
1

Introduction to
GPU Accelerators and

CUDA Programming

26th Summer School

on Parallel Computing

10-21 July 2017

Sergio Orlandini
s.orlandini@cineca.it

 Memory Hierarchy on CUDA
• Global Memory

 caches
 type of global memory

accesses

• Shared Memory
 Matrix-Matrix Product using

Shared Memory

• Constant Memory
• Texture Memory
• Registers and Local Memory

2

Memory Hierarchy

3

All CUDA threads in a block have access
to:

 resources of the SM assigned to its
block:
• Registers
• Shared Memory

NB: thread belonging to different blocks
cannot share these resources

 all memory type available on GPU:
• Global Memory
• Costant Memory (read only)
• Texture Memory (read only)

NB: CPU can access and initialize both
constant and texture memory

NB: global, constant and texture memory
have persistent storage duration

(Device) Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Global Memory

4

 Global Memory is the
larger memory available on
a device
• Comparable to a RAM for CPU
• Its status is maintained among

different kernel launches
• Can be access both read/write

from all threads of the kernel
grid
• Unique memory that can be use

in read/write access from the
CPU
• Very high bandwidth
 Throughput up to 240-760 GB/s
• Very high latency
about 400-800 clock cycles

(Device) Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Declare Variable in Global Memory

5

__device__ type variable_name; // static

or dynamic allocation

type *pointer_to_variable;
cudaMalloc((void **) &pointer_to_variable, size);
cudaFree(pointer_to_variable);

type, device :: variable_name

or dynamic allocation

type, device, allocatable :: variable_name
allocate(variable_name, size)
deallocate(variable_name)

 How to allocate a variable in Global Memory:

 Lifetime of the application

 Accessible by all threads of a CUDA grid and by the host

Cache Hierarchy for Global Memory

6

 Starting with the Fermi
architecture, a cache hierarchy
has been introduced

 2 Levels of cache:
• L2 : share among all SM

 Fermi [768 KB], Kepler [1536 KB],
Pascal [4MB]

 25% less latency than Global Memory
 NB : all accesses to global memory pass

through L2 cache,
also H2D/D2H memory transfers

• L1 : private to each SM
 [16/48 KB] configurable
 L1 + Shared Memory = 64 KB
 Kepler/Pascal: configurable at 32 KB

(Device) Grid

L2 cache (768 KB)

Global
Memory

Block (0, 0)

Shared
Memory

Threads

Registers

Block (1, 0)

Threads

Registers

Host

L1
cache

Shared
Memory

L1
cache

cudaFuncSetCacheConfig(kernel1, cudaFuncCachePreferL1); // 48KB L1 / 16KB ShMem
cudaFuncSetCacheConfig(kernel2, cudaFuncCachePreferShared); // 16KB L1 / 48KB ShMem

Cache Hierarchy for Global Memory

7

Two different types of load operations:

 Caching (default mode)

• when data is requested by some threads,
data is first searched in L1 cache, then in L2
cache, then in global memory

• cache line length is 128-byte

 Non-caching

• L1 cache is disabled

• when data is requested by some threads,
data is first searched in L2 cache, then in
global memory

• cache line length is 32-bytes

• Activated at compile time with option:
 –Xptxas –dlcm=cg

Just one type of store operation:

 when data should be store in global memory, its
L1 copy is invalidated and L2 cache value is
updated

(Device) Grid

L2 cache (768 KB)

Global
Memory

Block (0, 0)

Shared
Memory

Threads

Registers

Block (1, 0)

Threads

Registers

Host

L1
cache

Shared
Memory

L1
cache

Global Memory Load/Store

8

// offset data copy
__global__ void offsetCopy(float *odata, float* idata, int offset) {
 int xid = blockIdx.x * blockDim.x + threadIdx.x + offset;
 odata[xid] = idata[xid];
}

// strided data copy
__global__ void strideCopy (float *odata, float* idata, int stride) {
 int xid = (blockIdx.x*blockDim.x + threadIdx.x) * stride;
 odata[xid] = idata[xid];
}

