aemerson 20 0 933224 279780 5856 R 800.2 0.2 0:47.07 test

4428 aemerson 20 0 123820 1824 1160 R 0.3 0.0 0:00.01 top

29436 root 0 -20 9897424 1.217g 109248 S 0.3 1.0 156:38.92 mmfsd

1 root 20 0 55496 4936 2400 S 0.0 0.0 4:45.87 systemd

2 root 20 0 0 0 0 S 0.0 0.0 0:02.66 kthreadd

3 root 20 0 0 0 0 S 0.0 0.0 6:40.96 ksoftirqd/0

5 root 0 -20 0 0 0 S 0.0 0.0 0:00.00 kworker/0:0H

8 root rt 0 0 0 0 S 0.0 0.0 0:12.88 migration/0

9 root 20 0 0 0 0 S 0.0 0.0 0:02.28 rcu_bh

8 OpenMP threads

Measuring execution time within the
program (serial)

• Programmers generally want more information on which parts of the program consume
the most time.

• Both C/C++ and Fortran programmers are used to instrument the code with timing and
printing functions to measure and collect or visualize the time spent in critical or
computationally intensive code’ sections.

 Fortran77

 etime(),dtime()

 Fortran90

 cputime(), system_clock(), date_and_time()

 C/C++

 clock()

• The programmer must be aware though that these methods are intrusive, and introduce
overheads to the programcode.

Measuring execution time -
example

C example:

#include <time.h>

clock_t time1, time2;

double dub_time;

…

time1 = clock();

for (i = 0; i < nn; i++)

for (k = 0; k < nn; k++)

for (j = 0; j < nn; j ++)

c[i][j] = c[i][j] + a[i][k]*b[k][j];

time2 = clock();

dub_time = (time2 - time1)/(double) CLOCKS_PER_SEC;

printf("Time -----------------> %lf \n", dub_time);

14/07/2017 9

Measuring execution time in
parallel programs

• Both MPI and OpenMP provide functions for measuring the
elapsed time.

14/07/2017 10

double t1,t2;

t1=MPI_Wtime()

..

t2=MPI_Wtime()

elaspsed=t2-t1;

! In FORTRAN MPI_Wtime is a function

double precision t1,t2

t1 = MPI_Wtime()

..

// OpenMP

t1 = omp_get_wtime()

Profiling (Debugging) MPI with PMPI

• Most MPI implementations provide a profiling interface called
PMPI.

• In PMPI each standard MPI function (MPI_) has an equivalent
function with prefix PMPI_ (e.g. PMPI_Send, PMI_RECV, etc).

• With PMPI it is possible to customize normal MPI commands to
provide extra information useful for profiling (or debugging).

• Not necessary to modify source code since the customized MPI
commands can be linked as a separate library during debugging. For
production the extra library is not linked and the standard MPI
behaviour is used.

• Many third-party profilers (e.g. Scalasca, Vtune, etc) are based on
PMPI.

14/07/2017 11

PMPI Examples

// profiling example
…
count=0

call MPI_Reduce(count,sum,total_sum,1,MPI_DOUBLE,MPI_SUM,
0,MPI_COMM_WORLD,ierr)
call MPI_Reduce(count,sum,total_sum,1,MPI_DOUBLE,MPI_SUM,

0,MPI_COMM_WORLD,ierr)
…
subroutine MPI_Reduce(count,sum, total_sum,

one,datatype,op,dest,comm,ierr)
real(kind(1.d0)) :: sum, total_sum

integer ierr,count, datatype, dest, tag, comm,op,one
count=count+1
call PMPI_Reduce(sum, total_sum, one,datatype,op,

dest, comm, ierr)
end

Profiling using tools and
libraries

• The time command may be ok for benchmarking based on elapsed time
but is not sufficient for detailed performance analysis.

• Inserting time commands in the source is tedious and not without
overheads. There may also be problems of portability between
architectures and compilers.

• For these reasons common to use tools such as gprof or third-party tools
(some commercial) such Scalasca, Vtune and so on.

• Such profiling tools generally provide a wide variety of performance data:
– no. of calls and timings of subroutines and functions
– use of memory, including cache (“cache hits and misses”) and presence of

memory leaks
– info related to parallelism, e.g. load balancing, thread usage, use of MPI calls,

etc.
– I/O related performance data

• Other related tools, tracing tools, can give information on the MPI
communication patterns.

• All profiling tools have some degree of overhead but unless the analysis is
very detailed (i.e. at the statement level) the overheads should be low.

