i SCA

SuperComputing Applications and Innovation

Profiling Techniques and Tools

Tools and techniques for performance
analysis

Piero Lanucara, Andy Emerson,
Alessandro Marani SCAI team

Profiling Techniquesand Tools,

14/07/2017 Summer School 2017

= SCAI
- Contents

* Motivations

* Manual Methods

— Measuring execution time

— Profiling PMPI
* Performance Tools

— gprof

— Papi

— Scalasca, Vtune and other packages
* Some advice

CINECA
14/07/2017 5 PRACE

T SCAIl Motivations for performance
profiling

 Efficient programmingon HPC architectures e A,
is difficult Qa O e
— because modern HPC architectures are B N
complex:

* different types and speeds of memory
(memory hierarchies)

* presence of accelerators such as MICs, FPGAs

and GPUs
* mutiple filesystem technologies (local, gpfs,
SSD, etc) .
* network topologies 0 o
Btj el
- PARALLELISM ! “mized ApeW

 For programmersitis essential to use
profiling tools in order to optimise and
parallelise their applications. Just using—03
is not usually enough.

* Even for users(rather than programmers)it
may be usefulto profilein orderto choose
the best build, hardware and input options.

CINECA
14/07/2017 3 PRACE

o SCA Measuring execution time
without source code

 UNIX/Linux users often use the time command.

* This has the advantages that the source code does not need to be
re-compiled and has no overhead (i.e. non-intrusive). Note the
different formats of the UNIX and the bash versions.

* Ina script, convenientto reporton the wall time using date.

/usr/bin/time ./a.out
0.00user 0.00system 0:10.07elapsed 0%CPU (Oavgtext+0avgdata
848maxresident)k inputstOoutputs (Omajor+259minor) pagefaults Oswaps

time ./a.out

real Oml10.695s
user Om0.001s
Sys Om0.006s

start time=$(date +"%s")
end time=S$ (date +"%s")

walltime=$ ((Send time-$Sstart time))
echo "walltime Swalltime"

CINECA
14/07/2017 4 PRACE

= SCA ot
Using time

* For running benchmarks we are normally most interested
in the elapsed or walltime, i.e. the difference between
program start and program finish (for parallel programs this
means when all tasks and threads have finished).

e But the various time commands can also give other useful
information on resources used:

/usr/bin/time ./loop

40.90user 0.00system 0:41.00elapsed 99%CPU In the first example we have
(Oavgtext+0avgdata 848maxresident)k keptthe(ZPLIbusy with

' +
Oinputs+Ooutputs 99% of the CPU used.

(Omajor+284minor)pagefaults Oswaps
In the second example the

/usr/bin/time ./sleep CPU has been sent to sleep!
0.00user 0.00system 0:10.00elapsed 0%CPU

(Oavgtext+0avgdata 848maxresident)k

Oinputs+0Ooutputs

(Omajor+259minor)pagefaults Oswaps

CINECA
14/07/2017 . PRACE

“SCAl
SuperComputing Applicaions and Innovatian U S I n g t O p a n d M P I p ro g ra m S

 For MPI programs convenient to log onto the node where
the program is running and use the top command.

PID USER

8462
8460
8461
8463
8464
8465
8466
8467

In this way you can check that you really are running a parallel programand multiple
cores are being used in a “balanced” fashion(i.e. %CPU=~100%).
top is also useful for the checking the memory required for each process.

14/07/2017

aemerson
aemerson
aemerson
aemerson
aemerson
aemerson
aemerson
aemerson

PR NI
20
20
20
20
20
20
20
20

O O OO OO O Oo

12.
12.

12

12.
12.

12

12.

12

VIRT

284g
284g
.284g
283g
284g
.284g
284g
.283g

RES

102952

96320
104240
100728
105200
102668
105540
102896

SHR S %CPU 3SMEM
R 102.
R 96.
R 96.
R 96.
R 96.
R
R
R

64044
57064
65024
62076
65816
63400
66424
64240

96.
96.
96.

O ool 1O

OO0OO0OO0OO0OO0OO0OOo
RRRPRRRRLRRR

14:
14:

14

14:
14:

14

14:
14:

TIME+ COMMAND
18.
17.
:18.
18.
18.
:19.
18.
19.

64
86
58
85
58
09
42
20

namd?2
namd?2
namd?2
namd?2
namd2
namd2
namd2
namd2

PRACE

CINECA

= SCAN

SuperComputing Applications and Innovation

OpenMP threads

For OpenMP the top command can give something like this

14/07/2017

Tasks: 337 total, 6 running, 331 sleeping, 0 stopped, 0 zombie
%Cpu(s): 93.1 us, 0.1 sy, 0.0 ni, 6.8 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem: 13174488+total, 14130592 used, 11761428+free, 1232 buffers
KiB Swap: 32767996 total, 0 used, 3276799¢ 6393776 cached Mem
PID USER PR NI VIRT RES SHR 3 EM TIME+ COMMAND
4419 aemerson 20 0 933224 279780 5856 .2 0:47.07 test
4428 aemerson 20 0 123820 1824 1160 0. 0.0 0:00.01 top
29436 root 0 -20 9897424 1.217g 109248 S o= 1.0 156:38.92 mmfsd
1 root 20 0 55496 4936 2400 S 0.0 0.0 4:45.87 systemd
2 root 20 0 0 0 0 S 0.0 0.0 0:02.66 kthreadd
3 root 20 0 0 0 0 0.0 0.0 6:40.96 ksoftirgd/0
5 root 0 -20 0 0 0 /s 0.0 0.0 0:00.00 kworker/0:0H
8 root rt 0 0 0 0/ S 0.0 0.0 0:12.88 migration/0
9 root 20 0 0 0 S 0.0 0.0 0:02.28 rcu bh
/
8 OpenMP threads

PRACE CINECA

CINECA SCAI
T MIeasuring execution time within the

program (serial)

* Programmers generally want more information on which parts of the program consume
the most time.

