
Code Parallelization
a guided walk-through

f.salvadore@cineca.it

2016

Code Parallelization

two stages to write a parallel code

– problem domain
➔ algorithm

– program domain
➔ implementation

two stages to write a parallel code

– problem domain
➔ algorithm

– program domain
➔ implementation

Code Parallelization

Problem domain

• Naive iterative solver of Laplace equation for a variable
T
– Start with a Gaussian field
– Iterate replacing each value with the mean value of the four neighboring points
– Stop when either the maximum amount of iterations or the convergence is

reached

Problem domain

– Analyze the algorithm (trivial for the Laplace
example):
• Is the serial algorithm suitable for a a distribute

parallel MPI implementation?
• Is the serial algorithm still the best wrt performances

for an MPI version of the code?

– Identify the most computationally demanding parts of
the problem
• But remember that an MPI parallelization is difficult

to develop incrementally

Concurrency

Find concurrency:

– similar operations that can be applied to different parts of the data structure

– domain decomposition: divide data into chunks that can be operated
concurrently

➔ a task works only its chunk of data
➔ map local to global variables

Dependencies

Handle dependencies among tasks:

– Tasks needs access to some portion of another task local data (data sharing)
– Understand the kind and the amount of communications among processes

required to make anything consistent

iXX

iY

0 1 n n+1

1

n

n+1

Computational
Domain

● The shape of
the matrixes
include ghost
(or halo) points
to handle (the
neighbour of)
boundary points

iXX

iY

0 1 n n+1

1

n

n+1

● Use a Cartesian
communicator to
manage the processes
and easily map them
to rectangular
subdomains

● Subdomains need
ghost points too
● Some of them are

the original ghost
points

● In addition there
are ghost points
among inter-
process boundaries

0,0

1,1

1,0

0,1

iXX

iY

0 1 n n+1

1

n

n+1

1D versus 2D
decomposition

● Why a 2D
decomposition?

● Data to be
exchanged:

● 1D: 2N
● 2D:

4N/√N_proc
0,0

1,1

1,0

0,1

Program domain

2 different stages to parallelize a serial code

– problem domain
➔ algorithm

– program domain
➔ Implementation (the fun part)

Program domain

2 different stages to parallelize a serial code

– problem domain
➔ algorithm

– program domain
➔ Implementation (the fun part)

The serial code: Laplace equation

program laplace
 [… variable declarations …
]
 [… input parameters ...]
 [… allocate variables …]
 [… initialize field …]
 [… print initial output …]

 [… computational core
…]

 [… print final output …]
 [… deallocate variables …]
end program laplace

do while (var > tol .and. iter <= maxIter)
 iter = iter + 1
 var = 0.d0
 do j = 1, n
 do i = 1, n
 Tnew(i,j) = 0.25d0 * (T(i-1,j)+T(i+1,j)+
 T(i,j-1)+T(i,j+1))
 var = max(var, abs(Tnew(i,j) - T(i,j)))
 end do
 end do

 Tmp =>T; T =>Tnew; Tnew => Tmp;

 if(mod(iter,100) == 0) &
 write(*,"(a,i8,e12.4)") ' iter, variation:', iter, var

 end do

The tasks

• (1) Develop an MPI parallel version of the
laplace.f90/laplace.c serial codes (init and save
functions are in init_save.f90/c files)

• (a) Start with a basic MPI implementation using a Cartesian topology and
blocking communications

• (b) Try to enhance the solution using derived data types
• (c) Try to enhance the solution using non-blocking communications and

overlapping computations with communications

• (2) Add the OMP parallelization to the blocking MPI
version to finally develop an hybrid MPI-OMP
implementation of the code

• Explore the different thread support levels

 MPI Basic - Hints / 1
• First create the Cartesian communicator

– And find the ranks of the neighboring processes

• Define the sizes of the domain for each rank
– Also define the offsets of the sub-domains with respect to the global domain
– If possible try to handle the remainders, otherwise force a constraint

• After that, init_field is easy to parallelize: ind2pos (the
function which maps the index to the position in the grid)
remains unchanged provided that the global indexes are
passed to it

• The print function (save_gnuplot) parallelization
– might be postponed: check the error at each time step to know if the results are correct
– to parallelize it, let the rank=0 collect all the fields and print (just for didactic purposes)

but the right way is using MPI I/O

• At each iteration update the ghost points with the boundary
points of the neighboring processes
– MPI_Sendrecv may be a good choice
– Declare, allocate and use buffers to perform the communications

MPI Basic - Hints / 2
• Initialize MPI:

– MPI_Init / MPI_Comm_rank / MPI_Comm_size

• Input
– Make only rank=0 read from input
– MPI_Bcast the 3 input numbers to all the processes

• Cartesian topology for processes
– MPI_Dims_create – decompose the number of processes in a rectangular way cart_dims(:)
– MPI_Cart_create – create the Cartesian communicator
– MPI_Comm_rank on the Cartesian communicator
– MPI_Cart_coords – find the coordinates of my process cart_coord(:)
– MPI_Cart_shift (in x and y) – find the ranks of neighboring processes

• Associate the cartesian topology to the computational grid
– Find for each process the sub-domain size and the start indexes wrt to the global domain (in x and y):

mymsize_x, mymsize_y, mystart_x, mystart_y
• mymsize_x = n/cart_dims(1)
• mystart_x = mymsize_x *cart_coord(1)

– Handle the remainders or force to be multiple (...)