Strided copy

Stri
de

Bandwidth
GB/s

1 106.6

2 34.8

8 7.9

16 4.9

32 2.7

Offset copy

Offs
et

Bandwidth
GB/s

0 106.6

1 72.2

8 78.2

16 83.4

32 105.7

Measured on a M2070; Total elements = 16776960; Num. Blocks = 65535; Block length = 256

Loads from Global Memory
 All load/store request in global memory are issued

per warp (as all other instructions)
1. each thread in a warp compute the address to access
2. load/store units calculate in which memory segments

data resides
3. load/store units start up requests for segment to

transfer

Warp requires 32 consecutive 4-byte word aligned to segment
(total 128 bytes)

Caching Load Non-caching Load

addresses fall whitin 1 cache line addresses fall whitin 4 cache segments

128 bytes are moved across the bus 128 bytes are moved across the bus

bus utilization: 100% bus utilization: 100%

9

Loads from Global Memory

Warp requests 32 consecutive 4-bytes words not aligned to a
segment (total 128 bytes)

Caching Load Non-caching Load

addresses fall within 2 cache lines addresses fall within at most 5 segments

256 bytes are moved across the bug 256 bytes are moved across the bus

bus utilization: 50% bus utilization: at least 80%

Warp requests 32 permuted 4-byte words aligned to a segment
(total 128 bytes)

Caching Load Non-caching Load

addresses fall within 1 cache line addresses fall within 4 cache segments

128 bytes are moved across the bus 128 bytes are moved across the bus

bus utilization: 100% bus utilization: 100%

10

Loads from Global Memory

Warp requests 32 not contiguous 4-bytes words (total 128 bytes)

Caching Load Non-caching Load

addresses fall within N different cache
lines

addresses fall within N different segments

N*128 bytes are moved across the bus N*32 bytes are moved across the bus

bus utilization: 128 / (N*128) bus utilization: 128 / (N*32)

All threads in a warp request the same 4-byte word (total 4 bytes)

Caching Load Non-caching Load

addresses fall within a single cache line addresses fall within a single segment

128 bytes are moved across the bus 32 bytes are moved over the bus

bus utilization: 3.125% bus utilization: 12.5%

11

Data alignment in Global Memory

12

// host code
int width = 64, heigth = 64;
float *devPtr;
int pitch;
cudaMallocPitch(&devPtr, &pitch, width * sizeof(float), height);

// device code
__global__ myKernel(float *devPtr, int pitch, int width, int height)
{
 for (int r = 0; r < height; r++) {
 float *row = devPtr + r * pitch;
 for (int c = 0; c < width; c++)
 float element = row[c];
 }
 ...
}

 It is very important to align data in memory so to have aligned
accesses (coalesced) during load/store operation in global memory,
reducing the number of bytes moved across the bus
• cudaMalloc() grants the alignment of first element in global memory,

useful for one dimensional arrays
• cudaMallocPitch() must be used to allocate 2D buffers

 elements are padded so each row is aligned for coalescing accesses
 returns an integer (pitch) which can be used as a stride to access row elements

Shared Memory

13

 The Shared Memory is a small,
but quite fast memory mounted
on each SM
• Accessible in read/write mode for

only threads of a block
• Alike a cache memory under the

direct control of the programmer
• Its status is not mantained among

different kernel calls

Specifications:
•Very low latency: 2 clock cycles
•Throughput: 32 bit every 2 cycles

•Dimension : 48 KB [default]
 (Configurable : 16/48 KB)
 Kepler : also 32 KB

(Device) Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

 Lifetime of CUDA block of threads
(NOT persistent along kernel launch!)

 Accessible only by threads of the
same block

! statically inside the kernel
attribute(global)
 subroutine myKernel(...)
 ...
 type, shared:: variable_name
 ...
end subroutine

or dynamic allocation

! dynamically sized
type, shared:: dynshmem(*)

attribute(global)
 subroutine myKernel(...)
 ...
 dynshmem(i) = ...
 ...
end subroutine

Shared Memory Allocation

14

// statically inside the kernel
__global__ myKernelOnGPU (...) {
 ...
 __shared__ type shmem[MEMSZ];
 ...
}

or dynamic allocation

// dynamically sized
extern __shared__ type *dynshmem;