* Both C/C++ and Fortran programmers are used to instrument the code with timing and
printing functions to measure and collect or visualize the time spent in critical or
computationally intensive code’ sections.

U Fortran77
Qetime(),dtime ()

O Fortran90
dcputime(), system clock(), date and time ()

0 C/C++
O clock()

* The programmer must be aware though that these methods are intrusive, and introduce
overheads to the programcode.

PRACE CINECA

o SCA Measuring execution time -
example

C example:

#include <time.h>
clock t timel, time2;

double dub time;

timel = clock();

for (i = 0; i < nn; i++)

for (k = 0; k < nn; k++)

for (j =0, j < nn; j ++)

c[i][3] = cli][3] + ali]l[k]*b[k][]]~

time2 = clock();

dub time = (time2 - timel)/(double) CLOCKS PER SEC;
printf("Time ----—--—-—————————- > %$1f \n", dub time);

CINECA
14/07/2017 9 PRACE

o SCA Measuring execution time in
parallel programs

 Both MPI and OpenMP provide functions for measuring the
elapsed time.

double t1,t2;
t1=MPI Wtime ()

t2=MPI Wtime ()

elaspsed=t2-tl1;

! In FORTRAN MPI Wtime is a function
double precision t1,t2

tl = MPI_Wtime()

// OpenMP
tl = omp get wtime ()

CINECA
14/07/2017 10 PRACE

= SCAN

SuperComputing Applications an d Innova tion

Profiling (Debugging) MPI with PMPI

 Most MPl implementations provide a profiling interface called
PMPI.

* In PMPI each standard MPI function (MPI_) has an equivalent
function with prefix PMPI_ (e.g. PMPI_Send, PMI_RECV, etc).

* With PMPI it is possible to customize normal MPI commands to
provide extra information useful for profiling (or debugging).

* Not necessary to modify source code since the customized MPI
commands can be linked as a separate library during debugging. For
production the extra library is not linked and the standard MPI
behaviouris used.

* Many third-party profilers (e.g. Scalasca, Vtune, etc) are based on
PMPI.

CINECA
14/07/2017 PRAGCF

i SCAI
SuperComputing Applications and Innovation P IVI P I | Xa m p | e S

// profiling example

count=0

call MPI Reduce(count,sum,total sum,1,MPI DOUBLE,MPI SUM,
O,MPI COMM WORLD, ierr)

call MPI Reduce (count,sum, total sum,1,MPI DOUBLE,MPI SUM,
O,MPI COMM WORLD, ierr)

subroutlne MPI Reduce(count,sum, total sum,
one ,datatype,op,dest, comm, 1err)

real (kind(1.d0)) :: sum, total sum
integer ierr,count, datatype, dest, tag, comm,op,one
count=count+l

call PMPI Reduce(sum, total sum, one,datatype,op,
dest, comm, ierr)

end

PRACE CINECA

i SCAl Profiling using tools and
libraries

 The time command may be ok for benchmarking based on elapsed time
but is not sufficient for detailed performance analysis.

* Inserting time commands in the source is tedious and not without
overheads. There may also be problems of portability between
architectures and compilers.

* For these reasons common to use tools such as gprof or third-party tools
(some commercial) such Scalasca, Vtune and so on.
 Such profiling tools generally provide a wide variety of performance data:
— no. of calls and timings of subroutines and functions

— use of memory, including cache (“cache hits and misses”) and presence of
memory leaks

— inforelated to parallelism, e.g. load balancing, thread usage, use of MPI calls,
etc.

— 1/Orelated performance data
e Other related tools, tracing tools, can give information on the MPI
communication patterns.

e All profiling tools have some degree of overhead but unless the analysis is
very detailed (i.e. at the statement level) the overheads should be low.

CINECA
14/07/2017 13 PRACE

= SCAN

SuperComputing Applications and Innovation

Profiling using gprof

The GNU profiler “gprof” is an open-source tool that allows the profiling of serial and parallel
codes.

It works by using Time Based Sampling : at intervals the “program counter” is interrogated to
decide at which point in the code the execution has arrived.

