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Problem domain 

• Naive iterative solver of Laplace equation for a variable 
T
– Start with a Gaussian field
– Iterate replacing each value with the mean value of the four neighboring points
– Stop when either the maximum amount of iterations or the convergence is 

reached



Problem domain 

– Analyze the algorithm  (trivial for the Laplace 
example):
• Is the serial algorithm suitable for a a distribute 

parallel MPI implementation?
• Is the serial algorithm still the best wrt performances 

for an MPI version of the code?

– Identify the most computationally demanding parts of 
the problem
• But remember that an MPI parallelization is difficult 

to develop incrementally



Concurrency 

Find concurrency:

– similar operations that can be applied to different parts of the data structure

– domain decomposition: divide data into chunks that can be operated 
concurrently

➔ a task works only its chunk of data 
➔ map local to global variables



Dependencies 

Handle dependencies among tasks:

– Tasks needs access to some portion of another task local data (data sharing)
– Understand the kind and the amount of communications among processes 

required to make anything consistent
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Computational 
Domain 

● The shape of 
the matrixes 
include ghost 
(or halo) points 
to handle (the 
neighbour of) 
boundary points
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● Use a Cartesian 
communicator to 
manage the processes 
and easily map them 
to rectangular 
subdomains

● Subdomains need 
ghost points too
● Some of them are 

the original ghost 
points

● In addition there 
are ghost points 
among inter-
process boundaries
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1D versus 2D 
decomposition

● Why a 2D 
decomposition?

● Data to be 
exchanged:

● 1D: 2N
● 2D: 

4N/√N_proc
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The serial code: Laplace equation

program laplace
   [ … variable declarations … 
]   
   [ … input parameters ... ]
   [ … allocate variables … ]
   [ … initialize field … ]
   [ … print initial output … ]

  [ … computational core 
… ]

  [ … print final output … ]
  [ … deallocate variables … ]
end program laplace  
   

do while (var > tol .and. iter <= maxIter)
      iter = iter + 1
      var = 0.d0       
      do j = 1, n
         do i = 1, n
            Tnew(i,j) = 0.25d0 * (T(i-1,j)+T(i+1,j)+
                                             T(i,j-1)+T(i,j+1))
            var = max(var, abs( Tnew(i,j) - T(i,j) ))
         end do
      end do
 
      Tmp =>T; T =>Tnew; Tnew => Tmp; 

      if( mod(iter,100) == 0 ) &
          write(*,"(a,i8,e12.4)") ' iter, variation:', iter, var

   end do  



The tasks

• (1) Develop an MPI parallel version of the 
laplace.f90/laplace.c serial codes (init and save 
functions are in init_save.f90/c files)       

• (a) Start with a basic MPI implementation using a Cartesian topology and 
blocking communications

• (b) Try to enhance the solution using derived data types
• (c) Try to enhance the solution using non-blocking communications and 

overlapping computations with communications

• (2) Add the OMP parallelization to the blocking MPI 
version to finally develop an hybrid MPI-OMP 
implementation of the code

• Explore the different thread support levels



 MPI Basic - Hints / 1
• First create the Cartesian communicator

– And find the ranks of the neighboring processes

• Define the sizes of the domain for each rank
– Also define the offsets of the sub-domains with respect to the global domain
– If possible try to handle the remainders, otherwise force a constraint

• After that, init_field is easy to parallelize: ind2pos (the 
function which maps the index to the position in the grid) 
remains unchanged provided that the global indexes are 
passed to it

• The print function (save_gnuplot) parallelization 
– might be postponed: check the error at each time step to know if the results are correct
– to parallelize it, let the rank=0  collect all the fields and print (just for didactic purposes) 

but the right way is using MPI I/O 

• At each iteration update the ghost points with the boundary 
points of the neighboring processes
– MPI_Sendrecv may be a good choice
– Declare, allocate and use buffers to perform the communications



MPI Basic - Hints / 2
• Initialize MPI:

– MPI_Init / MPI_Comm_rank / MPI_Comm_size

• Input
– Make only rank=0 read from input
– MPI_Bcast the 3 input numbers to all the processes

• Cartesian topology for processes
– MPI_Dims_create – decompose the number of processes in a rectangular way cart_dims(:)
– MPI_Cart_create – create the Cartesian communicator
– MPI_Comm_rank on the Cartesian communicator
– MPI_Cart_coords – find the coordinates of my process cart_coord(:)
– MPI_Cart_shift (in x and y) – find the ranks of neighboring processes

• Associate the cartesian topology to the computational grid
– Find for each process the sub-domain size and the start indexes wrt to the global domain (in x and y): 

mymsize_x, mymsize_y, mystart_x, mystart_y
• mymsize_x = n/cart_dims(1)
• mystart_x = mymsize_x *cart_coord(1)

– Handle the remainders or force to be multiple (...)