__global__ myKernelOnGPU (...) {
 ...
 dynshmem[i] = ... ;
 ...
}

void myHostFunction() {
 ...
 myKernelOnGPU<<<gs,bs,MEMSZ>>>();
}

Thread Block Synchronization

15

 All threads in the same block can be
synchronized using the CUDA runtime API:

 __syncthreads() | call syncthreads()

which blocks execution until all other
threads reach the same call location

 NB: can be used in conditional too, but
only if all thread in the block reach the
same synchronization call
“... otherwise the code execution is likely to

hang or produce unintended side effects”

Shared Memory - Thread Cooperation

16

 Threads belonging to the same
block can cooperate togheter using
the shared memory to share data
• if a thread needs some data which has been

already retrived by another thread in the
same block, this data can be shared using
the shared memory

 Typical Shared Memory usage:
1. declare a buffer residing on shared

memory (this buffer is per block)
2. load data into shared memory buffer
3. synchronize threads so to make sure

all needed data is present in the
buffer

4. performe operation on data
5. synchronize threads so all operations

have been performed
6. write back results to global memory

(Device) Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Threads

Registers

Block (1, 0)

Shared Memory

Threads

Registers

Shared Memory and Bank Accesses

17

 Shared memory has 32 banks organized such that 32-bit
words map a banks
• Data are distributed every 4-bytes cycling over successive banks
• Shared memory accesses are per warp
• Multicast : if N threads of the same warp request the same

element, access is executed with only one transaction
• Broadcast : if ALL threads of the same warp request the same

element, access is executed with only one transaction
• Bank Conflict: if two or more threads requests different data

belonging to the same bank, each access is serialized

No Bank Conflict 2-way Bank Conflicts 8-way Bank Conflicts

Avoid Bank Conflict

18

 A naive implementation of CUDA kernels using shared memory
would use a tile of size 32x32 floats
• each element resides on a single bank (4-byte)
• data are on the same back every 32 floats
• so read/write by columns will turn into the worst type of bank conflict

 Use a common trick: let’s size the tile using 33 elements
• now all elements belonging to the same column reside on different banks

__shared__ float tile[TILE_DIM][TILE_DIM+1];

Constant Memory

19

 Constant Memory is the ideal
place to store constant data in
read-only access from all
threads
• constant memory data actually

reside in the global memory, but
fetched data is moved into a
dedicated constant-cache

• very efficient when all thread of a
warp request the same memory
address

• Constant memory is initialized
from
host code using a special CUDA API

Specifications:
• Dimension : 64 KB
• Throughput: 32 bits per warp

every 2 clock cycles

(Device) Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Accessing Constant Memory

20

Suppose a kernel is launched using 320 warps per SM and all
threads requests the same data

 if data is on global memory:
• all warp will request the same segment from global memory
• the first time segment is copied into L2 cache
• if other data pass through L2, there are good chances it will be lost
• there are good chances that data should be requested 320 times

 if data is in constant memory:
• during first warp request, data is copied in constant-cache
• since there is less traffic in constant-cache , there are good chances all

other warp will find the data already in cache, so no more traffic on the
BUS

 data will reside in the constant memory address space

 has static storage duration (persists until the application ends)

 readable from all threads of a kernel

Constant Memory Allocation

21

__constant__ type variable_name; // static

cudaMemcpyToSymbol(const_mem, &host_src, sizeof(type), cudaMemcpyHostToDevice);

// warning
// cannot be dynamically allocated

type, constant :: variable_name

! warning
! cannot be dynamically allocated

Texture Memory

22

 Texture Memory is a basic
graphic rendering functionality

 as for constant memory, data
actually reside in global memory,
but is fetched across a dedicated
texture-cache

 data is accessed in read-only
using special CUDA API function,
called texture fetch

 Specifications:
• address resolution is more efficient

since it is performed on dedicated
hardware

 specialized hardware for:
• out-of-bound address resolution
• floating-point interpolation
• type conversion or bit

operations

(Device) Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Indirizzamento delle texture

Wrap: out-of-border coordinates
are replaced in the box using
modulus (available only for
normalized indexing)

Clamp: out-of-border
coordinates are clamped to
nearest box bound

0 1 2 3 4

1
2
3

0 (2.5, 0.5)
(1.0, 1.0)

