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What is the best performance which can be achieved?

Matrix multiplication (time in seconds)
Precision single double
Incorrect loop 7500 7300
Without optimization 206 246
With optimization (-fast) 84 181
Optimized code 23 44
ACML Library (serial) 6.7 13.2
ACML Library(2 threads) 3.3 6.7
ACML Library(4 threads) 1.7 3.5
ACML Library(8 threads) 0.9 1.8
PGI accelerator 3 5
CUBLAS 1.6 3.2



cat /proc/cpuinfo
processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 37
model name : Intel(R) Core(TM) i3 CPU M 330 @ 2.13GHz
stepping : 2
cpu MHz : 933.000
cache size : 3072 KB
physical id : 0
siblings : 4
core id : 0
cpu cores : 2
apicid : 0
initial apicid : 0
fpu : yes
fpu_exception : yes
cpuid level : 11
wp : yes
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8
bogomips : 4256.27
clflush size : 64
cache_alignment : 64
address sizes : 36 bits physical, 48 bits virtual
...



lscpu

Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 4
On-line CPU(s) list: 0-3
Thread(s) per core: 2
Core(s) per socket: 2
CPU socket(s): 1
NUMA node(s): 1
Vendor ID: GenuineIntel
CPU family: 6
Model: 37
Stepping: 2
CPU MHz: 933.000
BogoMIPS: 4255.78
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 3072K
NUMA node0 CPU(s): 0-3



What is the “margin of operation”?



Software development



Algorithms

I The choice of the algorithm significantly affects perfomances.
I efficient algorithm→ good performances
I inefficient algorithm→ bad performances

I Golden rule
I Before writing code choose an efficient algorithm: otherwise, the code

must be rewritten !!!!!
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Memory system

I CPU power computing doubles every 18 months
I Access rate to RAM doubles every 120 months
I Reducing the cost of the operations is useless if the loading data is

slow

I Solution: intermediate fast memory layers
I A Hierarchical Memory System
I The hierarchy is transparent to the application but the performances

are strongly enhanced



The Memory Hierarchy



Clock cycle

I The speed of a computer processor, or CPU, is determined by the
clock cycle, which is the amount of time between two pulses of an
oscillator.

I Generally speaking, the higher number of pulses per second, the
faster the computer processor will be able to process information

I The clock speed is measured in Hz, typically either megahertz (MHz)
or gigahertz (GHz). For example, a 4GHz processor performs
4,000,000,000 clock cycles per second.

I Computer processors can execute one or more instructions per clock
cycle, depending on the type of processor.

I Early computer processors and slower CPUs can only execute one
instruction per clock cycle, but modern processors can execute
multiple instructions per clock cycle.



The Memory Hierarchy

I From small, fast and expensive to large, slow and cheap
I Access times increase as we go down in the memory hierarchy
I Typical access times (Intel Nehalem)

I register immediately (0 clock cycles)
I L1 3 clock cycles
I L2 13 clock cycles
I L3 30 clock cycles
I memory 100 clock cycles
I disk 100000 - 1000000 clock cycles



The Cache

Why this hierarchy?

It is not necessary that all data are available at the same time. What
is the solution?

I The cache is divided in one (or more) levels of intermediate memory,
rather fast but small sized (kB ÷ MB)

I Basic principle: we always work with a subset of data.
I data needed→ fast memory access
I data not needed (for now)→ slower memory levels

I Limitations
I Random access without reusing
I Never large enough . . .
I faster, hotter and . . . expensive→ intermediate levels hierarchy.
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The cache

I CPU accesses higher level cache:
I The cache controller finds if the required element is present in cache:

I Yes: data is transferred from cache ti CPU registers
I No: new data is loaded in cache; if cache is full, a replacement policy is

used to replace (a subset of) the current data with the new data
I The data replacement between main memory and cache is

performed in data chunks, called cache lines
I block = The smallest unit of information that can be transferred

between two memory levels (between two cache levels or between
RAM and cache)



Replacement: locality principles

I Spatial locality
I High probability to access memory cell with contiguous address within a

short period of time (sequential instructions; data arranged in matrix
and vectors sequentially accessed, etc.)

