
1

Introduction to
GPU Accelerators and

CUDA Programming

26th Summer School

on Parallel Computing

10-21 July 2017

Sergio Orlandini
s.orlandini@cineca.it

 Hands on
• Chunk execution

 Naive version
 Stream version
 Multi-GPU version

• Profiling session

2

Hands-on Streams: naive version

3

Write a C or F90 program which performs the following operations:

 Allocate h_A, h_B, h_C single precision arrays of nSize elements on
host

 Initializare h_A and h_B arrays using the initArrayData()function in C
or the RANDOM_NUMBER() subroutine in F90

 Allocate d_A, d_B, d_C single precision arrays on the device

 Transfer data from h_A and h_B arrays on the d_A and d_B arrays

 Launch the arrayFunc() kernel which combine data from d_A and d_B
eand write results onto array d_C

 Copy back d_C array from device in h_C array on host

 Measure the total elapsed time to perform both kernel and memory
transfers using cudaEvents

 Execute the funcArrayCPU() function which replicates the same CUDA
kernel on host for result comparison

 Measure the elapsed time of the funcArrayCPU() function

 Compute the Speed Up of GPU implementation as CPU time / GPU time

Hands-on Streams: naive version

4

Hands-on Streams: using cudaStreams

5

Write a C or F90 program which performs the following operations:

 Allocate h_A, h_B, h_C single precision arrays of nSize elements on
host

 Initializare h_A and h_B arrays using the initArrayData()function in C
or the RANDOM_NUMBER() subroutine in F90

 Split the elaboration of h_A, h_B arrays into chunks of chunk_size size
elements

 Create streams_number of cudaStream

 Allocate d_A, d_B, d_C of chunk_size * streams_number size on the device

 Assign to each cudaStream the elaboration of each chunk. Each stream
will:
 copy a chunk of data from h_A and h_B on d_A and d_B buffers

 Launch the kernel arrayFunc

 Copy back to host the results from d_C into h_C

 Measure execution time and compare the speedup with respect naïve
implementation
 Try to change the number of active streams, the chunk size, etc…

Hands-on Streams: using cudaStreams

6

Hands-on Streams: using cudaStreams

7

Hands-on Streams: using cudaStreams

8

Hands-on Streams: using cudaStreams

9

CUDA Runtime functions to implement the code (CUDA FORTRAN):
• integer function cudaStreamCreate(stream)
 integer :: stream
• integer function cudaStreamDestroy(stream)
 integer :: stream
• integer function cudaDeviceSynchronize()
• integer function cudaMemcpyAsync(dst, src, nelements, kind,

 stream)

CUDA Runtime functions to implement the code (C for CUDA):
• cudaError_t cudaStreamCreate(cudaStream_t *stream)
• cudaError_t cudaStreamDestroy(cudaStream_t stream)
• cudaError_t cudaDeviceSynchronize(void)
• cudaErrot_t cudaMemcpyAsync(void* dst, void* src, size_t

 nbyte, enum cudaMemcpyKind kind,cudaStream_t stream)

Hands-on Streams: cudaStreams and Multi-GPU

10

Write a C or F90 program which performs the following operations:

 Allocate h_A, h_B, h_C single precision arrays of nSize elements on
host

 Initializare h_A and h_B arrays using the initArrayData()function in C
or the RANDOM_NUMBER() subroutine in F90

 Split the elaboration of h_A, h_B arrays into chunks of chunk_size size elements

 Assign to each available GPU device a balanced number of chunks to process

 Create streams_number of cudaStream

 Allocate d_A, d_B, d_C of chunk_size * streams_number size on the device

 Assign to each cudaStream the elaboration of each chunk. Each stream
will:
 copy a chunk of data from h_A and h_B on d_A and d_B buffers

 Launch the kernel arrayFunc

 Copy back to host the results from d_C into h_C

 Measure execution time and compare the speedup with respect single
GPU implementation

	Slide 1
	Slide 2
	Hands-on Streams: naive version
	Hands-on Streams: naive version
	Hands-on Streams: using cudaStreams
	Hands-on Streams: using cudaStreams
	Hands-on Streams: using cudaStreams
	Hands-on Streams: using cudaStreams
	Hands-on Streams: using cudaStreams
	Hands-on Streams: cudaStreams and Multi-GPU