0 1 2 3 4

1

2

3

0

(5.5, 2)

Texture Memory Addressing Features

 integer 1D: [0,N-1]
 normalized 1D: [0,1-1/N]
 available interpolations:

• floor, linear, bilinear
• weights are 9 bit

0 0.2 0.4 0.6 0.8

0.25
0.5

0.75

0

(1.2, 0.5)

23

I passi necessari per usare le
texture

Steps for Accessing Texture Memory

24

• Allocate global memory on the device (standard, pitched or as
cudaArray)
cudaMalloc(&d_a, memsize);

• Create a “texture reference” object at file scope:
texture<datatype, dim> d_a_texRef;

datatype cannot be a double; dim can be 1, 2 or 3
• Create a “channel descriptor” object to describe the return type of

texture memory load:
cudaChannelFormatDesc d_a_desc = cudaCreateChannelDesc<datatype>();

• Bind the texture reference to memory
cudaBindTexture(0, d_a_texRef, d_a, d_a_desc);

• when finished: unbind the texture reference (there is a maximum
number of usable textures):
cudaUnbindTexture(d_a_texRef);

• Access data from CUDA kernels through “texture reference”:
 tex1Dfetch(d_a_texRef, indirizzo) - for linear memory
 tex1d(), tex2D(), tex3D() - for pitched linear texture and cudaArray

CPU

GPU

Texture Usage Example

25

__global__ void shiftCopy(int N, int shift, float *odata, float *idata)
{
 int xid = blockIdx.x * blockDim.x + threadIdx.x;
 odata[xid] = idata[xid+shift];
}

texture<float, 1> texRef; // TEXTURE creation

__global__ void textureShiftCopy(int N, int shift, float *odata)
{
 int xid = blockIdx.x * blockDim.x + threadIdx.x;
 odata[xid] = tex1Dfetch(texRef, xid+shift); // TEXTURE FETCHING
}

...

ShiftCopy<<<nBlocks, NUM_THREADS>>>(N, shift, d_out, d_inp);

cudaChannelFormatDesc d_a_desc = cudaCreateChannelDesc<float>(); // CREATE DESC
cudaBindTexture(0, texRef, d_a, d_a_desc); // BIND TEXTURE MEMORY
textureShiftCopy<<<nBlocks, NUM_THREADS>>>(N, shift, d_out);

Texture Memory in Kepler: aka Read-only Cache

26

__global__ void kernel_copy (float *odata, float *idata) {
 int index = blockIdx.x * blockDim.x + threadIdx.x;
 odata[index] = __ldg(idata[index]);
}

 Starting from Kepler architecture (cc 3.5) constant
memory loads from global memory can pass
thorough the texture cache :
• without using a explicit texture binding
• without limits on the maximum allowed number of texture

__global__ void kernel_copy (float *odata, const __restrict__
float *idata) {
 int index = blockIdx.x * blockDim.x + threadIdx.x;
 odata[index] = idata[index];
}

Registers

27

 Registers are used to store scalars or small array
variables with frequent access by each thread

– Fermi: 63 registers per thread / 32 KB
– Kepler: 255 registers per thread / 64 KB
– Pascal: same as Kepler

 WARNING:
• Less registers a kernel needs, more blocks can be

assigned to a SM
• Attention to Register Pressure: can be a limiting factor
• Number of registers per kernel can be limited during

compile time:
--maxregcount max_registers
• Number of active blocks per kernel can be forced using

the CUDA special qualifier
__launch_bounds__

(Device) Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

__global__ void
__launch_bounds__(maxThreadsPerBlock,
 minBlocksPerMultiprocessor)
my_kernel(…) { … }

Local Memory

28

 Local Memory does not correspond to a real physical memory place

 Automatic variables are often place in local memory by the compiler:
• large structures or arrays that would consume too much register space

 If a kernel uses more registers than available (register spilling), can move
variables into local memory

 Local memory is often mapped to global memory
• using same Caching hierachies (L1 for read-only variables)
• facing same latency and bandwidth limitation of global memory

 In order to obtain information on how much local, constant, shared memory
and registers are required for each kernel, you can provide the following
compiler options

 --ptxas-options=-v

$ nvcc –arch=sm_20 –ptxas-options=-v my_kernel.cu
...
ptxas info : Used 34 registers, 60+56 bytes lmem, 44+40 bytes
smem, 20 bytes cmem[1], 12 bytes cmem[14]
...