I Possible advantage: we read more data than we need (complete block)
in hopes of next request

I Temporal locality
I High probability to access memory cell that was recently accessed

within a period space of time (instructions within body of cycle
frequently and sequentially accessed, etc.)

I We take advantage replacing the least recently used blocks

Data required from CPU are stored in the cache with contiguous
memory cells as long as possible
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Cache:Some definition

I Hit: The requested data from CPU is stored in cache
I Miss: The requested data from CPU is not stored in cache
I Hit rate: The percentage of all accesses that are satisfied by the data

in the cache.
I Miss rate:The number of misses stated as a fraction of attempted

accesses (miss rate = 1-hit rate).
I Hit time: Memory access time for cache hit (including time to

determine if hit or miss)
I Miss penalty: Time to replace a block from lower level, including time

to replace in CPU (mean value is used)
I Miss time: = miss penalty + hit time, time needed to retrieve the data

from a lower level if cache miss is occurred.



Cache: access cost

Level access cost
L1 1 clock cycle
L2 7 clock cycles

RAM 36 clock cycles

I 100 accesses with 100% cache hit: → t=100
I 100 accesses with 5% cache miss in L1: → t=130
I 100 accesses with 10% cache miss in L1→ t=160
I 100 accesses with 10% cache miss in L2→ t=450
I 100 accesses with 100% cache miss in L2→ t=3600



Cache miss in all levels

1. search two data, A and B
2. search A in the first level cache (L1) O(1) cycles
3. search A in the second level cache (L2) O(10) cycles
4. copy A from RAM to L2 to L1 to registers O(10) cycles
5. search B in the first level cache (L1) O(1) cycles
6. search B in the second level cache (L2) O(10) cycles
7. copy B from RAM to L2 to L1 to registers O(10) cycles
8. run command

O(100)overhead cycles !!!



Cache hit in all levels

I search two data, A and B
I search A in the first level cache(L1) O(1) cycles

I search B in the first level cache(L1) O(1) cycles

I run command

O(1) overhead cycles



SRAM vs. DRAM

I Dynamic RAM (DRAM) main memory
I one transistor cell
I cheap
I it needs to be periodically refreshed

I data are not available during refreshing

I Static RAM (SRAM) cache memory
I cell requires 6-7 transistor
I expensive
I it does not need to be refreshed

I data are always available.

I DRAM has better price/performance than SRAM
I also higher densities, need less power and dissipate less heat

I SRAM provides higher speed
I used for high-performance memories (registers, cache memory)



Performance estimate: an example

f l o a t sum = 0.0f;
for (i = 0; i < n; i++)
sum = sum + x[i]*y[i];

I At each iteration, one sum and one multiplication floating-point are
performed

I The number of the operations performed is 2×n



Execution time Tes

I Tes = Nflop ∗ tflop

I Nflop→Algorithm

I tflop→ Hardware
I consider only execution time
I What are we neglecting?
I tmem The required time to access data in memory.
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Therefore . . .

I Tes = Nflop ∗ tflop + Nmem ∗ tmem

I tmem→ Hardware
I How Nmem affects the performances?



Nmem Effect

I Perf = NFlop
Tes

I for Nmem = 0→ Perf ∗ = 1
tflop

I for Nmem > 0→ Perf = Perf∗

1+ Nmem∗tmem
Nflop∗tflop

I Performance decay factor
I Nmem

Nflop
∗ tmem

tflop

I how to achieve the peak performance?

I Minimize the memory accesses.
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Matrix multiplication

I Fortran and C code
I Columns rows product Ci,j = Ai,k Bk,j

I Time:
I Fortran: date_and_time (> 0.001”)
I C: clock (>0.05”)

I Square matrices of size n
I Required memory (double precision) ≈ (3 ∗ n ∗ n) ∗ 8
I Number of total operations ≈ 2 ∗ n ∗ n ∗ n

I We must access n elements of the two original matrices for each element
of the destination matrix.

