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 Memory Hierarchy on CUDA
• Global Memory

 caches
 type of global memory 

accesses

• Shared Memory
 Matrix-Matrix Product using 

Shared Memory

• Constant Memory
• Texture Memory
• Registers and Local Memory
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Memory Hierarchy 
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All CUDA threads in a block have access 
to:

 resources of the SM assigned to its 
block:
• Registers
• Shared Memory

NB: thread belonging to different blocks   
cannot share these resources

 all memory type available on GPU:
• Global Memory
• Costant Memory (read only)
• Texture Memory (read only)

NB: CPU can access and initialize both 
constant and texture memory

NB: global, constant and texture memory 
have persistent storage duration
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Global Memory
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 Global Memory is the 
larger memory available on 
a device
• Comparable to a RAM for CPU
• Its status is maintained among 

different kernel launches
• Can be access both read/write 

from all threads of the kernel 
grid
• Unique memory that can be use 

in read/write access from the 
CPU
• Very high bandwidth 
   Throughput up to 240-760 GB/s
•  Very high latency
about 400-800 clock cycles
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Declare Variable in Global Memory
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__device__  type  variable_name; // static

or dynamic allocation

type  *pointer_to_variable;
cudaMalloc((void **) &pointer_to_variable, size);
cudaFree(pointer_to_variable);

type, device :: variable_name

or dynamic allocation

type, device, allocatable :: variable_name
allocate(variable_name, size)
deallocate(variable_name)

 How to allocate a variable in Global Memory:

 Lifetime of the application

 Accessible by all threads of a CUDA grid and by the host



Cache Hierarchy for Global Memory 
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 Starting with the Fermi 
architecture, a cache hierarchy 
has been introduced

 2 Levels of cache:
• L2 : share among all  SM

 Fermi [768 KB], Kepler [1536 KB], 
Pascal [4MB]

 25% less latency than Global Memory
 NB : all accesses to global memory pass 

through L2 cache,
also H2D/D2H memory transfers

• L1 : private to each SM
 [16/48 KB] configurable
 L1 + Shared Memory = 64 KB
 Kepler/Pascal: configurable at 32 KB
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cudaFuncSetCacheConfig(kernel1, cudaFuncCachePreferL1);     // 48KB L1 / 16KB ShMem
cudaFuncSetCacheConfig(kernel2, cudaFuncCachePreferShared); // 16KB L1 / 48KB ShMem



Cache Hierarchy for Global Memory 

7

Two different types of load operations:

 Caching (default mode)

• when data is requested by some threads, 
data is first searched in L1 cache, then in L2 
cache, then in global memory

• cache line length is 128-byte

 Non-caching

• L1 cache is disabled

• when data is requested by some threads, 
data is first searched in L2 cache, then in 
global memory

• cache line length is 32-bytes

• Activated at compile time with option:
 –Xptxas –dlcm=cg

Just one type of store operation:

 when data should be store in global memory, its 
L1 copy is invalidated and L2 cache value is 
updated
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Global Memory Load/Store
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// offset data copy
__global__ void offsetCopy(float *odata, float* idata, int offset) {
   int xid = blockIdx.x * blockDim.x + threadIdx.x + offset;
   odata[xid] = idata[xid];
}

// strided data copy
__global__ void strideCopy (float *odata, float* idata, int stride) {
   int xid = (blockIdx.x*blockDim.x + threadIdx.x) * stride;
   odata[xid] = idata[xid];
}

Strided copy

Stri
de

Bandwidth 
GB/s

1 106.6

2 34.8

8 7.9

16 4.9

32 2.7

Offset copy

Offs
et

Bandwidth 
GB/s

0 106.6

1 72.2

8 78.2

16 83.4

32 105.7

Measured on a M2070; Total elements = 16776960; Num. Blocks = 65535; Block length = 256



Loads from Global Memory
 All load/store request in global memory are issued 

per warp (as all other instructions)
1. each thread in a warp compute the address to access
2. load/store units calculate in which memory segments 

data resides
3. load/store units start up requests for segment to 

transfer

Warp requires 32 consecutive 4-byte word aligned to segment 
(total 128 bytes)

Caching Load Non-caching Load

addresses fall whitin 1 cache line addresses fall whitin 4 cache segments

128 bytes are moved across the bus 128 bytes are moved across the bus

bus utilization: 100% bus utilization: 100%
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Loads from Global Memory

