
1

Introduction to
GPU Accelerators and

CUDA Programming

26th Summer School

on Parallel Computing

10-21 July 2017

Sergio Orlandini
s.orlandini@cineca.it

 Hands on
• Chunk execution

 Naive version
 Stream version
 Multi-GPU version

• Profiling session

2

Hands-on Streams: naive version

3

Write a C or F90 program which performs the following operations:

 Allocate h_A, h_B, h_C single precision arrays of nSize elements on
host

 Initializare h_A and h_B arrays using the initArrayData()function in C
or the RANDOM_NUMBER() subroutine in F90

 Allocate d_A, d_B, d_C single precision arrays on the device

 Transfer data from h_A and h_B arrays on the d_A and d_B arrays

 Launch the arrayFunc() kernel which combine data from d_A and d_B
eand write results onto array d_C

 Copy back d_C array from device in h_C array on host

 Measure the total elapsed time to perform both kernel and memory
transfers using cudaEvents

 Execute the funcArrayCPU() function which replicates the same CUDA
kernel on host for result comparison

 Measure the elapsed time of the funcArrayCPU() function

 Compute the Speed Up of GPU implementation as CPU time / GPU time

Hands-on Streams: naive version

4

Hands-on Streams: using cudaStreams

5

Write a C or F90 program which performs the following operations:

 Allocate h_A, h_B, h_C single precision arrays of nSize elements on
host

 Initializare h_A and h_B arrays using the initArrayData()function in C
or the RANDOM_NUMBER() subroutine in F90

 Split the elaboration of h_A, h_B arrays into chunks of chunk_size size
elements

 Create streams_number of cudaStream

 Allocate d_A, d_B, d_C of chunk_size * streams_number size on the device

 Assign to each cudaStream the elaboration of each chunk. Each stream
will:
 copy a chunk of data from h_A and h_B on d_A and d_B buffers

 Launch the kernel arrayFunc

 Copy back to host the results from d_C into h_C

 Measure execution time and compare the speedup with respect naïve
implementation
 Try to change the number of active streams, the chunk size, etc…

Hands-on Streams: using cudaStreams

6

Hands-on Streams: using cudaStreams

7

Hands-on Streams: using cudaStreams

8

Hands-on Streams: using cudaStreams

9

CUDA Runtime functions to implement the code (CUDA FORTRAN):
• integer function cudaStreamCreate(stream)
 integer :: stream
• integer function cudaStreamDestroy(stream)
 integer :: stream
• integer function cudaDeviceSynchronize()
• integer function cudaMemcpyAsync(dst, src, nelements, kind,

 stream)

CUDA Runtime functions to implement the code (C for CUDA):
• cudaError_t cudaStreamCreate(cudaStream_t *stream)
• cudaError_t cudaStreamDestroy(cudaStream_t stream)
• cudaError_t cudaDeviceSynchronize(void)
• cudaErrot_t cudaMemcpyAsync(void* dst, void* src, size_t

 nbyte, enum cudaMemcpyKind kind,cudaStream_t stream)

Hands-on Streams: cudaStreams and Multi-GPU

10

Write a C or F90 program which performs the following operations:

 Allocate h_A, h_B, h_C single precision arrays of nSize elements on
host

 Initializare h_A and h_B arrays using the initArrayData()function in C
or the RANDOM_NUMBER() subroutine in F90

 Split the elaboration of h_A, h_B arrays into chunks of chunk_size size elements

 Assign to each available GPU device a balanced number of chunks to process

 Create streams_number of cudaStream

 Allocate d_A, d_B, d_C of chunk_size * streams_number size on the device

 Assign to each cudaStream the elaboration of each chunk. Each stream
will:
 copy a chunk of data from h_A and h_B on d_A and d_B buffers

 Launch the kernel arrayFunc

 Copy back to host the results from d_C into h_C

 Measure execution time and compare the speedup with respect single
GPU implementation

	Slide 1
	Slide 2
	Hands-on Streams: naive version
	Hands-on Streams: naive version
	Hands-on Streams: using cudaStreams
	Hands-on Streams: using cudaStreams
	Hands-on Streams: using cudaStreams
	Hands-on Streams: using cudaStreams
	Hands-on Streams: using cudaStreams
	Hands-on Streams: cudaStreams and Multi-GPU