I n products and n sums for each element of the destination matrix.
I Total Flops = 2 ∗ n3/Time



Measure of performances

I Estimate the number of computational operations at execution NFlop
I 1 FLOP= 1 Floating point OPeration (addition or multiplication).
I Division, square root, trigonometric functions require much more work

and hence take more time.
I Estimate execution time Tes

I The number of floating operation per second is the most widely unit
used to estimate the computer performances:
Perf = NFlop

Tes

I The minimum count is 1 Floating-pointing Operation per second (
FLOPS)

I We usually use the multiples:
I 1 MFLOPS= 106 FLOPS
I 1 GFLOPS= 109 FLOPS
I 1 TFLOPS= 1012 FLOPS



Spatial locality: access order

c_ij = c_ij + a_ik * b_kj
I Matrix multiplication in double precision 512X512
I Measured MFlops on Jazz (Intel(R) Xeon(R) CPU X5660 2.80GHz)
I gfortran compiler with -O0 optimization

index order Fortran C
i,j,k 109 128
i,k,j 90 177
j,k,i 173 96
j,i,k 110 127
k,j,i 172 96
k,i,j 90 177

The efficiency of the access order depends more on the data location
in memory, rather than on the language.



Array in memory

I Memory→ elementary locations sequentially aligned
I A matrix, aij element : i row index, j column index
I Matrix representation is by arrays

I How are the array elements stored in memory?

I C: sequentially access starting from the last index, then
the previous index . . .
a[1][1] a[1][2] a[1][3] a[1][4] . . .
a[1][n] a[2][1] . . . a[n][n]

I Fortran: sequentially access starting from the first index, then the
second index . . .
a(1,1) a(2,1) a(3,1) a(4,1) . . .
a(n,1) a(1,2) . . . a(n,n)



The stride

I The distance between successively accessed data
I stride=1→ I take advantage of the spatial locality
I stride » 1→ I don’t take advantage of the spatial locality

I Golden rule
I Always access arrays, if possible, with unit stride.



Fortran memory ordering



C memory ordering



Best access order

I Calculate multiplication matrix-vector:
I Fortran: d(i) = a(i) + b(i,j)*c(j)
I C: d[i] = a[i] + b [i][j]*c[j];

I Fortran
I do j=1,n

do i=1,n
d(i) = a(i) + b(i,j)*c(j)

end do
end do

I C
I for(i=0;i<n,i++)

for(j=0;i<n,j++)
d[i] = a[i] + b [i][j]*c[j];



Spatial locality:linear system

Solving triangular system
I Lx = b
I Where:

I L n×n lower triangular matrix
I x n unknowns vector
I b n right hand side vector

I we can solve this system by:
I forward substitution
I partitioning matrix

What is faster?
Why?
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Forward substitution

Solution:
. . .
do i = 1, n

do j = 1, i-1
b(i) = b(i) - L(i,j) b(j)

enddo
b(i) = b(i)/L(i,i)

enddo
. . .

[vruggie1@fen07 TRI]$ ./a.out

time for solution 8.0586
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Matrix partitioning

Solution:
. . .
do j = 1, n

b(j) = b(j)/L(j,j)
do i = j+1,n

b(i) = b(i) - L(i,j)*b(j)
enddo

enddo
. . .

[vruggie1@fen07 TRI]$ ./a.out

time for solution 2.5586
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What is the difference?
I Forward substitution

do i = 1, n
do j = 1, i-1

b(i) = b(i) - L(i,j) b(j)
enddo
b(i) = b(i)/L(i,i)

enddo
I Matrix partitioning

do j = 1, n
b(j) = b(j)/L(j,j)
do i = j+1,n

b(i) = b(i) - L(i,j)*b(j)
enddo

enddo

I Same number of operations, but very different elapsed times
the difference is a factor of 3

I Why?
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Let us clarify. . .
This matrix is stored:

In C:

In Fortran:



Spatial locality: cache lines
I The cache is structured as a sequence of blocks (lines)
I The memory is divided in blocks with the same size of the cache line
I When data are required the system loads from memory the entire

cache line that contains the data.



Dimension and data reuse

I Multiplication matrix-matrix in double precision
I Versions with different calls to BLAS library
I Performance in MFlops on Intel(R) Xeon(R) CPU X5660 2.80GHz

Dimension 1 DGEMM N DGEMV N2 DDOT
500 5820 3400 217
1000 8420 5330 227
2000 12150 2960 136
3000 12160 2930 186

Same number of operations but the use of cache memory is
changed!!!