Warp requests 32 consecutive 4-bytes words not aligned to a 
segment (total 128 bytes)

Caching Load Non-caching Load

addresses fall within 2 cache lines addresses fall within at most 5 segments

256 bytes are moved across the bug 256 bytes are moved across the bus

bus utilization: 50% bus utilization: at least 80%

Warp requests 32 permuted 4-byte words aligned to a segment 
(total 128 bytes)

Caching Load Non-caching Load

addresses fall within 1 cache line addresses fall within 4 cache segments

128 bytes are moved across the bus 128 bytes are moved across the bus

bus utilization: 100% bus utilization: 100%
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Loads from Global Memory

Warp requests 32 not contiguous 4-bytes words (total 128 bytes)

Caching Load Non-caching Load

addresses fall within N different cache 
lines

addresses fall within N different segments

N*128 bytes are moved across the bus N*32 bytes are moved across the bus

bus utilization:  128 / (N*128) bus utilization:  128 / (N*32)

All threads in a warp request the same 4-byte word (total 4 bytes)

Caching Load Non-caching Load

addresses fall within a single cache line addresses fall within a single segment

128 bytes are moved across the bus 32 bytes are moved over the bus

bus utilization: 3.125% bus utilization: 12.5%
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Data alignment in Global Memory
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// host code
int width = 64, heigth = 64;
float *devPtr;
int pitch;
cudaMallocPitch(&devPtr, &pitch, width * sizeof(float), height);

// device code
__global__  myKernel(float *devPtr, int pitch, int width, int height)
{
  for (int r = 0; r < height; r++) {
    float *row = devPtr + r * pitch;
    for (int c = 0; c < width; c++)
      float element = row[c];
  }
  ...
}

 It is very important to align data in memory so to have aligned 
accesses (coalesced) during load/store operation in global memory, 
reducing the number of bytes moved across the bus
• cudaMalloc() grants the alignment of first element in global memory, 

useful for one dimensional arrays
• cudaMallocPitch() must be used to allocate 2D buffers

 elements are padded so each row is aligned for coalescing accesses
 returns an integer (pitch) which can be used as a stride to access row elements



Shared Memory 
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 The Shared Memory is a small,
but quite fast memory mounted 
on each SM
• Accessible in read/write mode for 

only threads of a block
• Alike a cache memory under the 

direct control of the programmer
• Its status is not mantained among 

different kernel calls

Specifications:
•Very low latency:  2 clock cycles
•Throughput:  32 bit every 2 cycles

•Dimension : 48 KB [default]
   (Configurable : 16/48 KB)
   Kepler : also 32 KB
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 Lifetime of CUDA block of threads
(NOT persistent along kernel launch!)

 Accessible only by threads of the 
same block

! statically inside the kernel
attribute(global) 
  subroutine myKernel(...)
  ...
  type, shared:: variable_name
  ...
end subroutine

or dynamic allocation

! dynamically sized
type, shared:: dynshmem(*)

attribute(global) 
  subroutine myKernel(...)
  ...
  dynshmem(i) = ...
  ...
end subroutine

Shared Memory Allocation
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// statically inside the kernel
__global__  myKernelOnGPU (...) {
  ...
  __shared__  type  shmem[MEMSZ];
  ...
}

or dynamic allocation

// dynamically sized
extern  __shared__  type  *dynshmem; 

__global__  myKernelOnGPU (...) {
  ...
  dynshmem[i] = ... ;
  ...
}

void myHostFunction() {
  ...
  myKernelOnGPU<<<gs,bs,MEMSZ>>>();
}



Thread Block Synchronization
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 All threads in the same block can be 
synchronized using the CUDA runtime API:

 __syncthreads() | call syncthreads()

which blocks execution until all other 
threads reach the same call location

 NB: can be used in conditional too, but 
only if all thread in the block reach the 
same synchronization call
“... otherwise the code execution is likely to 

hang or produce unintended side effects”



Shared Memory - Thread Cooperation
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 Threads belonging to the same 
block can cooperate togheter using 
the shared memory to share data
• if a thread needs some data which has been 

already retrived by another thread in the 
same block, this data can be shared using 
the shared memory