29

 Matrix-Matrix Product
 limits of global memory

implementation
 using shared memory
 implementation guidelines

Matrix Product using Global Memory

30

 Each thread compute one element of C,
using 2N elements (N from A, N from B)
and performing 2N floating-point
operations (N add , N mul)

 NB: every element of C shares same row
or colum retrived N times the same
elements from A or B

 This implementation results in 2N3
loads !!!

 We can avoid requesting the same
elements many times, sharing them
through the shared memory
• each thread can retrive just one data

element data in parallel and store it into
shared memory

• when all threads have loaded needed data,
they can access all the elements by the
threads belonging to the same block, for
example sharing a full row or column

 Unfortunatly shared memory size is small
• 16/48 KB depending on the compute

capability

A

B

C
N

N

N

N

N

k

kjikij BAC
1

Matrix Product using Shared Memory
 Let’s solve the problem using blocks of (NB,NB) dimension
• each CUDA thread block computes the elements of a single

matrix block of size (NB·NB) of matrix C
• each resulting matrix block of matrix C is obtained as the

product of all sub-matrices of A and B

A

NB

NB

NB

NB

 The kernel is divided in two phases:
1. threads load a block of A and B from global

memory to shared memory
2. threads compute the element of sub-block

C reading from shared memory

Elements of each sub-block C are
accumulated using local variables in registers,
then stored in global memory

Threads synchronizations are required

after the load of sub-block of matrix A and
B, in order to grant all data is available for
sub-block matrix product

after the partial sub-block matrix product,
in order to grant that next load of other
sub-block will not overwrites elements not
yet used in current block evaluation

NB

k

kjik

NBN

S

ij BsAsC
1

/

1

B

C

31

Matrix Product using Shared Memory: Flow
it = threadIdx.y
jt = threadIdx.x

ib = blockIdx.y
jb = blockIdx.x

Cij=0.

Cycle on block

kb=0, N/NB

As(it,jt) = A(ib*NB + it, kb*NB + jt)

Bs(it,jt) = B(kb*NB + it, jb*NB + jt)

Thread Synchronization

 Cij=Cij+As(it,k)·Bs(k,jt)

Thread Synchronization

Cycle on block: k=1,NB

C(i,j)=Cij A

B

N

N

NB

NB

C

it = threadIdx%x
jt = threadIdx%y

ib = blockIdx%x - 1
jb = blockIdx%y - 1

32

Matrix Product using Shared Memory: Kernel
// Matrix multiplication kernel called by MatMul_gpu()
__global__ void MatMul_kernel (float *A, float *B, float *C, int N)
{

 // Shared memory used to store Asub and Bsub respectively
 __shared__ float Asub[NB][NB];
 __shared__ float Bsub[NB][NB];

 // Block row and column
 int ib = blockIdx.y;
 int jb = blockIdx.x;

 // Thread row and column within Csub
 int it = threadIdx.y;
 int jt = threadIdx.x;

 int a_offset , b_offset, c_offset;

 // Each thread computes one element of Csub
 // by accumulating results into Cvalue
 float Cvalue = 0;

 // Loop over all the sub-matrices of A and B that are
 // required to compute Csub
 // Multiply each pair of sub-matrices together
 // and accumulate the results

 for (int kb = 0; kb < (A.width / NB); ++kb) {

 // Get the starting address of Asub and Bsub
 a_offset = get_offset (ib, kb, N);
 b_offset = get_offset (kb, jb, N);

 // Load Asub and Bsub from device memory to shared memory
 // Each thread loads one element of each sub-matrix
 Asub[it][jt] = A[a_offset + it*N + jt];
 Bsub[it][jt] = B[b_offset + it*N + jt];

 // Synchronize to make sure the sub-matrices are loaded
 // before starting the computation
 __syncthreads();

 // Multiply Asub and Bsub together
 for (int k = 0; k < NB; ++k) {
 Cvalue += Asub[it][k] * Bsub[k][jt];
 }
 // Synchronize to make sure that the preceding
 // computation is done
 __syncthreads();
 }

