
Overview of the Intel Xeon and Xeon Phi tecnologies
V. Ruggiero (v.ruggiero@cineca.it)

Roma, 19 July 2017
SuperComputing Applications and Innovation Department

Outline

Xeon

Xeon Phi

Tick/Tock

I Intel CPU roadmap: two step evolution
I Tock phase:

I New architecture
I New instructions (ISA)

I Tick phase:
I Keep previous architecture
I New technological step (e.g. Broadwell 14nm)
I Core "optimization"
I Typically, Increases in Transistor Density Enables New Capabilities, Higher

Performance Levels, and Greater Energy Efficiency

Xeon E5-2600 v4 Product Family

I Westmere (tick, a.k.a. plx.cineca.it)
I Intel(R) Xeon(R) CPU E5645 @2.40GHz, 6 Core per socket

I Sandy Bridge (tock, a.k.a. eurora.cineca.it)
I Intel(R) Xeon(R) CPU E5-2687W 0 @3.10GHz, 8 core per socket

I Ivy Bridge (tick, a.k.a pico.cineca.it)
I Intel(R) Xeon(R) CPU E5-2670 v2 @2.50GHz, 10 core per socket

I Hashwell (tock, a.k.a. galileo.cineca.it)
I Intel(R) Xeon(R) CPU E5-2630 v3 @2.40GHz, 8 core per socket

I Broadwell (tick, a.k.a. Marconi A1)
I Intel(R) Xeon(R) CPU E5-2699 v4 @2.3 GHz, 18 core per socket

I Slylake (tock, a.k.a. Marconi A3)
I Intel(R) Xeon(R) CPU E5-2680v5 @2.3 GHz, 20 core per socket

Haswell vs Broadwell

New Comparison

Broadwell Improvements

I Pure Floating-Point performances
I Vector FP multiply latency decrease (to 3 cycles from 5)
I Radix-1024 divider: decreased latency and increased thoughput for

most divider ops.
I Split scalar divider: Pseudo-double bandwidth for scalar divider ops

I Memory access capability
I STLB (Software Translation Loohaside Buffer) improvements

I Improved address prediction for branches and return
I Provided a larger out-of-order scheduler
I Increased size of STLB (from 1 KB to 1.5kB)

Skylake

I Improved microarchitecture
I Improved branch predictor
I Deeper Out-of-Order buffers
I More execution units, shorter latencies
I Deeper store, fill, and write-back buffers
I Smarter prefetchers
I Improved page miss handling
I Better L2 cache miss bandwidth
I Improved Hyper-Threading
I Performance/watt enhancements

I New instructions supported
I Memory Protection Extensions (MPX)

I A set of processor features which, with compiler, runtime library and OS
support, brings increased robustness to software by checking pointer
references whose compile time normal intentions are usurped at runtime
due to buffer overflow

I AVX-512 (Xeon versions only)

Outline

Xeon

Xeon Phi

KC vs KL

Knights Corner Knights Landing
2013 2015
22 nm 12 nm
1 TeraFLOP DP Peak 3+ TeraFLOP DP Peak
57-61 cores 72 cores (36 tiles)
In-order architecure Out-of-order based on Intel Atom core
1 Vector Unit per core 2 Vector UNits per core
Intel initial Many Core instructions Intel Advanced Vector Extension (AVX-512)

Knights Landing

KNL Core
I Core: Changed from KNC to KNL. Based on Silvermont core with

many changes
I Out of order 2-wide core: 72 inflight ops. 4 threads/core
I Back to back fetch and issue per thread
I 32KB Icache, 32KB Dcache. 2x 64B Loads ports in Dcache. Larger

TLBs than in SLM
I L1 Prefetcher (IPP) and L2 Prefetcher. 46/48 PA/VA bits to match Xeon
I Fast unaligned and cache-line split support. Fast Gather/Scatter

support
I 2x BW between Dcache and L2 than in SLM: 1 line Rd and 1/2 line Wr

per cycle
I 2 VPUs: 2x 512b Vectors. 32SP and 16DP.

KNL TILe: 2 Cores, each with
2 VPU, 1M L2 shared between
two Cores

Many Improvements in KNL

Improvements What/Why
Binary compatibility with Xeon Runs all legacy software. No recompilation
New Core: SLM based 3x higher ST performance over KNC
Improved Vector density 3+ TFLOPS (DP) peak per chip
AVX 512 ISA New 512-bit Vector ISA with Masks
Scatter/Gather Engine Hardware support for gather and scatter
New memory technology: Large High Bandwidth Memory→ MCDRAM
MCDRAM + DDR Huge bulk memory→ DDR
New on-die interconnect: Mesh High BW connection between cores and memory

Core and VPU

Core and VPU

AVX-512 Subsets [1]

AVX-512F Foundation instructions common between MIC and Xeon
Comprehensive vector extension for HPC and enterprise
All the key AVX-512 features: masking, broadcast...
32-bit and 64-bit integer and floating-point instructions
Promotion of many AVX and AVX2 instructions to AVX-512
Many new instructions added to accelerate HPC workloads

AAVX-512CD Conflict Detection instructions
Allow vectorization of loops with possible address conflict
Will show up on Xeon

AVX-512ER extensions for exponential and prefetch operations
AVX-512PR

fast (28 bit) instructions for exponential and reciprocal and transcendentals
(as well as RSQRT)
New prefetch instructions: gather/scatter prefetches and PREFETCHWT1

AVX-512 Subsets [2]

AVX-512DQ Double and Quad word instrunctions
All of (packed) 32bit/64 bit operations AVX-512F doesn’t provide
Close 64bit gaps like VPMULLQ : packed 64x64→ 64
Extend mask architecture to word and byte (to handle vectors)
Packed/Scalar converts of signed/unsigned to SP/DP

AVX-512BW Byte and Word instructions
Extent packed (vector) instructions to byte and word (16 and 8 bit) datatype
MMX/SSE2/AVX2 re-promoted to AVX512 semantics
Mask operations extended to 32/64 bits to adapt to number of objects in 512bit
Permute architecture extended to words (VPERMW, VPERMI2W, ...)