Tousethe GNU profiler:

— Recompile the source code using the compiler profiling flag:
gcc —pg source code

g++ -pg source code

gfortran —-pg source code

Run the executable to allow the generation of the files containing profiling information:

0 At the end of the execution in the working directory will be generated a specific file
generally named “gmon.out” containing all the analytic information for the profiler

— Results analysis

gprof executable gmon.out

CINECA
14/07/2017 1 PRACE

= SCA -
SumerComping Applications and Innovaton g p r Of O u t p u t —_— F I at p rOfl I e

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls wus/call wus/call name

48.60 0.41 0.41 10000 41.31 81.61 1init (double*, int)
27.26 0.64 0.23 10000 23.17 40.30 mysum(double*, int)
20.15 0.82 0.17 100000000 0.00 0.00 add3(double)

3.56 0.85 0.03 frame dummy

CINECA
14/07/2017 15 PRACE

7 OCAl gprof - flat profile column
meanings

 The meaning of the columns displayed in the flat profile is:

* % time: percentage of the total execution time your program spent in this
function

 cumulative seconds: cumulative total number of seconds the computer
spent executing this functions, plus the time spent in all the functions
above this one in this table

* self seconds: number of seconds accounted for by this function alone.
e calls: total number of times the function was called

* self us/calls: represents the average number of microseconds spent in
this function per call

« total us/call: represents the average number of microseconds spent in

this function and its descendants per call if this function is profiled, else
blank

* name: hame of the function

CINECA
14/07/2017 16 PRACE

= SCAN

SuperComputing Applications and Innovation

gprof — call graph

* Also possible to show relations between subroutines and functions
and the time used:

Call graph (explanation follows)

index % time self children called name
<spontaneous>
[1] 96.4 0.00 0.82 main [1]
0.41 0.40 10000/10000 init (double*, int) [2]
0.41 0.40 10000/10000 main [1]
[2] 96.4 0.41 0.40 10000 init (double*, int) [2]
0.23 0.17 10000/10000 mysum (double*, int) [3]

With appropriate compile options various other outputs are also possible
(call trees, line-level timings, etc)

CINECA
14/07/2017 17 PRACE

SuperComputing Applications and Innovation

gprof limitations

* gprof gives no information on library routines such as
MKL (but MKL should already be well optimised)

* The profiler has a fairly high “granularity”, i.e. for
complex programs not easy identify performance
bottlenecks.

* Can have high performance overheads.

* Not suited for parallel programming (requires analysing
a gmon.out file for each parallel process).

CINECA
14/07/2017 18 PRACE

" SCAIl pAPI (Performance Application
Programming Interface)

 The PAPI is a standard for accessing information
provided by hardware counters.

 The hardware counters are special registers built into
processors which monitor low-level events such as
cache misses, no. of floating point instructions
executed, vector instructions, etc.

 The hardware counters available depend on the
specific CPU model or architecture and are quite
difficult to use since they may have different names.

 The aim of PAPIis to provide a portable interface to
hardware counters.

CINECA
14/07/2017 19 PRACE

“ SCA
S —— PAP| tools

* PAPI can provide low-level information not available from software
profilers.

 The PAPI library defines a large number of Preset Events including:
— PAPI_TOT_CYC- total no. of cycles
— PAPI_TOT_INS — no. of completedinstructions
— PAPI_FP_INS —floating point instructions
— PAPI_L1 DCM—-cache missesin L1

e Although you can call directly the PAPI routines from your C or FORTRAN
programs you are more likely to use tools or libraries based on PAPI.

* Examples of PAPI tools include:
— Tau
— HPC Toolkit
— Perfsuite
e Others may have PAPI as an option (e.g. Vtune)

 The general procedure (e.g. Tau) is to recompile with the PAPI-enabled
library.

CINECA
14/07/2017 20 PRACE

“ SCA
it Scalasca

* Scalable performance analysis of large-scale applications.

* Tooloriginally developed by Felix Wolf and co-workers from
the Juelich Supercomputing Centre.

* Available for most HPC architectures and compilers and
suitable for systems with many thousands of cores (often the
best option for Bluegene)

* Freetodownload and based on “the New BSD open-
source license” (i.e. free but copyrighted)

* Scalasca 2.x based on the Score-P profiling and tracing
infrastructure and uses the and CUBE4 format profiles and
OTF2 (Open Trace Format 2) format for event traces.

* Score-Pandthe CUBE-GUI needto be downloaded separately.

scalasca 3

CINECA
14/07/2017 1 PRACE

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn USlng Scalasca 2.X

1. Compile and link as normal but with scorep:
— scorep mpif90 -c prog.fo0
— scorep mpif90 —o prog.exe prog.o
2. Runusing the scan (= scalasca—analyze)
command + mpirun
— scanmpirun—n 4 ./prog.exe

3. This will create a directory e.g.
scorep_DLPOLY 16 _sum which can analysed with

the square (=scalasca—examine) command
— squarescorep DLPOLY 16 sum

CINECA
14/07/2017 s PRACE

= SCAI

1. Flat (summary) profile
— square-sscorep DLPOLY 16 sum
— less ./scorep_DLPOLY 16 sum/scorep.score

Estimated aggregate size of event trace: 544MB
Estimated requirements for largest trace buffer (max buf): 35MB
Estimated memory requirements (SCOREP TOTAL MEMORY) : 37MB

(hint: When tracing set SCOREP TOTAL MEMORY=37MB to avoid intermediate flushes
or reduce requirements using USR regions filters.)