 // Get the starting address (c_offset) of Csub
 c_offset = get_offset (ib, jb, N);
 // Each thread block computes one sub-matrix Csub of C
 C[c_offset + it*N + jt] = Cvalue;

}

33

 Synchronous and
Asynchronous API

 Concurrent Execution

 CPU and GPU interaction
• concurrent execution on

CPU and GPU
• overlapping transfers and

kernels

 Multi-device management

 GPU/GPU interactions

34

Connection Scheme of host/device

35

Blocking and Non-blocking Functions

 Non-blocking (asynchronous):
 return control to host
immediatelly, while its execution
proceeds on device
• kernel launches
• memory transfers < 64KB
• memory initialization on device

(cudaMemset)
• memory copies from device to device
• explicit asynchronous memory transfers

 blocking (synchronous):
return control to host thread
after execution is
completed on device

• all memory transfer > 64KB

• all memory allocation on device

• allocation of page locked memory
on host

36

 Every CUDA action is submitted to an execution queue on
the device

 CUDA runtime functions can be divided in two categories:

 CUDA API provides asynchronous versions of their counterpart
synchronous functions

 Asynchronous functions allows to set up concurrent execution of
many operations on host and device

Concurrent and Asynchronous Execution

Asynchronous functions
allows to expose concurrent
executions:

1. Overlap computation on
host and on device

2. execution of more than
one kernel on device

3. data transfers between
host and device while
executing a kernel

4. data transfers from host to
device, while transfering
data from device to host

37

Example of Concurrent Execution

38

cudaSetDevice(0)
kernel <<<threads, Blocks>>> (a, b, c)

// work on CPU while GPU is working
CPU_Function()

// Stop CPU until GPU has finished to compute
cudaDeviceSynchronize()

// Use device results on host
CPU_uses_the_GPU_kernel_results()

Since CUDA kernel invocation is an asynchronous operation,
CPU can proceed and evalutate the CPU_Function()while
GPU is involved in kernel execution (concurrent execution).

Before using results from CUDA kernel, synchronization
between host and device is required.

CUDA Streams

39

 GPU operations are implementated in CUDA
using execution queues, called streams

 Each operation pushed in a stream will be
executed only after all other operations in the
same stream are completed (FIFO queue
behaviour)

 Operations assigned to different streams can
be executed in any order with respect each
other

 CUDA runtime provides a default stream (aka
stream 0) which will be the default queue of all
operation if otherwise is not explicitly declared

CUDA Streams

40

 All operations assigned to the default stream will be executed
only after all preceeding operations assigned to other
streams are completed

 Any further operation assigned to stream different from
default will begin only after all operations on the default
stream are completed

 Operations assigned to the default stream act as implicit
synchronization barriers among other streams

Synchronization

41

 Explicit Synchronizations :
• cudaDeviceSynchronize()

 Blocks host code until all operations on device are completed

• cudaStreamSynchronize(stream)
 Blocks host code until all operations on a stream are completed

• cudaStreamWaitEvent(stream, event)
 Blocks all operations assigned to a stream until event is reached

 Implicit Synchronizations :
• All operations assigned to the default stream
• Page-locked memory allocations
• Memory allocations on device
• Settings operations on device
• …

CUDA Streams Management

42

 Stream management:
• Constructor: cudaStreamCreate()
• Synchronization: cudaStreamSynchronize()
• Destructor: cudaStreamDestroy()

 Stream allows various execution modes,
depending on the compute capability:
• concurrent execution of more than one kernel

per GPU
• concurrent asynchronous data transfers in

both H2D and D2H directions
• concurrent execution on device/host and data

transfers from host and device

Kernel Concurrent Execution

43

cudaSetDevice(0)

cudaStreamCreate(stream1)
cudaStreamCreate(stream2)

// concurrent execution of the same kernel
Kernel_1<<<blocks, threads, SharedMem, stream1>>>(inp_1, out_1)
Kernel_1<<<blocks, threads, SharedMem, stream2>>>(inp_2, out_2)