Cache reuse

...
d=0.0
do I=1,n
j=index(I)
d = d + sqrt(x(j)*x(j) + y(j)*y(j) + z(j)*z(j))
...

Can I change the code to obtain best performances?

...
d=0.0
do I=1,n
j=index(I)
d = d + sqrt(r(1,j)*r(1,j) + r(2,j)*r(2,j) + r(3,j)*r(3,j))
...
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Registers

I Registers are memory locations inside CPUs
I small amount of them (typically, less than 128), but with zero latency
I All the operations performed by computing units

I take the operands from registers
I return results into registers

I transfers memory↔ registers are different operations
I Compiler uses registers

I to store intermediate values when computing expressions
I too complex expressions or too large loop bodies force the so called

“register spilling”
I to keep close to CPU values to be reused
I but only for scalar variables, not for array elements



Array elements. . .

do 3000 z=1,nz
k3=beta(z)
do 3000 y=1,ny

k2=eta(y)
do 3000 x=1,nx/2

hr(x,y,z,1)=hr(x,y,z,1)*norm
hi(x,y,z,1)=hi(x,y,z,1)*norm
hr(x,y,z,2)=hr(x,y,z,2)*norm
hi(x,y,z,2)=hi(x,y,z,2)*norm
hr(x,y,z,3)=hr(x,y,z,3)*norm
hi(x,y,z,3)=hi(x,y,z,3)*norm

.....................
k1=alfa(x,1)
k_quad=k1*k1+k2*k2+k3*k3+k_quad_cfr
k_quad=1./k_quad
sr=k1*hr(x,y,z,1)+k2*hr(x,y,z,2)+k3*hr(x,y,z,3)
si=k1*hi(x,y,z,1)+k2*hi(x,y,z,2)+k3*hi(x,y,z,3)
hr(x,y,z,1)=hr(x,y,z,1)-sr*k1*k_quad
hr(x,y,z,2)=hr(x,y,z,2)-sr*k2*k_quad
hr(x,y,z,3)=hr(x,y,z,3)-sr*k3*k_quad
hi(x,y,z,1)=hi(x,y,z,1)-si*k1*k_quad
hi(x,y,z,2)=hi(x,y,z,2)-si*k2*k_quad
hi(x,y,z,3)=hi(x,y,z,3)-si*k3*k_quad
k_quad_cfr=0.

3000 continue



Temporary scalars

(time -25% )

do 3000 z=1,nz
k3=beta(z)
do 3000 y=1,ny

k2=eta(y)
do 3000 x=1,nx/2

br1=hr(x,y,z,1)*norm
bi1=hi(x,y,z,1)*norm
br2=hr(x,y,z,2)*norm
bi2=hi(x,y,z,2)*norm
br3=hr(x,y,z,3)*norm
bi3=hi(x,y,z,3)*norm

.................
k1=alfa(x,1)
k_quad=k1*k1+k2*k2+k3*k3+k_quad_cfr
k_quad=1./k_quad
sr=k1*br1+k2*br2+k3*br3
si=k1*bi1+k2*bi2+k3*bi3
hr(x,y,z,1)=br1-sr*k1*k_quad
hr(x,y,z,2)=br2-sr*k2*k_quad
hr(x,y,z,3)=br3-sr*k3*k_quad
hi(x,y,z,1)=bi1-si*k1*k_quad
hi(x,y,z,2)=bi2-si*k2*k_quad
hi(x,y,z,3)=bi3-si*k3*k_quad
k_quad_cfr=0.

3000 Continue
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Spatial and temporal locality

I Matrix transpose
do j = 1, n

do i = 1, n
a(i,j) = b(j,i)

end do
end do

I Which is the best loop ordering to minimize the stride?
I For data residing in cache there is no dependency on the stride

I idea: split computations in blocks fitting into the cache
I task: balancing between spatial and temporal locality



Cache blocking

I Data are processed in chunks fitting into the cache memory
I Cache data are reused when working for the single block
I Compiler can do it for simple loops, but only at high optimization

levels
I Example: matrix transpose

do jj = 1, n , step
do ii = 1, n, step

do j= jj,jj+step-1,1
do i=ii,ii+step-1,1

a(i,j)=b(j,i)
end do

end do
end do

end do



Cache: capacity miss and trashing

I Cache may be affected by capacity miss:
I only a few lines are really used (reduced effective cache size)
I processing rate is reduced

I Another problem is the trashing:
I a cache line is thrown away even when data need to be reused because

new data are loaded
I slower than not having cache at all!