 Typical Shared Memory usage:
1. declare a buffer residing on shared 

memory (this buffer is per block)
2. load data into shared memory buffer
3. synchronize threads so to make sure 

all needed data is present in the 
buffer

4. performe operation on data
5. synchronize threads so all operations 

have been performed 
6. write back results to global memory
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Shared Memory and Bank Accesses
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 Shared memory has 32 banks organized such that 32-bit 
words map a banks
• Data are distributed every 4-bytes cycling over successive banks
• Shared memory accesses are per warp
• Multicast : if N threads of the same warp request the same 

element, access is executed with only one transaction
• Broadcast : if ALL threads of the same warp request the same 

element, access is executed with only one transaction 
• Bank Conflict: if two or more threads requests different data 

belonging to the same bank, each access is serialized

No Bank Conflict 2-way Bank Conflicts 8-way Bank Conflicts



Avoid Bank Conflict
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 A naive implementation of CUDA kernels using shared memory 
would use a tile of size 32x32 floats
• each element resides on a single bank (4-byte)
• data are on the same back every 32 floats
• so read/write by columns will turn into the worst type of bank conflict

 Use a common trick: let’s size the tile using 33 elements
• now all elements belonging to the same column reside on different banks

__shared__ float tile[TILE_DIM][TILE_DIM+1];



Constant Memory
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 Constant Memory is the ideal 
place to store constant data in 
read-only access from all 
threads
• constant memory data actually 

reside in the global memory, but 
fetched data is moved into a 
dedicated constant-cache 

• very efficient when all thread of a 
warp request the same memory 
address

• Constant memory is initialized 
from
host code using a special CUDA API

Specifications:
• Dimension : 64 KB
• Throughput: 32 bits per warp 

every 2 clock cycles
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Accessing Constant Memory
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Suppose a kernel is launched using 320 warps per SM and all 
threads requests the same data

 if data is on global memory:
• all warp will request the same segment from global memory
• the first time segment is copied into L2 cache
• if other data pass through L2, there are good chances it will be lost
• there are good chances that data should be requested 320 times

 if data is in constant memory:
• during first warp request, data is copied in constant-cache
• since there is less traffic in constant-cache , there are good chances all 

other  warp will find the data already in cache, so no more traffic on the 
BUS



 data will reside in the constant memory address space

 has static storage duration (persists until the application ends)

 readable from all threads of a kernel

Constant Memory Allocation
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__constant__  type  variable_name; // static

cudaMemcpyToSymbol(const_mem, &host_src, sizeof(type), cudaMemcpyHostToDevice);

// warning
// cannot be dynamically allocated

type, constant :: variable_name

! warning
! cannot be dynamically allocated



Texture Memory
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 Texture Memory is a basic 
graphic rendering functionality

 as for constant memory, data 
actually reside in global memory, 
but is fetched across a dedicated 
texture-cache

 data is accessed in read-only 
using special CUDA API function, 
called texture fetch

 Specifications:
• address resolution is more efficient 

since it is performed on dedicated 
hardware

 specialized hardware for:
• out-of-bound address resolution
• floating-point interpolation
• type conversion or bit 

operations
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Indirizzamento delle texture

Wrap: out-of-border coordinates 
are replaced in the box using 
modulus (available only for 
normalized indexing)

Clamp: out-of-border 
coordinates are clamped to 
nearest box bound
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Texture Memory Addressing Features

 integer 1D: [0,N-1]
 normalized 1D: [0,1-1/N]
 available interpolations:

• floor, linear, bilinear
• weights are 9 bit
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I passi necessari per usare le 
texture

Steps for Accessing Texture Memory
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• Allocate global memory on the device (standard, pitched or as 
cudaArray)
cudaMalloc(&d_a, memsize);

• Create a “texture reference” object at file scope:
texture<datatype, dim> d_a_texRef;

datatype cannot be a double; dim can be 1, 2 or 3
• Create a “channel descriptor” object to describe the return type of 

texture memory load:
cudaChannelFormatDesc d_a_desc = cudaCreateChannelDesc<datatype>();

• Bind the texture reference to memory
cudaBindTexture(0, d_a_texRef, d_a, d_a_desc);

• when finished: unbind the texture reference (there is a maximum 
number of usable textures):
cudaUnbindTexture(d_a_texRef);

• Access data from CUDA kernels through “texture reference”:
 tex1Dfetch(d_a_texRef, indirizzo) - for linear memory
 tex1d(), tex2D(), tex3D() -  for pitched linear texture and cudaArray

CPU

GPU



Texture Usage Example
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__global__ void shiftCopy(int N, int shift, float *odata, float *idata) 
{
  int xid = blockIdx.x * blockDim.x  +  threadIdx.x;  
  odata[xid] = idata[xid+shift];
}

texture<float, 1>  texRef;  // TEXTURE creation

__global__ void textureShiftCopy(int N, int shift, float *odata)
{
  int xid = blockIdx.x * blockDim.x  +  threadIdx.x;  
  odata[xid] = tex1Dfetch(texRef, xid+shift);       //  TEXTURE FETCHING
}

...