flt type max buf[B] visits time[s] time[%] time/visit[us] region
ALL 36,686,355 21,696,937 93.17 100.0 4.29 ALL
USR 35,811,984 21,377,014 15.56 16.7 0.73 USR
MPI 695,056 205, 337 30.43 32.7 148.20 MPI
COM 186,446 114,586 47.18 50.6 411.76 COM
USR 16,463,174 10,100,000 8.16 8.8 0.81 vdw forces
USR 16,463,174 10,100,000 3.24 3.5 0.32 images_
USR 982,540 304,475 0.21 0.2 0.68 parse module.strip blanks
USR 657,332 204,422 0.11 0.1 0.54 parse module.get word
USR 633,126 382, 636 0.08 0.1 0.20 uni_
USR 326,352 100,802 0.63 0.7 6.27 parse module.word 2 real
MPI 272,344 73,856 5.80 6.2 78.58 MPI Allreduce
USR 244,764 150, 024 0.11 0.1 0.76 box mueller

14/07/2017 23 PRACE

CINECA

= SCAN

SuperComputing Applications and Innovation

Using scalasca - filters

* Just like any profiling tool, scalascainduces some overhead which may skew the
results.

e Particularlyrelevant for user routines which although require little time are called
very frequently: the relative overhead is then quite large.

* Inthese cases possible to filter the profiling such that these functions are not
measured.

* Filtering also useful if the programto be profiled is large and a full event trace s
likely to exceed the memory available (look at the first few lines of the summary)

SCOREP_ REGION NAMES BEGIN
EXCLUDE
vdw_forces
images
SCOREP REGION NAMES END

square -s —-f my.filt scorep DLPOLY 16 sum

CINECA
14/07/2017 " PRACE

= SCAI

SuperComputing Applications and Innovation

2. GUI

Using scalasca 2.x - GUI

— squarescorep DLPOLY 16 sum

- Cube-4.3.0: scorep DLPOLY 16 sum/summary.cubex (on nodel66) S = o

File Display Plugins Help

JJ Restore Setting ¥ Save Settings

|Abso|ute

Metric tree |

| |Absolute

E Call tree | Flat view |

| |Absolute |

E Systemn tree | .] BoxPlot |

- @ 93.17 Time (sec)

- @ 2.17e7 Visits (oce)

-0 0.00 Synchronizations (occ)

- 0.00 Communications {occ)

-l 2.75e8 Bytes transferred (bytes)
-@ 120.00 MPI file operations (occ)

- -F-F-E

- 0,00 Minimum Inclusive Time (sec)
[l 6.11 Maximum Inclusive Time (sec)
- [l 16,00 task_migration_loss

- [0.00 task_migration_win

L

=]

- 7.70 Computational imbalance (sec)

oL

0.00 93,17 (100.00%)

93,17

& 93,17 MAIN_

=]

H-mi93,.17 machine Linux

il

|AI| (16 elements)

il

0.00

53,17 (100.00%)

93.17

0.00 93,17 (100.00%) 93.1

|

Ready

E‘

14/07/2017

PRACE

CINECA

= SCAN

SuperComputing Applications and Innovation

Scalasca and event tracing

* As well as time-averaged summaries, possible to generate also
time-stamped event traces.

* Note that because trace profiles can be very large it is strongly
recommended to set the total memory allowed and use filters.

export SCOREP_TOTAL MEMORY=55M

scan —q -t —-f myfilter.filt mpirun -n 64 ./myexe

square scorep DLPOLY 16 trace

Cube-4.3.0: scorep_DLPOLY_16_trace/trace.cubex (on nodel6§

File Display Plugins Help

” Restore Setting ¥ Sawve Settings

|Absolute

. Metric tree

| |Absolute

E Call tree | Flat view |

<] [ssou Similar output to a profile

-@ 8.91 Time (sec)
I 2817.00 Visits (occ)

400.00 Communications {occ)

DHHHHHw
~pO0EED

3.4
0.00 MPI file operations (occ)
1 0.00 Delay costs (sec)

-3 0.00 MPI

E-O 0.00 Point-to-point

B0 0.00 Collective

HHHDD

0.

207 Wait at N x N
|:| 0.00 Late Broadcast
0 OMP

=]

H=-1 0.0
- 0.0
- [0.48 Critical path (sec)
14/07/2017

E

0.
0
0

224,00 Synchronizations (occ)
0.00 Pairwise synchronizations for ..

6e6 Bytes transferred (bytes)

1Dm®nat8mﬂer£%,/”//

ait states (propagating vs. t..
Wait states (direct vs, |nd|rect

E- W 186 MAIN

l ® 32 initcomms_
32 gsync_
0 machine
setup_module.parset_
2368 setup_module
81 setup_mo
i 1 module conscan
- & parse_module,getrec_
i E-H 32 gsync_
i -0 48 gstate_

O-E-E-E

(- - I D
= o
[e]

EEE
=3
w
]

&-H 80 setup_module.abortsc...

s put gives time-dependent

=-Oi-

E M :
| ® information.

. PRACE CINECA

7 SCAl Intel Trace Analyzer and
Collector (ITAC)

* Graphical tool from Intel for understanding MPI application
behaviour.

* Convenient because no need to re-compile the program.