I It may occur when different instruction/data flows refer to the same
cache lines

I It depends on how the memory is mapped to the cache
I fully associative cache
I direct mapped cache
I N-way set associative cache



Cache mapping

I A cache mapping defines where memory locations will be placed in
cache

I in which cache line a memory addresses will be placed
I we can think of the memory as being divided into blocks of the size of a

cache line
I the cache mapping is a simple hash function from addresses to cache

sets
I Cache is much smaller than main memory

I more than one of the memory blocks can be mapped to the same cache
line

I Each cache line is identified by a tag
I determines which memory addresses the cache line holds
I based on the tag and the valid bit, we can find out if a particular address

is in the cache (hit) or not (miss)



Fully associative cache
I A cache where data from any address can be stored in any cache

location.



Fully associative cache

I Pros:
I full cache exploitation
I independent of the patterns of memory access

I Cons:
I complex circuits to get a fast identify of hits
I substitution algorithm: demanding, Least Recently Used (LRU) or not

very efficient First In First Out (FIFO)
I costly and small sized



Direct mapped cache
I Each main memory block can be mapped to only one slot. (linear

congruence)



Direct mapped cache

I Pros:
I easy check of hit (a few bit of address identify the checked line)
I substitution algorithm is straightforward
I arbitrarily sized cache

I Cons:
I strongly dependent on memory access patterns
I affected by capacity miss
I affected by cache trashing



N-way set associative cache
I Each memory block may be mapped to any

line among the N possible cache lines



N-way set associative cache

I Pros:
I is an intermediate choice

I N=1 → direct mapped
I N= number of cache lines → fully associative

I allows for compromising between circuital complexity and performances
(cost and programmability)

I allows for achieving cache with reasonable sizes
I Cons:

I strongly conditioned by the memory pattern access
I partially affected by capacity miss
I partially affected by cache trashing



Cache: typical situation

I Cache L1: 4÷8 way set associative
I Cache L2÷3: 2÷4 way set associative o direct mapped
I Capacity miss and trashing must be considered

I strategies are the same
I optimization of placement of data in memory
I optimization of pattern of memory accesses

I L1 cache works with virtual addresses
I programmer has the full control

I L2÷3 caches work with physical addresses
I performances depend on physical allocated memory
I performances may vary when repeating the execution
I control at operating system level



Cache Trashing

I Problems when accessing data in memory
I A cache line is replaced even if its content is needed after a short

time
I It occurs when two or more data flows need a same small subset of

cache lines
I The number of load and store is unchanged
I Transaction on memory bus gets increased
I A typical case is given by flows requiring data with relative strides of

2 power



No trashing: C(i)= A(i)+B(i)
I Iteration i=1

1. Search for A(1) in L1 cache→ cache miss
2. Get A(1) from RAM memory
3. Copy from A(1) to A(8) into L1
4. Copy A(1) into a register
5. Search for B(1) in L1 cache→ cache miss
6. Get B(1) from RAM memory
7. Copy from B(1) to B(8) in L1
8. Copy B(1) into a register
9. Execute summation

I Iteration i=2
1. Search for A(2) into L1 cache→ cache hit
2. Copy A(2) into a register
3. Search for B(2) in L1 cache→ cache hit
4. Copy B(2) into a register
5. Execute summation

I Iteration i=3



Trashing: C(i)= A(i)+B(i)

I Iteration i=1
1. Search for A(1) in the L1 cache→ cache miss
2. Get A(1) from RAM memory
3. Copy from A(1) to A(8) into L1
4. Copy A(1) into a register
5. Search for B(1) in L1 cache→ cache miss
6. Get B(1) from RAM memory
7. Throw away cache line A(1)-A(8)
8. Copy from B(1) to B(8) into L1
9. Copy B(1) into a register

10. Execute summation



Trashing: C(i)= A(i)+B(i)