AVX-512VL Vector Length extensions
Vector length orthogonality
Support for 128 and 256 bits instead of full 512 bit
Not a new instruction set but an attribute of existing 512bit instructions

KNL and future Xeon

I KNL and future Xeon architecture share a large set of instructions
I but sets are not identical

I AVX512-IFMA provides fused multiply-add instructions for 52-bit integers
I AVX512-VBMI provides additional instructions for byte-permutation and bit-manipulation.

option to generate from version
-xcommon-avx512 AVX-512F and AVX-512CD 15.0.2
-xmic-avx12 AVX-512F, AVX-512CD, AVX-512ER and AVX-512FP 14.0
-xcore-avx512 AVX-512F, AVX-512CD, AVX-512BW, AVX-512DQ and AVX-512VL 15.0.1

KNL Memory:MCDRAM

I Memory bandwidth in HPC is one of common bottleneck for perfomances
I To increase the demand for memory bandwidth KNL have a on-package high memory bandwidht

memory (HBM) based on multi-channel dynamic random access memory (MCDRAM).
I This memory is capable of delivering up to 5x perfomance (≥ 400 Gb/s) compared to DDR4

memory on same platform (≥ 90 GB/s)

KNL Memory:MCDRAM
I HBM on KNL can be used as

I a last-level cache
I as addressable memory.

I The configuration is determined at boot time, by choosing in BIOS
setting between three MCDRAM modes:

I Flat mode
I Cache mode
I Hybrid mode

KNL Memory:MCDRAM

I The best mode to use will depend on the application.

Using HBM as addressable memory

Two methods for this:
I the numactl tool

I Works best if the whole app can fit in MCDRAM
I the memkind library

I Using library calls or Compiler Directives
I Needs source modification

Using numactl to access MCDRAM

I Run "numactl –hardware" to see the NUMA configuration of your
system

I Look for the node with no cores.
I If the total memory footprint of your app is smaller than the size of

MCDRAM
I ps -C myapp u
I see RSS value

I Use numactl to allocate all of its memory from MCDRAM
I numactl –membind=mcdram_id myapp
I Where mcdram_id is the ID of MCDRAM "node"

I If the total memory footprint of your app is larger than the size of
MCDRAM

I You can still use numactl to allocate part of your app in MCDRAM
I numactl –preferred=mcdram_id myapp
I Allocations that don’t fit into MCDRAM spills over to DDR

I numactl –interleave=nodes myapp
I Allocations are interleaved across all nodes

Using Memkind to access MCDRAM

I Memkind library is a user-extensible heap manager built on top of
jemalloc, a C library for general-purpose memory allocation
functions.

I The library is generalizable to any NUMA architecture, but for Knights
Landing processors it is used primarily for manual allocation to HBM
using special allocators for C/C++

I has limited support for Fortran

Using Memkind: C case

I Allocate 1000 floats from DDR

float *fv;
fv = (float *)malloc(sizeof(float) * 1000);

I Allocate 1000 floats from MCDRAM

float *fv;
fv = (float *)hbw_malloc(sizeof(float) * 1000);

Using Memkind: Fortran case

C Declare arrays to be dynamic
REAL, ALLOCATABLE :: A(:), B(:), C(:)
!DEC$ ATTRIBUTES FASTMEM :: A
NSIZE=1024
c
c allocate array ’A’ from MCDRAM
c
ALLOCATE (A(1:NSIZE))
c
c Allocate arrays that will come from DDR
c
ALLOCATE (B(NSIZE), C(NSIZE))

Using MCDRAM Summary

I Do nothing
I If DDR BW is sufficient for your app

I Use numactl to place app in MCDRAM
I Works well if the entire app fits within MCDRAM
I Can use numactl –preferred if app does not fit completely in MCDRAM

I Use MCDRAM cache mode

I Trivial to try; no source changes
I Use memkind API

Trends that are here to stay

I Data Parallelism
I Lots of threads, spent on MPI ranks or OpenMP/TBB/pthreads
I Improving support for both peak tput and modest/single thread

I Bigger, better, faster memory
I High capacity, high bandwidth, low latency DRAM
I Effective caching and paging Increasing support for irregular memory

refs, modest tuning
I ISA innovation

I Increasing support for vectorizatin, new usages

Evolution or Revolution ?

Incremental changes, significant gains
I Parallelization - consistent strategy

I MPI vs OpenMP - already needed to tune and tweak
I Less thread-level parallelism required
I Vectorization; more opportunity , more profitable

I Enable new features with memory using
I Access MCDRAM with special allocation
I Blocking for MCDRAM vs just cache

KNl specific enabling

I Recompilation with -xMIC-AVX512
I Threading: more MPI ranks, 1 thread/core
I Vectorization: incresed Efficiency
I MCDRAM and memory tuning: tile, 1 GB pages

What is needed?

I Building
I Change compiler switches in make files

I Coding
I Parallelization: vectorization, offload
I Memory Management: MCDRAM enumeration and memory allocation

I Tuning
I Potentially fewer Threads: more core but less need for SMT
I More memory more MPI ranks

Take aways

I Keep doing what you were doing for KNC and Xeon
I Some goodness comes free with a recompile
I With some extra enabling, use new MCDRAM feature

	Xeon
	Xeon Phi