• Allocate T, Tnew, and the buffers (4 send and 4 receive buffers), including the
ghost points (size=mymsize_x+2). Ghosts not needed for buffers.

• Declare everything you need!

MPI Basic - Hints / 3

• Parallelize init_fields
– Pass mystart_x,mystart_y,mymsize_x,mymsize_y as arguments
– Modify the loop bounds from 0 to mymsize_x/y+1
– Modify the call to ind2pos (pass ix+mystart_x instead of ix)

• Parallelize print function (save_gnuplot) parallelization
– to parallelize it, let the rank=0 collect all the fields and print ASCII (just for

didactic purposes)
– the right way would be MPI I/O

• To focus on MPI advanced features, parallel versions of
init_fields and save_gnuplot are already provided

MPI Basic - Hints / 4

• Main compute loop:
– Modify the loops bounds (from 1 to mymsize_x/y)
– MPI_Allreduce to the error variable (max among all the processes)
– You are ready to check the first results, just print the error variable after one

step: serial and parallel codes must give the same results

• To focus on MPI advanced features, the skeletons of
parallel versions are already provided

• You have to add:
(1) Broadcasting of input parameters
(2) Cartesian topology setup
(3) SendRecv communications
(4) AllReduce communication

MPI Basic - Hints / 5

• Communications
– 4 MPI_Sendrecv are enough: send to left + recv from right, send to right + recv

from left, send to top + recv from bottom, send to bottom + recv from top

• E.g., send to left + recv from right
– Copy left boundary to a buffer
– Send to left and receive from right

• Copy back the received buffer
– A conditional statement is required: where and why?

MPI Basic - Hints / 6

• Now probably you will face problems
– Errors when compiling: check the arguments of MPI calls, the MPI types, and

for Fortran the kinds
– Start verifying that the MPI code still works using 1 processor (mpirun -np 1 …)
– Then try to add the decomposition only on one dimension (mpirun -np 2 …)
– You can check the residuals or you can also check the field to understand the

origin of the error

• Do not discourage! Parallelizing a code –even
simple – is not straightforward

MPI Advanced - Improvements

• So far we have a basic MPI parallelization of the original serial code
• Actually many improvements are possible

– which may be possibly mixed
– two common possibilities

Derived datatypes
Avoid copies on buffers
even for not contiguous

memory regions

Use non-blocking
Communications and

overlap them with
computations

MPI Advanced - (1) Overlap

communications with computations

• In spite of MPI_Sendrecv, non blocking MPI calls can
be employed
– MPI_Isend, MPI_Irecv, …

• But, how to make them useful to enhance the
scalability?
– Since the MPI communications are needed only for ghost nodes some

operations can be performed simultaneously
– Which operations? The operations which do not involve the ghost points...

• As always, man (and the web, of course) is your friend:
man MPI_Init

(2) Using derived datatypes

• Restart from basic MPI version
• So far we have been using buffers as temporary storage for non-

contiguous memory regions to send/recv (rows for Fortran and
columns for C)

• But this can be avoided making the code more readable and
possibly improving the performances

• Create two MPI derived datatypes (actually just one is really
mandatory)
– A type for a matrix row: which type is needed in Fortran? And in C?
– A type for a matrix column: which type is needed in Fortran? And in C?

• Then send/recv only 1 element of this type
– No buffer is needed!
– Just pass to MPI_Sendrecv the first element of the submatrix to pass and specify one

element of the derived types to pass
– Hint: do not forget to commit the type after creation!