ShiftCopy<<<nBlocks, NUM_THREADS>>>(N, shift, d_out, d_inp);

cudaChannelFormatDesc d_a_desc = cudaCreateChannelDesc<float>(); // CREATE DESC
cudaBindTexture(0, texRef, d_a, d_a_desc);  // BIND TEXTURE MEMORY
textureShiftCopy<<<nBlocks, NUM_THREADS>>>(N, shift, d_out);



Texture Memory in Kepler: aka Read-only Cache
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__global__ void kernel_copy (float *odata, float *idata) { 
   int index = blockIdx.x * blockDim.x + threadIdx.x;
   odata[index] = __ldg(idata[index]);
}

 Starting from Kepler architecture (cc 3.5) constant 
memory loads from global memory can pass 
thorough the texture cache :
• without using a explicit texture binding
• without limits on the maximum allowed number of texture

__global__ void kernel_copy (float *odata, const __restrict__ 
float *idata) { 
   int index = blockIdx.x * blockDim.x + threadIdx.x;
   odata[index] = idata[index];
}



Registers
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 Registers are used to store scalars or small array 
variables with frequent access by each thread

– Fermi: 63 registers per thread / 32 KB
– Kepler: 255 registers per thread / 64 KB
– Pascal: same as Kepler

 WARNING:
• Less registers a kernel needs, more blocks can be 

assigned to a SM
• Attention to Register Pressure: can be a limiting factor
• Number of registers per kernel can be limited during 

compile time: 
--maxregcount max_registers
• Number of active blocks per kernel can be forced using 

the CUDA special qualifier
__launch_bounds__
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Local Memory
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 Local Memory  does not correspond to a real physical memory place

 Automatic variables are often place in local memory by the compiler: 
• large structures or arrays that would consume too much register space

 If a kernel uses more registers than available (register spilling), can move 
variables into local memory

 Local memory is often mapped to global memory
• using  same Caching hierachies (L1 for read-only variables)
• facing  same latency and bandwidth limitation of global memory

 In order to obtain information on how much local, constant, shared memory 
and registers are required for each kernel, you can provide the following 
compiler options

 --ptxas-options=-v

$ nvcc –arch=sm_20 –ptxas-options=-v my_kernel.cu
...
ptxas info : Used 34 registers, 60+56 bytes lmem, 44+40 bytes 
smem, 20 bytes cmem[1], 12 bytes cmem[14]
...



29

 Matrix-Matrix Product
 limits of global memory 

implementation
 using shared memory
 implementation guidelines



Matrix Product using Global Memory

30

 Each thread compute one element of C, 
using 2N elements (N from A, N from B) 
and performing 2N floating-point 
operations (N add , N mul)

 NB: every element of C shares same row 
or colum retrived N times the same 
elements from A or B

 This implementation results in 2N3 
loads !!!

 We can avoid requesting the same 
elements many times, sharing them 
through the shared memory
• each thread can retrive just one data 

element data in parallel and store it into 
shared memory

• when all threads have loaded needed data, 
they can access all the elements by the 
threads belonging to the same block, for 
example sharing a full row or column

 Unfortunatly shared memory size is small 
• 16/48 KB depending on the compute 

capability
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Matrix Product using Shared Memory
 Let’s solve the problem using blocks of (NB,NB) dimension
• each CUDA thread block computes the elements of a single 

matrix block of size (NB·NB) of matrix C
• each resulting matrix block of matrix C is obtained as the 

product of all sub-matrices of A and B

A

NB

NB

NB

NB

 The kernel is divided in two phases:
1. threads load a block of A and B from global 

memory to shared memory
2. threads compute the element of sub-block 

C reading from shared memory

Elements of each sub-block C are 
accumulated using local variables in registers, 
then stored in global memory

Threads synchronizations are required

after the load of sub-block of matrix A and 
B,  in order  to grant all data is available for 
sub-block matrix product

after the partial sub-block matrix product, 
in order to grant that next load of other 
sub-block will not overwrites elements not 
yet used in current block evaluation









NB

k

kjik

NBN

S

ij BsAsC
1

/

1

B

C

31



Matrix Product using Shared Memory: Flow
it = threadIdx.y
jt = threadIdx.x

ib = blockIdx.y
jb = blockIdx.x

Cij=0.