• Allocate T, Tnew, and the buffers (4 send and 4 receive buffers), including the 
ghost points (size=mymsize_x+2). Ghosts not needed for buffers.

• Declare everything you need!



MPI Basic - Hints / 3

• Parallelize init_fields
– Pass mystart_x,mystart_y,mymsize_x,mymsize_y as arguments
– Modify the loop bounds from 0 to mymsize_x/y+1
– Modify the call to ind2pos (pass ix+mystart_x instead of ix)

• Parallelize print function (save_gnuplot) parallelization 
– to parallelize it, let the rank=0 collect all the fields and print ASCII (just for 

didactic purposes)
– the right way would be MPI I/O 

• To focus on MPI advanced features, parallel versions of 
init_fields and save_gnuplot are already provided



MPI Basic - Hints / 4

• Main compute loop:
– Modify the loops bounds (from 1 to mymsize_x/y)
– MPI_Allreduce to the error variable (max among all the processes)
– You are ready to check the first results, just print the error variable after one 

step: serial and parallel codes must give the same results

• To focus on MPI advanced features, the skeletons of 
parallel versions are already provided

• You have to add:
(1) Broadcasting of input parameters
(2) Cartesian topology setup
(3) SendRecv communications
(4) AllReduce communication



MPI Basic - Hints / 5

• Communications
– 4 MPI_Sendrecv are enough: send to left + recv from right, send to right + recv 

from left, send to top + recv from bottom, send to bottom + recv from top

• E.g., send to left + recv from right
– Copy left boundary to a buffer
– Send to left and receive from right

• Copy back the received buffer 
– A conditional statement is required: where and why?



MPI Basic - Hints / 6

• Now probably you will face problems
– Errors when compiling: check the arguments of MPI calls, the MPI types, and 

for Fortran the kinds
– Start verifying that the MPI code still works using 1 processor (mpirun -np 1 …)
– Then try to add the decomposition only on one dimension (mpirun -np 2 …)
– You can check the residuals or you can also check the field to understand the 

origin of the error

• Do not discourage! Parallelizing a code –even 
simple – is not straightforward



MPI Advanced - Improvements

• So far we have a basic MPI parallelization of the original serial code
• Actually many improvements are possible

– which may be possibly mixed
– two common possibilities

Derived datatypes
Avoid copies on buffers 
even for not contiguous 

memory regions

Use non-blocking 
Communications and

overlap them with
computations



MPI Advanced - (1) Overlap 

communications with computations 

• In spite of MPI_Sendrecv, non blocking MPI calls can 
be employed
– MPI_Isend, MPI_Irecv, …

• But, how to make them useful to enhance the 
scalability?
– Since the MPI communications are needed only for ghost nodes some 

operations can be performed simultaneously
– Which operations? The operations which do not involve the ghost points...

• As always, man (and the web, of course) is your friend:
man MPI_Init



(2) Using derived datatypes 

• Restart from basic MPI version
• So far we have been using buffers as temporary storage for non-

contiguous memory regions to send/recv (rows for Fortran and 
columns for C)

• But this can be avoided making the code more readable and 
possibly improving the performances

• Create two MPI derived datatypes (actually just one is really 
mandatory)
– A type for a matrix row: which type is needed in Fortran? And in C?
– A type for a matrix column: which type is needed in Fortran? And in C?

• Then send/recv only 1 element of this type
– No buffer is needed! 
– Just pass to MPI_Sendrecv the first element of the submatrix to pass and specify one 

element of the derived types to pass
– Hint: do not forget to commit the type after creation!



(1) MPI + OpenMP – Hints

• To mix MPI and OpenMP the simplest way is to open the 
OMP parallel region just around the main computing loop 
(the update iteration loop from T to Tnew)
– No direct interaction between MPI and OpenMP
– But MPI_THREAD_FUNNELED should be required according to the standard
– Actually MPI_THREAD_SINGLE (i.e., MPI_Init) also usually works (at least for 

OpenMPI)
– 5 minutes should be enough to complete the hybridization

• Remember to add the openmp compilation option



(2) MPI + OpenMP – Hints

• But the parallel region may be enlarged to include the 
MPI communications
– If the communications are performed by the master threads, 

MPI_THREAD_FUNNELED is enough
– The communications may overlap with the computations: master threads 

performs the communications and then update the boundaries
– At the same time, the other threads start doing bulk updating 
– Probably master threads collaborate after a while in doing that
– The OMP schedule should be modified accordingly