14/07/2017 13

Profiling using gprof

• The GNU profiler “gprof” is an open-source tool that allows the profiling of serial and parallel

codes.

• It works by using Time Based Sampling : at intervals the “program counter” is interrogated to

decide at which point in the code the execution has arrived.

• To use the GNU profiler:

– Recompile the source code using the compiler profiling flag:
gcc –pg source code

g++ -pg source code

gfortran –pg source code

– Run the executable to allow the generation of the files containing profiling information:

o At the end of the execution in the working directory will be generated a specific file
generally named “gmon.out” containing all the analytic information for the profiler

– Results analysis

gprof executable gmon.out

14/07/2017 14

gprof output – Flat profile

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls us/call us/call name

48.60 0.41 0.41 10000 41.31 81.61 init(double*, int)

27.26 0.64 0.23 10000 23.17 40.30 mysum(double*, int)

20.15 0.82 0.17 100000000 0.00 0.00 add3(double)

3.56 0.85 0.03 frame_dummy

14/07/2017 15

gprof - flat profile column
meanings

• The meaning of the columns displayed in the flat profile is:

• % time: percentage of the total execution time your program spent in this
function

• cumulative seconds: cumulative total number of seconds the computer
spent executing this functions, plus the time spent in all the functions
above this one in this table

• self seconds: number of seconds accounted for by this function alone.

• calls: total number of times the function was called

• self us/calls: represents the average number of microseconds spent in
this function per call

• total us/call: represents the average number of microseconds spent in
this function and its descendants per call if this function is profiled, else
blank

• name: name of the function

14/07/2017 16

gprof – call graph
• Also possible to show relations between subroutines and functions

and the time used:

14/07/2017 17

Call graph (explanation follows)

index % time self children called name

<spontaneous>

[1] 96.4 0.00 0.82 main [1]

0.41 0.40 10000/10000 init(double*, int) [2]

0.41 0.40 10000/10000 main [1]

[2] 96.4 0.41 0.40 10000 init(double*, int) [2]

0.23 0.17 10000/10000 mysum(double*, int) [3]

With appropriate compile options various other outputs are also possible
(call trees, line-level timings, etc)

gprof limitations

• gprof gives no information on library routines such as
MKL (but MKL should already be well optimised)

• The profiler has a fairly high “granularity”, i.e. for
complex programs not easy identify performance
bottlenecks.

• Can have high performance overheads.

• Not suited for parallel programming (requires analysing
a gmon.out file for each parallel process).

14/07/2017 18

PAPI (Performance Application
Programming Interface)

• The PAPI is a standard for accessing information
provided by hardware counters.

• The hardware counters are special registers built into
processors which monitor low-level events such as
cache misses, no. of floating point instructions
executed, vector instructions, etc.

• The hardware counters available depend on the
specific CPU model or architecture and are quite
difficult to use since they may have different names.

• The aim of PAPI is to provide a portable interface to
hardware counters.

14/07/2017 19

PAPI tools

• PAPI can provide low-level information not available from software
profilers.

• The PAPI library defines a large number of Preset Events including:
– PAPI_TOT_CYC- total no. of cycles
– PAPI_TOT_INS – no. of completed instructions
– PAPI_FP_INS – floating point instructions
– PAPI_L1_DCM – cache misses in L1
–

• Although you can call directly the PAPI routines from your C or FORTRAN
programs you are more likely to use tools or libraries based on PAPI.

• Examples of PAPI tools include:
– Tau
– HPC Toolkit
– Perfsuite

• Others may have PAPI as an option (e.g. Vtune)
• The general procedure (e.g. Tau) is to recompile with the PAPI-enabled

library.

14/07/2017 20

Scalasca

• Scalable performance analysis of large-scale applications.
• Tool originally developed by Felix Wolf and co-workers from

the Juelich Supercomputing Centre.
• Available for most HPC architectures and compilers and

suitable for systems with many thousands of cores (often the
best option for Bluegene)

• Free to download and based on “the New BSD open-
source license” (i.e. free but copyrighted)

• Scalasca 2.x based on the Score-P profiling and tracing
infrastructure and uses the and CUBE4 format profiles and
OTF2 (Open Trace Format 2) format for event traces.

• Score-P and the CUBE-GUI need to be downloaded separately.