#!/bin/bash

#PBS -1 select=l:ncpus=4:mpiprocs=4
#PBS -1 walltime=30:00

#PBS -A cin_staff

#PBS -W group list=cin staff

cd $PBS_O WORKDIR

module load autoload intelmpi

module load mkl

source /cineca/prod/compilers/intel/pe-xe-
2016/binary/itac/9.1.1.017/intel64/bin/itacvars. sh
mpirun -trace -n 2 ./rept90-mkl.x

traceanalyzer ./rept90-mkl.stf

CINECA
14/07/2017 57 PRACE

= SCAl
SuperComputing Applications and Innovation I I A C O l | t p ' | t

Summary: rept90-mkl. x.stf

Total time: 5.56e+03 sec. Resources: 16 processes, 1 node. Continue >
Ratio Top MPI functions

This section represents a ratio of all MPI calls to the This section lists the most active MP| functions from all MPI calls in the

rest of your code in the application, application.

MPI_Bcast I 42.7 sec (0.769 %)

MPI Reduce NN 15 sec (0.27 %)

MPI_Finalize 0.026 sec (0.000469 %)

MPI_Gather 0.0112 sec (0.000201 %)
MPI_Comm_size 0.00712 sec (0.000128 %)

B Serial Code - 5.5e+03 sec 98.9 %
B WPl calls - 57.8 sec 1%

This example shows that the application spends very little time in MPI
calls and when it does only in collectives.

CINECA
14/07/2017 58 PRACE

7 sCAl
SuperCompuiing Appiications and Innovation I T A C O u t p u t - 2

m Intel ®@ Trace Analyzer - [1: /gpfs/work/cin_staff/faemerson/course_practical/profilers/itac/dl_poly/ - o0 x
e File Options Project Windows Help IS |3 =|f

View Cha Navigate Advanced Layout ShOWS more detaiIEd
B [100705 102105 000 70 PSRN interactions between MPI

' processes

PO
p1
p2
p3
pa
ps
P65
p7
o
g

Duration (%) Duration

Flat Profile Load Balance Call Tree Call Graph Performance Issue

i - i \Wait at Barrier 16.05% 89.7445e-3 5
All Processes - Late Receiver 0.01% 73e-6s
- Late Sender 0.00% 17e-6 s

Name TSelf TSelf TTotal

4 All Processes

- Group Application 453.386e-3 s NN 559
“ Group MPI 105.901e-3 s [l 105.

“ Show advanced...

Affected Processes Source L4 ¥

Description

Select performance issue to see details.

14/07/2017 29

i SCAl

SuperComputing Applications and Innovation

Intel Vtune Amplifier

* Comprehensive Intel Performance profiler.
Best used in interactive mode of PBS.

gsub -1 select~=l:ncpus=16,walltime=30:00 -A cin staff -I
cd $PBS_O WORKDIR

module load autoload vtune

amplxe-gui &

or command line

amplxe-cl -collect hotspots -- home/myprog

CINECA
14/07/2017 30 PRACE

= SCAI

SuperComputing Applications and Innovation

Vtune

" Basic Hotspots Hotspots by CPU Usage viewpoint (change) @ Intel VTune Amplifier XE 207

e Mc Ll & summary B -up el % ree B Platform
Function Module CPU Time
link_cell_pairs, DLPOLY.Z 8.487s
vdw forces DLPOLY.Z 4.993s
pmpi_finalize libmpifort.se.12 4.018s C O | O u rs a re
intel_memset DLPOLYZ 2.503s
pmpi_sllreduce_ libmpifort.se.12 1.189s

misleading because
assumes all coresin

the node should be

used

CPU Usage Histogram

This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle CPU usage value.

Elapsed Time

Average CPU Usage
Target Uthization

ya
T T T T T
[} 2 4 -] < 8 10 12 14 16

Idl= Poor F@ﬂ
0

Simultaneously Utilized Logical CPUs

Collection and Platform Info

This section provides information about this collection, including result set size and collection platform data

Application Command Line: fgpfsworkfcin_staffjaemerson/corsi+scuolajprofilersjvtunefjob dipoly
Operating System: 3.10.0-123.20.1 .87 x86 64 NAME="CentOS Linux" VERSION="7 (Core)" ID="centos" ID LIKE="rhel fedora* VERSION ID="7"

g e v s e e : . I : I

e Qe = 30s 30.55 31s 31.55 32s 32.55 33s 33.55 345 [V]|Thread
EREyl TR I T T T TN TR TN
CLPOLY.Z (T...
DLPOLY.Z (T...
DLPOLY.Z [T...

python (TID:...

1>

T

(] duk CPU Ti...
[v] iluk Spin a...
MPI C...
[1¥ CPUSa... ¢
[¥*] CPU Usage _
s e, s [k CPUTI... |

o 100 [User functic Il Show inlir I Function:v JA

Thread

. 2L
H [+] 1 Running
d
T

CPU Usage

“ SCA o
Some considerations

* Debugging and profiling/tracing are closely related — unexpected
poor performance or parallel scaling are also bugs.