// concurrent execution of different kernels
Kernel_1<<<blocks, threads, SharedMem, stream1>>>(inp, out_1)
Kernel_2<<<blocks, threads, SharedMem, stream2>>>(inp, out_2)

cudaStreamDestroy(stream1)
cudaStreamDestroy(stream2)

Asynchronous Data Transfers

44

 In order to performe asynchronous data transfers between host
and device the host memory must be of page-locked type (a.k.a
pinned)

 CUDA runtime provides the following functions to handle page-
locked memory:
• cudaMallocHost()allocate page-locked memory on host
• cudaFreeHost()free page-locked allocated memory on host
• cudaHostRegister()turn host allocated memory into page-locked
• cudaHostUnregister()turn page-locked memory into ordinary

memory

 cudaMemcpyAsync()function explicitly performes asynchronous
data transfers between host and device memory

 Data transfer operations must queued into a stream different
from the default one in order to be asynchronous

 Using page-locked memory allows data transfers between host
and device memory with higher bandwidth

Asynchronous Data Transfers

45

cudaStreamCreate(stream_a)
cudaStreamCreate(stream_b)

cudaMallocHost(h_buffer_a, buffer_a_size)
cudaMallocHost(h_buffer_b, buffer_b_size)

cudaMalloc(d_buffer_a, buffer_a_size)
cudaMalloc(d_buffer_b, buffer_b_size)

// concurrent and asynchronous dat atransfer H2D and D2H
cudaMemcpyAsync(d_buffer_a, h_buffer_a, buffer_a_size,
cudaMemcpyHostToDevice, stream_a)
cudaMemcpyAsync(h_buffer_b, d_buffer_b, buffer_b_size,
cudaMemcpyDeviceToHost, stream_b)

cudaStreamDestroy(stream_a)
cudaStreamDestroy(stream_b)

cudaFreeHost(h_buffer_a)
cudaFreeHost(h_buffer_b)

Asynchronous Data Transfers

46

cudaStream_t stream[4];
for (int i=0; i<4; ++i) cudaStreamCreate(&stream[i]);

float* hPtr; cudaMallocHost((void**)&hPtr, 4 * size);

for (int i=0; i<4; ++i) {
 cudaMemcpyAsync(d_inp + i*size, hPtr + i*size,
 size, cudaMemcpyHostToDevice, stream[i]);

 MyKernel<<<100, 512, 0, stream[i]>>>(d_out+i*size, d_inp+i*size, size);

 cudaMemcpyAsync(hPtr + i*size, d_out + i*size,
 size, cudaMemcpyDeviceToHost, stream[i]);
}
cudaDeviceSynchronize();

for (int i=0; i<4; ++i) cudaStreamDestroy(&stream[i]);

Concurrency

3 way concurrency :

Serial :

2 way concurrency :

4 way concurrency :

4/+ way concurrency :

47

 Concurrency: when two or more CUDA operations proceed at the same
time
• Fermi : up to 16 kernel CUDA / Kepler : up to 32 kernel CUDA
• 2 data transfers host/device (duplex)
• concurrency with host operations

 Requirements for concurrency:
• operations must be assigned to streams different from the default stream
• host/device data transfers should be asynchronous and host memory must be page-

locked
• only if there are enough hw resources left to use (SharedMem, Registers, Blocks, PCIe

bus, …)
 No kernel concurrency if all SM on the device are in use
 data transfers won’t take place if other transfers are still going on

Stream Priorities

48

 Relative priorities of streams can be specified at creation

 If not specified, all streams get the same priority

 runtime will choose which operation start first among
equivalent priority streams

// get the range of stream priorities for this device
int priority_high, priority_low;
cudaDeviceGetStreamPriorityRange(&priority_low, &priority_high);

// create streams with highest and lowest priorities
cudaStream_t st_high, st_low;
cudaStreamCreateWithPriority(&st_high, cudaStreamNonBlocking,
priority_high);
cudaStreamCreateWithPriority(&st_low, cudaStreamNonBlocking,
priority_low);

Device Management

49

CUDA runtime allows to control more than one
GPU device available on a computing node
(multi-GPU programming):
• CUDA 3.2 and previous versions

 a multi-thread or multi-process parallel paradigm was
required to access and use more than one device