14/07/2017 21

Using Scalasca 2.x

1. Compile and link as normal but with scorep:
– scorep mpif90 -c prog.f90

– scorep mpif90 –o prog.exe prog.o

2. Run using the scan (= scalasca –analyze)
command + mpirun
– scan mpirun –n 4 ./prog.exe

3. This will create a directory e.g.
scorep_DLPOLY_16_sum which can analysed with
the square (=scalasca –examine) command
– square scorep_DLPOLY_16_sum

14/07/2017 22

Using scalasca 2.x

1. Flat (summary) profile
– square -s scorep_DLPOLY_16_sum
– less ./scorep_DLPOLY_16_sum/scorep.score

14/07/2017 23

Estimated aggregate size of event trace: 544MB

Estimated requirements for largest trace buffer (max_buf): 35MB

Estimated memory requirements (SCOREP_TOTAL_MEMORY): 37MB

(hint: When tracing set SCOREP_TOTAL_MEMORY=37MB to avoid intermediate flushes

or reduce requirements using USR regions filters.)

flt type max_buf[B] visits time[s] time[%] time/visit[us] region

ALL 36,686,355 21,696,937 93.17 100.0 4.29 ALL

USR 35,811,984 21,377,014 15.56 16.7 0.73 USR

MPI 695,056 205,337 30.43 32.7 148.20 MPI

COM 186,446 114,586 47.18 50.6 411.76 COM

USR 16,463,174 10,100,000 8.16 8.8 0.81 vdw_forces_

USR 16,463,174 10,100,000 3.24 3.5 0.32 images_

USR 982,540 304,475 0.21 0.2 0.68 parse_module.strip_blanks_

USR 657,332 204,422 0.11 0.1 0.54 parse_module.get_word_

USR 633,126 382,636 0.08 0.1 0.20 uni_

USR 326,352 100,802 0.63 0.7 6.27 parse_module.word_2_real_

MPI 272,344 73,856 5.80 6.2 78.58 MPI_Allreduce

USR 244,764 150,024 0.11 0.1 0.76 box_mueller_

Using scalasca - filters

• Just like any profiling tool, scalasca induces some overhead which may skew the
results.

• Particularly relevant for user routines which although require little time are called
very frequently: the relative overhead is then quite large.

• In these cases possible to filter the profiling such that these functions are not
measured.

• Filtering also useful if the program to be profiled is large and a full event trace is
likely to exceed the memory available (look at the first few lines of the summary)

14/07/2017 24

SCOREP_REGION_NAMES_BEGIN

EXCLUDE

vdw_forces

images_

SCOREP_REGION_NAMES_END

square –s –f my.filt scorep_DLPOLY_16_sum

Using scalasca 2.x - GUI
2. GUI

– square scorep_DLPOLY_16_sum

14/07/2017 25

Scalasca and event tracing
• As well as time-averaged summaries, possible to generate also

time-stamped event traces.
• Note that because trace profiles can be very large it is strongly

recommended to set the total memory allowed and use filters.

14/07/2017 26

export SCOREP_TOTAL_MEMORY=55M

scan –q –t –f myfilter.filt mpirun –n 64 ./myexe

square scorep_DLPOLY_16_trace

Similar output to a profile
but gives time-dependent
information.

Intel Trace Analyzer and
Collector (ITAC)

• Graphical tool from Intel for understanding MPI application
behaviour.

• Convenient because no need to re-compile the program.

14/07/2017 27

#!/bin/bash

#PBS -l select=1:ncpus=4:mpiprocs=4

#PBS -l walltime=30:00

#PBS -A cin_staff

#PBS -W group_list=cin_staff

cd $PBS_O_WORKDIR

module load autoload intelmpi

module load mkl

source /cineca/prod/compilers/intel/pe-xe-

2016/binary/itac/9.1.1.017/intel64/bin/itacvars.sh

mpirun -trace -n 2 ./rept90-mkl.x

traceanalyzer ./rept90-mkl.stf

ITAC output

14/07/2017 28

This example shows that the application spends very little time in MPI
calls and when it does only in collectives.

ITAC output -2

14/07/2017 29

shows more detailed
interactions between MPI
processes

Intel Vtune Amplifier

• Comprehensive Intel Performance profiler.

• Best used in interactive mode of PBS.

14/07/2017 30

qsub –l select=1:ncpus=16,walltime=30:00 –A cin_staff –I

cd $PBS_O_WORKDIR

module load autoload vtune

amplxe-gui &

or command line

amplxe-cl –collect hotspots -- home/myprog

Vtune

14/07/2017 Tools and Profilers, Summer School 2016 31

colours are
misleading because
assumes all cores in
the node should be
used

Some considerations

• Debugging and profiling/tracing are closely related – unexpected
poor performance or parallel scaling are also bugs.