I Iteration i=2
1. Search for A(2) in the L1 cache→ cache miss
2. Get A(2) from RAM memory
3. Throw away cache line B(1)-B(8)
4. Copy from A(1) to A(8) into L1 cache
5. Copy A(2) into a register
6. Search for B(2) in L1 cache→ cache miss
7. Get B(2) from RAM memory
8. Throw away cache line A(1)-A(8)
9. Copy from B(1) to B(8) into L1

10. Copy B(2) into a register
11. Execute summation

I Iteration i=3



How to identify it?
I Effects depending on the size of data set

...
integer ,parameter :: offset=..
integer ,parameter :: N1=6400
integer ,parameter :: N=N1+offset
....
rea l(8) :: x(N,N),y(N,N),z(N,N)
...
do j=1,N1

do i=1,N1
z(i,j)=x(i,j)+y(i,j)

end do
end do
...

offset time
0 0.361
3 0.250

400 0.252
403 0.253

Solution is padding



Cache padding

real , dimension=1024 :: a,b
common/my_comm /a,b
do i=1, 1024
a(i)=b(i) + 1.0
enddo

I If cache size = 4 ∗ 1024, direct mapped, a,b contiguous data (for
example): we have cache thrashing (load and unload a cache block
repeatedly)

I size of array = multiple of cache size→ cache thrashing
I Set Associative cache reduces the problem



Cache padding

a(1) b(1)
1 1025
↑

1 mod 1024=1 1025 mod 1024= 1

In the cache:
a(1) 1024

trashing
b(1) 1024



Cache padding

integer offset=
(linea di cache)/SIZE(REAL)
real , dimension=
(1024+offset) :: a,b
common/my_comm /a,b
do i=1, 1024
a(i)=b(i) + 1.0
enddo

offset→ staggered matrixes
cache→ no more problems

1 2560
↓ ↙

↗ ↖
1280 1281

1 mod 1204 =1
1281 mod 1024 = 257

Don’t use matrix dimension that are powers of two:



Misaligned accesses

I Bus transactions get doubled
I On some architectures:

I may cause run-time errors
I emulated in software

I A problem when dealing with
I structured types ( TYPE and struct)
I local variables
I “common”

I Solutions
I order variables with decreasing order
I compiler options (if available. . .)
I different common
I insert dummy variables into common



Misaligned Accesses

parameter (nd=1000000)
rea l*8 a(1:nd), b(1:nd)
integer c
common /data1/ a,c,b

....
do j = 1, 300

do i = 1, nd
somma1 = somma1 + (a(i)-b(i))

enddo
enddo

Different performances for:

common /data1/ a,c,b
common /data1/ b,c,a
common /data1/ a,b,c

It depends on the architecure and on the compiler which usually
warns and tries to fix the problem (align common)



Memory alignment

In order to optmize cache using memory alignment is important.
When we read memory data in word 4 bytes chunk at time (32 bit
systems) The memory addresses must be powers of 4 to be aligned
in memory.
struct MixedData{
char Data1;
short Data2;
i n t Data3
char Data4

}

1 2 3 4 5 6 7 8
↑ ↖ ↑ ↑
Data1 Data2 Data3 Data4

To have Data3 value two reading from memory need.



Memory alignment

With alignment:

struct MixedData{
char Data1;
char Padding1[1];
short Data2;
i n t Data3
char Data4
char Padding2[3];

}

Data1 Data2 Data3 Data4
↓ ↓ ↓ ↓
1 2 3 4 5 6 7 8 9 10 11 12

↑ ↑
Padding1 Padding2



Memory alignment

Old struct costs 8 bytes, new struct (with padding) costs 12 bytes.
We can align data exchanging their order.

struct MixedData{
char Data1;
char Data4
short Data2;
i n t Data3

}

Data4 Data3
↓ ↓

1 2 3 4 5 6 7 8
↑ ↑
Data1 Data2



How to detect the problem?

I Processors have hardware counters
I Devised for high clock CPUs

I necessary to debug processors
I useful to measure performances
I crucial to ascertain unexpected behaviors

I Each architecture measures different events
I Of course, vendor dependent

I IBM: HPCT
I INTEL: Vtune

I Multi-platform measuring tools exist
I Valgrind, Oprofile
I PAPI
I Likwid
I . . .