(1) MPI + OpenMP – Hints

• To mix MPI and OpenMP the simplest way is to open the
OMP parallel region just around the main computing loop
(the update iteration loop from T to Tnew)
– No direct interaction between MPI and OpenMP
– But MPI_THREAD_FUNNELED should be required according to the standard
– Actually MPI_THREAD_SINGLE (i.e., MPI_Init) also usually works (at least for

OpenMPI)
– 5 minutes should be enough to complete the hybridization

• Remember to add the openmp compilation option

(2) MPI + OpenMP – Hints

• But the parallel region may be enlarged to include the
MPI communications
– If the communications are performed by the master threads,

MPI_THREAD_FUNNELED is enough
– The communications may overlap with the computations: master threads

performs the communications and then update the boundaries
– At the same time, the other threads start doing bulk updating
– Probably master threads collaborate after a while in doing that
– The OMP schedule should be modified accordingly

• Remember
– OMP master forces the code to be executed only by master thread
– And the other threads go on

(3) MPI + OpenMP – Hints

• The parallel region may be further enlarged
including the entire while loop
– MPI_THREAD_SERIALIZED must be employed
– Now we can overlap pointer exchange and the MPI reduction for the

error

• Some OMP barriers are needed: where and why?
• Use OMP single

– to do tasks which must be executed only by one thread: e.g.
“iter=iter+1”

– Or for the MPI_Allreduce

(4) MPI + OpenMP – Hints

• What about “each thread executing an MPI
communication”?
– You need MPI_THREAD_MULTIPLE support
– Each thread performs a send/recv: how to implement in OpenMP?
– The other threads immediately start the core updating loop...
– Then wait for the other threads to finish (how?) and update the boundaries

Evaluating performances

• The different versions can lead to different results in
term of performances
– But the actual improvements depend on several factors
– And are probably limited for such a didactic example
– Testing in realistic scenarios is mandatory
– For our case let us consider a 5000x5000 grid

1 2 ... 256

MPI basic

Overlap

DDT

Evaluating performances / 2

• To evaluate the improvement given by the hybrid
programming the scaling evaluation can be more complex
– No improvement expected for such a simple case

 N_MPI
 /
N_OpenMP

1 2 ... 256

1

2

4

8

16

(1) MPI_THREAD_FUNNELED/1

do while (var > tol .and. iter <= maxIter)
 <...>
!$omp parallel do reduction(max:myvar)
 do j = 1, mymsize_y
 do i = 1, mymsize_x
 Tnew(i,j) = 0.25d0 * (T(i-1,j) + T(i+1,j) + &
 T(i,j-1) + T(i,j+1))
 myvar = max(myvar, abs(Tnew(i,j) - T(i,j)))
 end do
 end do
!$omp end parallel do
 <...>
enddo

(1) MPI_THREAD_FUNNELED / 2

do while (var > tol .and. iter <= maxIter)
 <...>
!$omp parallel
!$omp master
 <MPI SEND_RECV>
 <BOUNDARY UPDATE>
!$omp end master
!$omp do reduction(max:myvar) schedule(dynamic,125)
 <CORE UPDATE>
!$omp end do
!$omp master
 myvar = max(myvar,mastervar)
!$omp end master
!$omp end parallel
 <...>
enddo

(2) MPI_THREAD_SERIALIZED
!$omp parallel

 do while (var > tol .and. iter <= maxIter)

!$omp barrier

!$omp single

 iter = iter + 1 ; var = 0.d0 ; myvar = 0.d0 ; mastervar = 0.d0

!$omp end single

!$omp master

 <MPI SEND_RECV>

 <BOUNDARY UPDATE>

!$omp end master

!$omp do reduction(max:myvar) schedule(dynamic,125)

 <CORE UPDATE>

!$omp end do

!$omp single

 Tmp =>T; T =>Tnew; Tnew => Tmp;

!$omp end single nowait

!$omp single

 myvar = max(myvar,mastervar)

 call MPI_Allreduce(myvar, var, 1, MPI_DOUBLE_PRECISION, &

 MPI_MAX, MPI_COMM_WORLD, ierr)

!$omp end single

 end do

!$omp end parallel

(3) MPI_THREAD_MULTIPLE
!$omp parallel

 do while (var > tol .and. iter <= maxIter)

!$omp barrier

!$omp single

 iter = iter + 1 ; var = 0.d0 ;

 myvar = 0.d0 ; mastervar = 0.d0

!$omp end single

!$omp single

 <1 MPI SEND_RECV>

!$omp single nowait

!$omp single

 <2 MPI SEND_RECV>

!$omp single nowait

!$omp single

 <3 MPI SEND_RECV>

!$omp single nowait

!$omp single

 <4 MPI SEND_RECV>

!$omp single nowait

!$omp do reduction(max:myvar) schedule(dynamic,125)

 <CORE UPDATE>

!$omp end do

!$omp do reduction(max:myvar)

 <BOUNDARY UPDATE>

!$omp end do

!$omp single

 Tmp =>T; T =>Tnew; Tnew => Tmp;

!$omp end single nowait

!$omp single

 call MPI_Allreduce(myvar, var, 1, &

 MPI_DOUBLE_PRECISION,MPI_MAX,MPI_COMM_WORLD, ierr)

!$omp end single

 end do

!$omp end parallel

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 20
	Slide 21
	Slide 22
	Slide 24
	Slide 25
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