* Like debugging, parallelism complicates the profiling procedure.
Parallel profiling tools require time and effort. Useful to start with
serial program and/or flat profiles before full-scaling profiling.

e Otheruseful hints:
— use multiple test cases to activate all the code parts
— use “realistic” test cases, and with different sizes
— try different tools and, if possible, different architectures

— for very complex programs consider isolating the critical code in mock-
ups or miniapps to simplify the procedure

CINECA
14/07/2017 32 PRACE

i SCAl - 1
e Hands-on Session: Profiling

14/07/2017

= SCAN

SuperComputing Applications an d Innovation

Hands-on Session: Himeno benchmark

e The Hands-on session is based on a modified version of the
well-known Himeno benchmark

 Himeno benchmark (from Dr. Ryutaro Himeno) takes the core
of Poisson equation solver (Jacobi iterative scheme)

* Performances (MFLOPS/GFLOPS) obtained immediately
* |t can be used to quickly evaluate computer performances

 Many programming paradigms (Serial C, Serial Fortran,
OpenMP, MPI, MPl+openMP, MPI1+CUDA,)

e Fortran MPI version used for this session

CINECA
14/07/2017 34 PRACE

w SCAL

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Hands-on Session: Himeno benchmark

* Asimple bug (in performances)is injected in Himeno
benchmark main’solver part (jacobi subroutine)

* Overall computational performances are affected by
simply doubling the process-0 workload

 We know the (performance) bug in advance....
esadly, this is very often not the case!

 Theideaisto use different profiling tools to understand
their path-to-solution effectiveness...

CINECA
14/07/2017 35 PRACE

= SCA . .
e Hands-on Session: Exercise 1

 Download profiling.tgz from hpc-forge CINECA repository
* Extract the SUMMER2017 PROFILING directory

* Enter in the main directory. Follow the instructions contained
in the READMIE file for the BASIC HIMENO IMPLEMENTATION

part

CINECA
14/07/2017 36 PRACE

i SCAl

SuperComputing Applications and Innova tion

Lesson learned: Exercise 1

* You should probably have verified the impact of the

performance bug running the two executables (balanced and
unbalanced versions)

* This investigation should be fine, at least for this simple test.

* Morein general, try to span other useful parameters (number
of MPI processes, size of the test case...)

CINECA
14/07/2017 37 PRACE

= SCAl .
~Profiling tools: three different ones

14/07/2017 *

= SCA . .
e Hands-on Session: Exercise 2

* Enterin the SCALASCA sub-directory. Follow the instructions
contained in the READMIE file for the SCALASCA HIMENO
PROFILING part

CINECA
14/07/2017 39 PRACE

Lesson learned: Exercise 2

Eile Display Flugins Help

Restore Setting # Save Settings

* You should probably have the =] [P

w | | Absolute -
Metric tree E Call tree Flat view E System tree
SCOREP and TRACES folders, both -o.n. . - . -
» 0.64 initcomm_ * 0O -node deSchsDEU
fO r ba I an Ced an d un ba I an Ced S63a0 Viehs o 002 Infeman. @ 5380 Mpl Eiﬂtl
b B 0P e aperstions toce) D01 Pl Barier @ 5408 HPI Rank 3
P @ 1.67 Computational imbalance (se b
0.00 Minimum Inclusive Time (sec) w @ 0.01 sendp_
tests
. ! ytes) 0.07 MPI_Irecw
O 0 DEALLOCATION_SIZE (bytes) 0.24 MPI_lsend
O 0 bytes_leaked (bytes) 2.11 MPI_Waitall
. . O 0.00 maximum_heap_memory_allo - Ué Eegnl'-qlglz_lrecv
* the SCOREP output (this is th e
e outpu 1S 1S the 3ot
0.09 MP| Allreduce
ope .00 MPI_allraduce
summary SCALASCA profiling)
should be fine at least for the
good (balanced) test case. ‘ -
q " 3 T | &l i4 elements) -
|U.UU 222.611100.00%) 222.51| |U.UU 217.35 (97.64%) 222.51| 0.00 217.38
| s = 1 o
Ready ~

14/07/2017

40

Lesson learned: Exercise 2

performances.

14/07/2017

Instead, for the bad (unbalanced)
test case is not so easy to
understand the root of the poor

On deeper TRACES analysis it is
apparent how the problem is not
only confined to the bug injected
into the jacobi subroutine but
more on the delay (direct and
indirect) of process-0 which
causes late sender wait states.