• CUDA 4.0 and later versions
 new runtime API to select and to control all available

devices from a serial program (single host core)
 you can still use a parallel programming approach

(multi-thread or multi-process):
o each process or thread will be always able to access all

devices
o you can select which devices a thread/process can control

Device Management

50

cudaDeviceCount(number_gpu)
cudaGetDeviceProperties(gpu_property, gpu_ID)

cudaSetDevice(0)
kernel_0 <<<threads, Blocks>>> (a, b, c)

cudaSetDevice(1)
kernel_1 <<<threads, Blocks>>> (d, e, f)

For each device:
 cudaSetDevice(device)
 cudaDeviceSynchronize()

CUDA runtime allows to:

 get information on available CUDA enabled devices

 get properties of each CUDA device (cc, memory sizes, clock, etc)

 select a device and queue CUDA operations on that device

 manage synchronization among available devices

Peer to Peer Transfers

51

 A device can directly transfer or access data to/from another
device

 This kind of direct transfer is called Peer to Peer (P2P)

 P2P transfers are more efficient and do not require a host buffer

 Direct access avoid host memory copy

No Peer To Peer Peer To Peer

Peer to Peer Transfer Pseudocode

52

gpuA=0, gpuB=1
cudaSetDevice(gpuA)
cudaMalloc(buffer_A, buffer_size)

cudaSetDevice(gpuB)
cudaMalloc(buffer_B, buffer_size)

cudaSetDevice(gpuA)
cudaDeviceCanAccessPeer(answer, gpuA, gpuB)

If answer is true:
cudaDeviceEnablePeerAccess(gpuB, 0)
// gpuA performs copy from gpuA to gpuB
cudaMemcpyPeer(buffer_B, gpuB, buffer_A, gpuA, buffer_size)
// gpuA performs copy from gpuB to gpuA
cudaMemcpyPeer(buffer_A, gpuA, buffer_B, gpuB, buffer_size)

Peer to Peer Direct Access Pseudocode

53

gpuA=0, gpuB=1
cudaSetDevice(gpuA)
cudaMalloc(buffer_A, buffer_size)

cudaSetDevice(gpuB)
cudaMalloc(buffer_B, buffer_size)

cudaSetDevice(gpuA)
cudaDeviceCanAccessPeer(answer, gpuA, gpuB)

If answer is true:
cudaDeviceEnablePeerAccess(gpuB, 0)
// gpuA invokes a kernel that accesses to gpuB memory
kernel<<<threads, blocks>>>(buffer_A, buffer_B)

	Slide 1
	Slide 2
	Memory Hierarchy
	Global Memory
	Declare Variable in Global Memory
	Cache Hierarchy for Global Memory Accesses
	Cache Hierarchy for Global Memory Accesses
	Global Memory Load/Store
	Loads from Global Memory
	Loads from Global Memory
	Loads from Global Memory
	Data alignment in Global Memory
	Shared Memory
	Shared Memory Allocation
	Thread Block Synchronization
	Using Shared Memory for Thread Cooperation
	Shared Memory and Bank Accesses
	Slide 18
	Constant Memory
	Accessing Constant Memory
	Constant Memory Allocation
	Texture Memory
	Texture Memory Addressing Features
	Steps for Accessing Texture Memory
	Texture Usage Example
	Texture Memory in Kepler: aka Read-only Cache
	Registers
	Local Memory
	Slide 29
	Matrix-matrix Product using Global Memory
	Matrix-matrix using Shared Memory
	Matrix-matrix using Shared Memory: Flow
	Matrix-matrix using Shared Memory: Kernel
	Slide 34
	Connection Scheme of host/device
	Blocking and Non-blocking Functions
	Concurrent and Asynchronous Execution
	Example of Concurrent Execution
	CUDA Streams
	CUDA Streams
	Synchronization
	CUDA Streams Management
	Kernel Concurrent Execution
	Asynchronous Data Transfers
	Asynchronous Data Transfers
	Asynchronous Data Transfers
	Concurrency
	Stream Priorities
	Device Management
	Device Management
	Peer to Peer Transfers
	Peer to Peer Transfer Pseudocode
	Peer to Peer Direct Access Pseudocode