Cache is a memory

I Its state is persistent until a cache-miss requires a change
I Its state is hidden for the programmer:

I does not affect code semantics (i.e., the results)
I affects the performances

I The same routine called under different code sections may show
completely different performances because of the cache state at the
moment

I Code modularity tends to make the programmer forget it
I It may be important to study the issue in a context larger than the

single routine



Valgrind

I Software Open Source useful for Debugging/Profiling of programs
running under Linux OS, sources not required (black-box analysis),
and different tools available:

I Memcheck (detect memory leaks, . . .)
I Cachegrind (cache profiler)
I Callgrind (callgraph)
I Massif (heap profiler)
I Etc.

I http://valgrind.org



Cachegrind

valgrind --tool=cachegrind <nome_eseguibile>

I Simulation of program-cache hierarchy interaction
I two independent first level cache (L1)

I instruction (I1)
I data cache (D1)

I a last level cache, L2 or L3(LL)
I Provides statistics

I I cache reads (Ir executed instructions), I1 cache read misses (I1mr), LL
cache instruction read misses (ILmr)

I D cache reads, Dr,D1mr,DLlmr
I D cache writes, Dw,D1mw,DLlmw

I Optionally provides branches and mispredicted branches



Cachegrind:example I

==14924== I refs: 7,562,066,817
==14924== I1 misses: 2,288
==14924== LLi misses: 1,913
==14924== I1 miss rate: 0.00%
==14924== LLi miss rate: 0.00%
==14924==
==14924== D refs: 2,027,086,734 (1,752,826,448 rd + 274,260,286 wr)
==14924== D1 misses: 16,946,127 ( 16,846,652 rd + 99,475 wr)
==14924== LLd misses: 101,362 ( 2,116 rd + 99,246 wr)
==14924== D1 miss rate: 0.8% ( 0.9% + 0.0% )
==14924== LLd miss rate: 0.0% ( 0.0% + 0.0% )
==14924==
==14924== LL refs: 16,948,415 ( 16,848,940 rd + 99,475 wr)
==14924== LL misses: 103,275 ( 4,029 rd + 99,246 wr)
==14924== LL miss rate: 0.0% ( 0.0% + 0.0% )



Cachegrind:example II

==15572== I refs: 7,562,066,871
==15572== I1 misses: 2,288
==15572== LLi misses: 1,913
==15572== I1 miss rate: 0.00%
==15572== LLi miss rate: 0.00%
==15572==
==15572== D refs: 2,027,086,744 (1,752,826,453 rd + 274,260,291 wr)
==15572== D1 misses: 151,360,463 ( 151,260,988 rd + 99,475 wr)
==15572== LLd misses: 101,362 ( 2,116 rd + 99,246 wr)
==15572== D1 miss rate: 7.4% ( 8.6% + 0.0% )
==15572== LLd miss rate: 0.0% ( 0.0% + 0.0% )
==15572==
==15572== LL refs: 151,362,751 ( 151,263,276 rd + 99,475 wr)
==15572== LL misses: 103,275 ( 4,029 rd + 99,246 wr)
==15572== LL miss rate: 0.0% ( 0.0% + 0.0% )



Cachegrind:cg_annotate

I Cachegrind automatically produces the file cachegrind.out.<pid>
I In addition to the previous information, more detailed statistics for

each function is made available

cg_annotate cachegrind.out.<pid>



Cachegrind:options

I —I1=<size>,<associativity>,<line size>
I —D1=<size>,<associativity>,<line size>
I —LL=<size>,<associativity>,<line size>
I —cache-sim=no|yes [yes]
I —branch-sim=no|yes [no]
I —cachegrind-out-file=<file>



Papi

I Performance Application Programming Interface
I Standard Interface to access hardware counters
I 2 interfaces available (C and Fortran):

I High-level interface: easy
I Low-level interface: complex but more programmable

I Pros:
I administrative permission not required for measuring
I standard event names for monitored events (if available) with the

high-level interface
I easy monitoring of user-defined code sections

I Cons:
I Manual instrumenting is mandatory
I OS kernel makes the event available