File Display Plugins Help

Restore Setting ¥ Save Settings

Absolute - Absolute - Absalute -
E Metric tree E Call tree Flat wiew E System tree
b W 406.04 Time (sec) a| v O 0.00 MAIN_ - mﬂ;ﬂm a
5.63ed Visits (occ) b O 0.00 initcomm_ w O -node r0d5c01s12
F @ 8 MFI synchronizations tocc) O 0.00 initmax_ O 0.00 MPI Rank 0
P O 0 MPI pairwise one-sided synchran O 0.00 initmerm_ 46.70 MPI Rank 1
P @ 2.0led MPl communications (acc) O 0.00 initmt_ O 0.00 MPI Rank 2
B O 0 MPIfile aperations (ace) O 0.00 MPI_Barriar 0.45 MPI| Rank 3
B E 4.2429 MPI bytes transferred (byte w O 0.00 jacobi_
w O 0.00 Delay costs (sec) w O 0.00 sendp_
b @ 135.11 MP w O 0.00 sendp3_
w 0O 0.00 MP| point-to-point wait states 0 0.00 MP|_Jrecw
w O 0.00 Propagating wait states O 0.00 MPI_Isend
@ 45.78 Late Sender
0O 0.00 Late Receiver w 0O 0.00 sendp2_
w O 0.00 Terminal wait states 0O 0.00 MPI_lrecw
@ 93.08 Late Sender O 0.00 MPI_Isend
O 0.00 Late Receiver @ 45.92 MFI_Waitall
w O 0.00 MP| point-to-point wait states O 0.00 MP]_Allreduce
w [0 0.00 Direct wait states O 0.00 MPI_Allreduce
0 0.00 MPI_Finalize
00 0.00 Late Receiver
w 0 0.00 Indirect wait states
O 45.78 Late Sender
O 0.00 Late Recejver
b @ 10151 Critical path isec)
w O 0.00 Performance impact (sec)
w O 0.00 Critical-path activities
@ 266.56 Activity impact
P @ 139.11 Imbalance impact
0.37 Meon-critical-path activities -
P @ 65.50 Computational imbalance (s 4]
ol
q ¥ q ¥ All (4 elements) -
|u.uu 93.08 (67.03%) 133.ss| |n.nu 47.16 (50.66%) 93.us| |0.ou d?.16|
== | == 1

Selected "MPI_Waitall”

41

= SCA . .
e Hands-on Session: Exercise 3

* Enterin the ITAC sub-directory. Follow the instructions
contained in the READMIE file for the ITAC HIMENO
PROFILING part

CINECA
14/07/2017 4 PRACE

Lesson learned: Exercise 3

You should probably have the *stf* files, both for balanced and unbalanced tests.

the ITAC analysis is quite clear and all the relevant informations are easily
included in the profiler output windows.

AL File Options Project Windews Help 18l x
Summary: himeno.mpi.balanced.stf

Total time: 222 sec. Resources: 4 processes, 1 node.

Ratio Top MPI functions
This section represents a ratio of all MPI calls to the rest of your code in the This section lists the most active MPI functions from all MPI calls in the application.
application.

Pl waitall [=40 sec (1.57 %)
MP_isend [N 0.48 sec (0.216 %)
MPI_Allreduce [0,202 sec (D.0908 %)

MPI_recy [0.147 sec (0.0664 %)
MPI_Barrier | 0.0319 sec (0.0144 %)
[serial Code -218 sec 98%
B OpenMP -0 sec 0%
B MPicalls-4.36sec 1.9%

Where to start with analysis

For deep analysis of the MPI-bound application click "Continue =" to open the tracefile View and To optimize node-level performance use:

leverage the Intel® Trace Analyzer functionality: Intel® VTune ™ Amplifier XE for:

- algorithmic level tuning with hpe-performance and threading efficiency analysis;

- microarchitecture level tuning with general exploration and bandwidth analysis;

Intel® Advisor for:

- vectorization optimization and thread prototyping.

Use the following command lines to run these tools for the most CPU-bound rank.
Intel® VTune ™ Amplifier XE:

mpirun -gtool “amplxe-cl -collect hpc-performance -r result:2" . /himeno.mpi.balanced

- Performance Assistant - to identify possible performance problems
- Imbalance Diagram - for detailed imbalance overview
- Tagging/Filtering - for thorough customizable analysis

Intel® Advisor:

mpirun -gtool "advixe-cl -collect survey:2" ./himeno.mpi.balanced

14/07/2017

Lesson learned: Exercise 3

AC File Options ows Help

View Charts Navigate wanced Layout

= E B 0.000000 102206 557: 102.206 55 m O, Al Processes [Majer Function Groups ¢ Y ‘* g

For the bad
(unbalanced)
test case you

Load Balance Call Tree Call Graph Performance |ssue Duration (%) Duratian

- Late Sender 34.49% 141.006 5
i - Wait at Barr... 0.07% 280.941e-35
have to Children of Al Processes -Late Recever 0.08% 23421435
. . - Late B .. 0.00% 1.995e-3
navigateinto [wme Tself TSelf Thal #Calls TSelf/call e Broa s
1 265.66 5 408.822 5 4 66.4149 s
the different 101651 s NN 102203 s 1 loless
levels of 55.1037 s 102.207 s 1 551037 s
. . . i i~ Process 2 54.8771 s 102.206 s 1 54.877L s
investigation, rocess 3 53.9877 = 102.206 s 1 53.9877 5
but th|s 4 Group MPI 143162 s 143162 s 44216 3.23779e-3 s
. . b Process 0 51163de-3s 511634e-3s 11054 46.285e6 s
operation is - Process 1 47.1028 s [47.1028 5 11054 4.26115e-3 s
easily rocess 2 47.3291 s (N 47.3291 s 11054 4.28163e-3 s
- Process 3 48.2185 s (I 48.2185 s 11054 4.36209e-3 s
understood.
In the end,
ITAC tool is
quite good
for a qUICk_ Description
and-dl.rty Late Sender -~
analysis of
simple codes.
May not be - ' —
St
the best .
choice for wait time
huge size,
complicated P2—| receive |—
parallel time
applications. »
This prablem eccurs when an MPI send operation is initiated later than the correspanding call ta the MFI blacking receive operation.
A5 a result, the receive operation has to wait for the data.
To resalve this problem
« Move the call for sending messages earlier to make sure that send and receive operations happen at approximately the same
time. This can be dane by lessening the camputatian prior to the send function call or by adding computation prier to the
recaive function call. -
« lse nan-hlacking receive functions (MPI Iracv)