Cycle on block

kb=0, N/NB

As(it,jt) = A(ib*NB + it, kb*NB + jt)

Bs(it,jt) = B(kb*NB + it, jb*NB + jt)

Thread Synchronization

   Cij=Cij+As(it,k)·Bs(k,jt)

Thread Synchronization

Cycle on block: k=1,NB

C(i,j)=Cij A

B

N

N

NB

NB

C

it = threadIdx%x
jt = threadIdx%y

ib = blockIdx%x - 1
jb = blockIdx%y - 1

32



Matrix Product using Shared Memory: Kernel
// Matrix multiplication kernel called by MatMul_gpu() 
__global__ void MatMul_kernel (float *A, float *B, float *C, int N)
{

   // Shared memory used to store Asub and Bsub respectively
   __shared__  float Asub[NB][NB];
   __shared__  float Bsub[NB][NB];

   // Block row and column 
   int ib = blockIdx.y;
   int jb = blockIdx.x;

   // Thread row and column within Csub 
   int it = threadIdx.y;
   int jt = threadIdx.x;

   int a_offset , b_offset, c_offset;

   // Each thread computes one element of Csub 
   // by accumulating results into Cvalue 
   float Cvalue = 0;

   // Loop over all the sub-matrices of A and B that are 
   // required to compute Csub 
   // Multiply each pair of sub-matrices together 
   // and accumulate the results 

   for (int kb = 0; kb < (A.width / NB); ++kb) {

      // Get the starting address of Asub  and Bsub
      a_offset = get_offset (ib, kb, N);
      b_offset = get_offset (kb, jb, N);

      // Load Asub and Bsub from device memory to shared memory 
      // Each thread loads one element of each sub-matrix 
      Asub[it][jt] = A[a_offset + it*N + jt];
      Bsub[it][jt] = B[b_offset + it*N + jt];

      // Synchronize to make sure the sub-matrices are loaded 
      // before starting the computation 
      __syncthreads();

      // Multiply Asub and Bsub together 
      for (int k = 0; k < NB; ++k) {
         Cvalue += Asub[it][k] * Bsub[k][jt];
      }
      // Synchronize to make sure that the preceding 
      // computation is done 
      __syncthreads();
   }

   // Get the starting address (c_offset) of Csub 
   c_offset = get_offset (ib, jb, N);  
  // Each thread block computes one sub-matrix Csub of C 
   C[c_offset + it*N + jt] = Cvalue;

}

33



 Synchronous and 
Asynchronous API

 Concurrent Execution

 CPU and GPU interaction
• concurrent execution on 

CPU and GPU
• overlapping transfers and 

kernels

 Multi-device management

 GPU/GPU interactions

34



Connection Scheme of host/device
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Blocking and Non-blocking Functions

 Non-blocking (asynchronous):    
 return control to host 
immediatelly, while its execution 
proceeds on device
• kernel launches
• memory transfers < 64KB
• memory initialization on device 

(cudaMemset)
• memory copies from device to device
• explicit asynchronous memory transfers

 blocking (synchronous): 
return control to host thread 
after execution is 
completed on device

• all memory transfer > 64KB

• all memory allocation on device

• allocation of page locked memory 
on host

36

 Every CUDA action is submitted to an execution queue on 
the device

 CUDA runtime functions can be divided in two categories:

 CUDA API provides asynchronous versions of their counterpart 
synchronous functions

 Asynchronous functions allows to set up concurrent execution of 
many operations on host and device 



Concurrent and Asynchronous Execution

Asynchronous functions 
allows to expose concurrent 
executions:

1. Overlap computation on 
host and on device

2. execution of more than 
one kernel on device

3. data transfers between 
host and device while 
executing a kernel

4. data transfers from host to 
device, while transfering 
data from device to host

37



Example of Concurrent Execution
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cudaSetDevice(0)
kernel <<<threads, Blocks>>> (a, b, c)

// work on CPU while GPU is working
CPU_Function()

// Stop CPU until GPU has finished to compute
cudaDeviceSynchronize()

// Use device results on host
CPU_uses_the_GPU_kernel_results()

Since CUDA kernel invocation is an asynchronous operation, 
CPU can proceed and evalutate the CPU_Function()while 
GPU is involved in kernel execution (concurrent execution).