• Remember
– OMP master forces the code to be executed only by master thread
– And the other threads go on



(3) MPI + OpenMP – Hints

• The parallel region may be further enlarged 
including the entire while loop
– MPI_THREAD_SERIALIZED must be employed 
– Now we can overlap pointer exchange and the MPI reduction for the 

error

• Some OMP barriers are needed: where and why?
• Use OMP single 

– to do tasks which must be executed only by one thread: e.g. 
“iter=iter+1”

– Or for the MPI_Allreduce



(4) MPI + OpenMP – Hints

• What about “each thread executing an MPI 
communication”?
– You need MPI_THREAD_MULTIPLE support
– Each thread performs a send/recv: how to implement in OpenMP?
– The other threads immediately start the core updating loop... 
– Then wait for the other threads to finish (how?) and update the boundaries



Evaluating performances

• The different versions can lead to different results in 
term of performances
– But the actual improvements depend on several factors
– And are probably limited for such a didactic example
– Testing in realistic scenarios is mandatory
– For our case let us consider a 5000x5000 grid

1 2 ... 256

MPI basic

Overlap

DDT



Evaluating performances / 2

• To evaluate the improvement given by the hybrid 
programming the scaling evaluation can be more complex
– No improvement expected for such a simple case

   N_MPI 
         /
N_OpenMP

1 2 ... 256

1

2

4

8

16



(1) MPI_THREAD_FUNNELED/1

do while (var > tol .and. iter <= maxIter) 
   <...>     
!$omp parallel do reduction(max:myvar)
   do j = 1, mymsize_y
     do i = 1, mymsize_x
        Tnew(i,j) = 0.25d0 * ( T(i-1,j) + T(i+1,j) +  &
                               T(i,j-1) + T(i,j+1) )
        myvar = max(myvar, abs( Tnew(i,j) - T(i,j) ))
     end do
   end do
!$omp end parallel do
   <...>  
enddo 



(1) MPI_THREAD_FUNNELED / 2

do while (var > tol .and. iter <= maxIter) 
   <...> 
!$omp parallel
!$omp master
   <MPI SEND_RECV>
   <BOUNDARY UPDATE>
!$omp end master
!$omp do reduction(max:myvar) schedule(dynamic,125)
   <CORE UPDATE>
!$omp end do
!$omp master
   myvar = max(myvar,mastervar)
!$omp end master
!$omp end parallel
   <...>  
enddo 



(2) MPI_THREAD_SERIALIZED
!$omp parallel

   do while (var > tol .and. iter <= maxIter)

!$omp barrier

!$omp single

      iter = iter + 1 ; var = 0.d0 ;  myvar = 0.d0 ;  mastervar = 0.d0

!$omp end single

!$omp master

      <MPI SEND_RECV>

      <BOUNDARY UPDATE>

!$omp end master

!$omp do reduction(max:myvar) schedule(dynamic,125)

      <CORE UPDATE>

!$omp end do

!$omp single

      Tmp =>T; T =>Tnew; Tnew => Tmp;

!$omp end single nowait

!$omp single

      myvar = max(myvar,mastervar)

      call MPI_Allreduce(myvar, var, 1, MPI_DOUBLE_PRECISION, & 

                         MPI_MAX, MPI_COMM_WORLD, ierr)

!$omp end single

   end do

!$omp end parallel



(3) MPI_THREAD_MULTIPLE
!$omp parallel

   do while (var > tol .and. iter <= maxIter)

!$omp barrier

!$omp single

      iter = iter + 1 ; var = 0.d0 ;  

      myvar = 0.d0 ;  mastervar = 0.d0

!$omp end single

!$omp single

      <1 MPI SEND_RECV>

!$omp single nowait

!$omp single

      <2 MPI SEND_RECV>

!$omp single nowait

!$omp single

      <3 MPI SEND_RECV>

!$omp single nowait

!$omp single

      <4 MPI SEND_RECV>

!$omp single nowait

!$omp do reduction(max:myvar) schedule(dynamic,125)

      <CORE UPDATE>

!$omp end do

!$omp do reduction(max:myvar) 

      <BOUNDARY UPDATE>

!$omp end do

!$omp single

      Tmp =>T; T =>Tnew; Tnew => Tmp;

!$omp end single nowait

!$omp single

  call MPI_Allreduce(myvar, var, 1, & 

  MPI_DOUBLE_PRECISION,MPI_MAX,MPI_COMM_WORLD, ierr)

!$omp end single

   end do

!$omp end parallel
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