• Like debugging, parallelism complicates the profiling procedure.
Parallel profiling tools require time and effort. Useful to start with
serial program and/or flat profiles before full-scaling profiling.

• Other useful hints:
– use multiple test cases to activate all the code parts
– use “realistic” test cases, and with different sizes
– try different tools and, if possible, different architectures
– for very complex programs consider isolating the critical code in mock-

ups or miniapps to simplify the procedure

14/07/2017 32

Hands-on Session: Profiling

14/07/2017 33

Hands-on Session: Himeno benchmark

• The Hands-on session is based on a modified version of the
well-known Himeno benchmark

• Himeno benchmark (from Dr. Ryutaro Himeno) takes the core
of Poisson equation solver (Jacobi iterative scheme)

• Performances (MFLOPS/GFLOPS) obtained immediately

• It can be used to quickly evaluate computer performances

• Many programming paradigms (Serial C, Serial Fortran,
OpenMP, MPI, MPI+openMP, MPI+CUDA, ….)

• Fortran MPI version used for this session

14/07/2017 34

• A simple bug (in performances) is injected in Himeno
benchmark main’solver part (jacobi subroutine)

• Overall computational performances are affected by
simply doubling the process-0 workload

• We know the (performance) bug in advance….

• ….sadly, this is very often not the case!

• The idea is to use different profiling tools to understand
their path-to-solution effectiveness…

14/07/2017 35

Hands-on Session: Himeno benchmark

• Download profiling.tgz from hpc-forge CINECA repository

• Extract the SUMMER2017_PROFILING directory

• Enter in the main directory. Follow the instructions contained
in the README file for the BASIC HIMENO IMPLEMENTATION
part

14/07/2017 36

Hands-on Session: Exercise 1

• You should probably have verified the impact of the
performance bug running the two executables (balanced and
unbalanced versions)

• This investigation should be fine, at least for this simple test.

• More in general, try to span other useful parameters (number
of MPI processes, size of the test case…)

14/07/2017 37

Lesson learned: Exercise 1

Profiling tools: three different ones

14/07/2017 38

• Enter in the SCALASCA sub-directory. Follow the instructions
contained in the README file for the SCALASCA HIMENO
PROFILING part

14/07/2017 39

Hands-on Session: Exercise 2

Lesson learned: Exercise 2

• You should probably have the
SCOREP and TRACES folders, both
for balanced and unbalanced
tests.

• the SCOREP output (this is the
summary SCALASCA profiling)
should be fine at least for the

good (balanced) test case.

14/07/2017 40

Lesson learned: Exercise 2

• Instead, for the bad (unbalanced)
test case is not so easy to
understand the root of the poor
performances.

• On deeper TRACES analysis it is
apparent how the problem is not
only confined to the bug injected
into the jacobi subroutine but
more on the delay (direct and
indirect) of process-0 which
causes late sender wait states.

14/07/2017 41

• Enter in the ITAC sub-directory. Follow the instructions
contained in the README file for the ITAC HIMENO
PROFILING part

14/07/2017 42

Hands-on Session: Exercise 3

Lesson learned: Exercise 3
• You should probably have the *stf* files, both for balanced and unbalanced tests.
• the ITAC analysis is quite clear and all the relevant informations are easily

included in the profiler output windows.

14/07/2017 43

Lesson learned: Exercise 3

• For the bad
(unbalanced)
test case you
have to
navigate into
the different
levels of
investigation,
but this
operation is
easily
understood.

• In the end,
ITAC tool is
quite good
for a quick-
and-dirty
analysis of
simple codes.
May not be
the best
choice for
huge size,
complicated
parallel
applications.

14/07/2017 44

• Enter in the VTUNE sub-directory. Follow the instructions
contained in the README file for the VTUNE HIMENO
PROFILING part

14/07/2017 45

Hands-on Session: Exercise 4

Lesson learned: Exercise 4
• You should probably have the Himeno_hot_unbalanceddirectory (for the

unbalanced tests)
• the VTUNE analysis report related to the so-call (basic or advanced) HotSpots
• Bottlenecks finding in an intuitive and clear representation

14/07/2017 46

Lesson learned: Exercise 4
• You should have done the VTUNE analysis report related to HotSpots for the unbalanced test case can be enriched.

• Besides, Top HotSpots, the most time consuming functions for the unbalanced test case and the processes
represantation should be available.

14/07/2017 47