14/07/2017 44

= SCA . .
e Hands-on Session: Exercise 4

* Enter in the VTUNE sub-directory. Follow the instructions
contained in the READMIE file for the VTUNE HIMENO
PROFILING part

CINECA
14/07/2017 45 PRACE

Lesson learned: Exercise 4

You should probably have the Himeno_hot_unbalanced directory (for the

unbalanced tests)

the VTUNE analysis report related to the so-call (basic or advanced) HotSpots
Bottlenecks finding in an intuitive and clear representation

& <no current project> - Intel VTune Amplifier

ProjectNavigator

1

Wekome

Pz by oS O

Elapsed Time : 104.073s

CPU Time —: 408.758s
Effective Time ~: 292.375s
Spin Time = 116.383s &

Communication (MPI1) 116.583s &
Other % 0.4\

| Himeno_pot_.. X

[Z] Basic Hotspots Hotspots by CPU Usage viewpoint (change) &

4 Colkction Log ([Analysis Tags! o Anabsk Type [Summary & Bollom-up (Y CalkeiCalks

Overhead Time ~:

CPU tima spenton wai
[

its for MPI communication

Total Thread Count
Paused Time

Top Hotspots

performance,

sne eun=r Function Medule
Jacobi himene.mpi.unbalanced
pmpi_waitall_ libmpifort.so.12

__intel_avx_rep_memcpy himeno.mpi.unbalanced
psm2_mgq_iprobe2 libpsm2.s0.2

psm2_mq_ipeek2 libpsm2.s0.2

CPU Usage Histogram

the Idle CPU usage value,

14/07/2017

and can

application performance and scakbility. This can be
causad by load imbaknce between ranks, active
communications or non-optimal settings of MPI library.
Explore details on communication inefficiencies with
Intel Trace Analyzer and Collector.

CPU Time
236.770s
116.293s

27.795s
12.839s
10.999s

¥ Topdown Tree

This section lists the most active functions in your application. CGptimizing these hotspot functions typically results in improving overall application

This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to

- m] X z
= =

INTEL TUNE AMPLIFIER XE 2017 ke
Plaffarm (B -

pdf
NLupgra...

46

Lesson learned: Exercise 4

i You should have done the VTUNE analysis report related to HotSpots for the unbalanced test case can be enriched.

. Besides, Top HotSpots, the most time consuming functions for the unbalanced test case and the processes

& <no current project> - Intel YTune Amplifier *

mpiexec.hydm

MP| Busy W...

-
Freieetigser [P 3 | @ I [Welkome " Himena_hot_... %¢ l [El
=] Basic Hotspots Hotspots by CPU Usage viewpoint (change) @ |NTEI_V“|NEAMP"H
< Caollection Log @ Analysis Tamgel A Analysis Type [f] Summary a Botlom-up a CalerCallee a Top-down Tree Plaifform [
Grouping: Function / Call Stack [v | CPU Time Ivl
CPU Time =1 Viewing - 0of0 : selected stack(s)
Function/ Call Stack Effective Time by Utilization " Spin Time No stack information
Bide @Fcor @ oEd Jver Communication (MP[1 | Other
jacobi 236.770s (D 0s 0s
pmpi_waitall_ 0.010s 115.483s 0.800s
__intel_awvx_rep_memcpy 0s 0s
psm2_mg_iprobe2 0s 0s
psm2_mg_ipeek2 Os Os L
tmi_psm2_ipesk 0s 0s
tmi_psm2_iprobe2 0s 0s
__intel_avx_rep_memset 0s 0s
pmpi_isend_ 0s 0s
pmpi_allreduce_ 0.010s 0.020s
T * g initmt 0. 2095 0s 0s
pmpi_irecv_ 0.050s 0.070s Os
E— [+ 1 0.120s 0s 0s
(O Loading... 0 0a0s 0s 0s =
[[T | 2+l
CWQ#C-Ci¢ | 55 10s 155 20s 25s G0s 95s 40a 45 50s S5e 60a 65a 70= 752 60s 855 @0n 054 100s o= |
hime no.mpi.unbal... I Ir‘ -I I.I -I i'l.l-l II-I III.I.I"‘ .Il.l I.I .I II'I 'I|I I'I.I'I'I—I ; I.I 'I|Ill.l .I'I I.I“I 'I I..I .I I'I I.ll .I l'l Il I-I I.I" II.I I-I .Illli I.I.I'I Illl.l . I.I.I.II'I.I i".l .I I.I II.I'I.I -I I.I'I'I I-I .I III II'I 1' — - Running
himeno.mpi.unbal...| [P T U S RO S U T P RO UR P VP TR SR PR U TP
himene.mpi.unbal...| [P TP | [v] dduks CPU Time
himeno mpiurbal | itk Spin and Ov..
: [———
: [—

Process

pmi_poxy

i proxy ° I []® cPU Sampke
mpimun I I:‘ CPU Usage
pmi_pmy |

whoami I

pmi proxy | ﬂ

14/07/2017