Papi Events

Associated to hardware counters depending on the machine
Example:
PAPI_TOT_CYC: clock cycles
PAPI_TOT_INS: completed instructions
PAPI_FP_INS: floating-point instructions
PAPI_L1_DCA: L1 data cache accesses
PAPI_L1_DCM: L1 data cache misses
PAPI_SR_INS: store instructions
PAPI_BR_MSP: branch instructions mispredicted



Papi: interface

I High-level library calls are intuitive
I It is possible to simultaneously monitor different events
I In Fortran:

# include "fpapi_test.h"
integer events(2), retval ; integer*8 values(2)
......
events(1) = PAPI_FP_INS ; events(2) = PAPI_L1_DCM
......
c a l l PAPIf_start_counters(events, 2, retval)
c a l l PAPIf_read_counters(values, 2, retval) ! Clear values
< sezione di codice da monitorare >
c a l l PAPIf_stop_counters(values, 2, retval)
pr in t*,’Floating point instructions’,values(1)
pr in t*,’L1 Data Cache Misses: ’,values(2)
.......



Papi: interface

I It is possible to handle errors analyzing a variable returned by the
subroutine

I It is possible to perform queries to check the availability of hardware
counters, etc.

I It is recommended to call a dummy subroutine after the monitored
section to ensure that the optimization has not altered the instruction
flow
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CPU: internal parallelism?

I CPU are entirely parallel
I pipelining
I superscalar execution
I units SIMD MMX, SSE, SSE2, SSE3, SSE4, AVX

I To achieve performances comparable to the peak performance:
I give a large amount of instructions
I give the operands of the instructions



The pipeline

I Pipeline, channel or tube for carrying oil
I An operation is split in independent stages and different stages are

executed simultaneously
I Parallelism wrt different operation stages
I Processors significantly exploit pipelining to increase the computing

rate



CPU cycle

I fetch (get, catch) gets the instruction from memory and the pointer of
Program Counter is increased to point to the next instruction

I decode instruction gets interpreted
I execute send messages which represent commands for execution



CPU cycle

I The time to move an instruction one step through the pipeline is
called a machine cycle

I CPI (clock Cycles Per Instruction)
I the number of clock cycles needed to execute an instruction
I varies for different instructions
I its inverse is IPC (Instructions Per Cycle)



NON pipelined computing units
I Each instruction is completed after three cycles



Pipelined units
I A result per cycle when the pipeline is completely filled
I To fill it 3 independent instructions are needed (including the

operands)
I At the opposite, each result each 3 cycles when the pipeline is empty



Superpipelined computing units
I A result per cycle when the pipeline is completely filled
I To fill it 6 independent instructions are needed (including the

operands)
I At the opposite, each result each 6 cycles when the pipeline is empty
I It is possible to half the clock rate, i.e. double the frequency



Out of order execution

I Dynamically reorder the instructions
I move up instructions having operands which are available
I postpone instructions having operands still not available
I reorder reads/write from/into memory
I always considering the free functional units

I Exploit significantly:
I register renaming (physical vs architectural registers)
I branch prediction
I combination of multiple read and write from/to memory

I Crucial to get high performance on present CPUs
I The code should not hide the reordering possibilities



Out of order execution



Superscalar execution

I CPUs have different independent units
I functional differentiation
I functional replication

I Independent operations are executed at the same time
I integer operations
I floating point operations
I skipping memory
I memory accesses

I Instruction Parallelism
I Hiding latencies
I Processors exploit superscalarity to increase the computing power

for a fixed clock rate



How to exploit internal parallelism?

I Processors run at maximum speed (high instruction per cycle rate
(IPC)) when

1. There is a good mix of instructions (with low latencies) to keep the
functional units busy

2. Operands are available quickly from registers or D-cache
3. The FP to memory operation ratio is high (FP : MEM > 1)
4. Number of data dependences is low
5. Branches are easy to predict

I The processor can only improve #1 to a certain level with
out-of-order scheduling and partly #2 with hardware prefetching

I Compiler optimizations effectively target #1-3
I The programmer can help improve #1-5



Strategies

I loop unrolling→ unroll the loop
I loop merging→ merge loops into a single loop
I loop splitting→ decompose complex loops
I function inlining→ avoid breaking instruction flow
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