Before using results from CUDA kernel, synchronization 
between host and device is required.



CUDA Streams
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 GPU operations are implementated in CUDA 
using execution queues, called streams

 Each operation pushed in a stream will be 
executed only after all other operations in the 
same stream are completed (FIFO queue 
behaviour)

 Operations assigned to different streams can 
be executed in any order with respect each 
other

 CUDA runtime provides a default stream (aka 
stream 0) which will be the default queue of all 
operation if otherwise is not explicitly declared



CUDA Streams
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 All operations assigned to the default stream will be executed 
only after all preceeding operations assigned to other 
streams are completed

 Any further operation assigned to stream different from 
default will begin only after all operations on the default 
stream are completed

 Operations assigned to the default stream act as implicit 
synchronization barriers among other streams



Synchronization
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 Explicit Synchronizations :
• cudaDeviceSynchronize()

 Blocks host code until all operations on device are completed

• cudaStreamSynchronize(stream)
 Blocks host code until all operations on a stream are completed

• cudaStreamWaitEvent(stream, event)
 Blocks all operations assigned to a stream until event is reached

 Implicit Synchronizations :
• All operations assigned to the default stream
• Page-locked memory allocations
• Memory allocations on device
• Settings operations on device 
• …



CUDA Streams Management
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 Stream management:
• Constructor:          cudaStreamCreate()
• Synchronization:  cudaStreamSynchronize()
• Destructor:           cudaStreamDestroy()

 Stream allows various execution modes, 
depending on the compute capability:
• concurrent execution of more than one kernel 

per GPU
• concurrent asynchronous data transfers in 

both H2D and D2H directions
• concurrent execution on device/host and data 

transfers from host and device



Kernel Concurrent Execution
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cudaSetDevice(0)

cudaStreamCreate(stream1)
cudaStreamCreate(stream2)

// concurrent execution of the same kernel
Kernel_1<<<blocks, threads, SharedMem, stream1>>>(inp_1, out_1)
Kernel_1<<<blocks, threads, SharedMem, stream2>>>(inp_2, out_2)

// concurrent execution of different kernels
Kernel_1<<<blocks, threads, SharedMem, stream1>>>(inp, out_1)
Kernel_2<<<blocks, threads, SharedMem, stream2>>>(inp, out_2)

cudaStreamDestroy(stream1)
cudaStreamDestroy(stream2)



Asynchronous Data Transfers
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 In order to performe asynchronous data transfers between host 
and device the host memory must be of page-locked type (a.k.a 
pinned)

 CUDA runtime provides the following functions to handle page-
locked memory:
• cudaMallocHost()allocate page-locked memory on host
• cudaFreeHost()free page-locked allocated memory on host
• cudaHostRegister()turn host allocated memory into page-locked
• cudaHostUnregister()turn page-locked memory into ordinary 

memory

 cudaMemcpyAsync()function explicitly performes asynchronous 
data transfers between host and device memory

 Data transfer operations must queued into a stream different 
from the default one in order to be asynchronous

 Using page-locked memory allows data transfers between host 
and device memory with higher bandwidth
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cudaStreamCreate(stream_a)
cudaStreamCreate(stream_b)

cudaMallocHost(h_buffer_a, buffer_a_size)
cudaMallocHost(h_buffer_b, buffer_b_size)

cudaMalloc(d_buffer_a, buffer_a_size)
cudaMalloc(d_buffer_b, buffer_b_size)

// concurrent and asynchronous dat atransfer H2D and D2H
cudaMemcpyAsync(d_buffer_a, h_buffer_a, buffer_a_size, 
cudaMemcpyHostToDevice, stream_a)
cudaMemcpyAsync(h_buffer_b, d_buffer_b, buffer_b_size, 
cudaMemcpyDeviceToHost, stream_b)

cudaStreamDestroy(stream_a)
cudaStreamDestroy(stream_b)

cudaFreeHost(h_buffer_a)
cudaFreeHost(h_buffer_b)
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cudaStream_t stream[4];
for (int i=0; i<4; ++i) cudaStreamCreate(&stream[i]);

float* hPtr; cudaMallocHost((void**)&hPtr, 4 * size);

for (int i=0; i<4; ++i) {
  cudaMemcpyAsync(d_inp + i*size, hPtr + i*size,
                  size, cudaMemcpyHostToDevice, stream[i]);

  MyKernel<<<100, 512, 0, stream[i]>>>(d_out+i*size, d_inp+i*size, size);

  cudaMemcpyAsync(hPtr + i*size, d_out + i*size,
                  size, cudaMemcpyDeviceToHost, stream[i]);
}
cudaDeviceSynchronize();

for (int i=0; i<4; ++i) cudaStreamDestroy(&stream[i]);
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 Concurrency: when two or more CUDA operations proceed at the same 
time
• Fermi : up to 16 kernel CUDA / Kepler : up to 32 kernel CUDA
• 2 data transfers host/device (duplex)
• concurrency with host operations

 Requirements for concurrency:
• operations must be assigned to streams different from the default stream 
• host/device data transfers should be asynchronous and host memory must be page-

locked
• only if there are enough hw resources left to use (SharedMem, Registers, Blocks, PCIe 

bus, …)
 No kernel concurrency if all SM on the device are in use
 data transfers won’t take place if other transfers are still going on
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 Relative priorities of streams can be specified at creation

 If not specified, all streams get the same priority

 runtime will choose which operation start first among 
equivalent priority streams

// get the range of stream priorities for this device
int priority_high, priority_low;
cudaDeviceGetStreamPriorityRange(&priority_low, &priority_high);

// create streams with highest and lowest priorities
cudaStream_t st_high, st_low;
cudaStreamCreateWithPriority(&st_high, cudaStreamNonBlocking, 
priority_high);
cudaStreamCreateWithPriority(&st_low, cudaStreamNonBlocking, 
priority_low);
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CUDA runtime allows to control more than one 
GPU device available on a computing node 
(multi-GPU programming):
• CUDA 3.2 and previous versions

 a multi-thread or multi-process parallel paradigm was 
required to access and use more than one device

• CUDA 4.0 and later versions
 new runtime API to select and to control all available 

devices from a serial program (single host core)
 you can still use a parallel programming approach 

(multi-thread or multi-process): 
o each process or thread will be always able to access all 

devices
o you can select which devices a thread/process can control



Device Management

50

cudaDeviceCount(number_gpu)
cudaGetDeviceProperties(gpu_property, gpu_ID)

cudaSetDevice(0)
kernel_0 <<<threads, Blocks>>> (a, b, c)

cudaSetDevice(1)
kernel_1 <<<threads, Blocks>>> (d, e, f)

For each device:
  cudaSetDevice(device)
  cudaDeviceSynchronize()

CUDA runtime allows to:

 get information on available CUDA enabled devices

 get properties of each CUDA device (cc, memory sizes, clock, etc)

 select a device and queue CUDA operations on that device

 manage synchronization among available devices
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 A device can directly transfer or access data to/from another 
device

 This kind of direct transfer is called Peer to Peer (P2P)

 P2P transfers are more efficient and do not require a host buffer

 Direct access avoid host memory copy

No Peer To Peer Peer To Peer



Peer to Peer Transfer Pseudocode

52

gpuA=0, gpuB=1
cudaSetDevice(gpuA)
cudaMalloc(buffer_A, buffer_size)

cudaSetDevice(gpuB)
cudaMalloc(buffer_B, buffer_size)

cudaSetDevice(gpuA)
cudaDeviceCanAccessPeer(answer, gpuA, gpuB)

If answer is true:
cudaDeviceEnablePeerAccess(gpuB, 0) 
// gpuA performs copy from gpuA to gpuB
cudaMemcpyPeer(buffer_B, gpuB, buffer_A, gpuA, buffer_size) 
// gpuA performs copy from gpuB to gpuA
cudaMemcpyPeer(buffer_A, gpuA, buffer_B, gpuB, buffer_size)
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gpuA=0, gpuB=1
cudaSetDevice(gpuA)
cudaMalloc(buffer_A, buffer_size)

cudaSetDevice(gpuB)
cudaMalloc(buffer_B, buffer_size)

cudaSetDevice(gpuA)
cudaDeviceCanAccessPeer(answer, gpuA, gpuB)

If answer is true:
cudaDeviceEnablePeerAccess(gpuB, 0) 
// gpuA invokes a kernel that accesses to gpuB memory
kernel<<<threads, blocks>>>(buffer_A, buffer_B)
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