
1

Introduction to
GPU Accelerators and

CUDA Programming

26th Summer School

on Parallel Computing

10-21 July 2017

Sergio Orlandini
s.orlandini@cineca.it

2

 Compiling a CUDA program

• PTX, cubin, what's inside

• Computing capability

 Hands on:

• Compiling a CUDA program
• Environment and utility:

deviceQuery and nvidia-
smi
• Vector Sum
• Matrix Sum

CUDA Compilation Workflow

3

 Each source file with CUDA extension
should be compiler with a proper CUDA
aware compiler
• nvcc CUDA C (NVIDIA)
• pgf90 -Mcuda CUDA Fortran (PGI)

 CUDA compiler processes the source
code, separating device code from host
code:
• host is modified replacing CUDA extensions

by the necessary CUDA C runtime functions
calls
• the resulting host code is output to a host

compiler
• device code is compiled into the PTX

assembly form

 Starting from the PTX assembly code you
can:
• generate one or more object forms (cubin)

specialized for specific GPU architectures
• generate an executable which include both

PTC code and object code

CUDA
Compiler

CUDA Source
Code

PTX Code

Virtual

CPU Code

PTX to Target
Compiler

 G80 … GPU

cubin binary object

Physical

just-in-time
compilation

Compute Capability

4

 compute capability of a device describes its architecture
• registers, memory sizes, features and capabilities

 compute capability is identified by a code like “compute_Xy”
 major number (X): identifies base line chipset architecture
 minor number (y): indentifies variants and releases of the base line chipset

 compute capability select the set of usable PTX instructions

compute capability feature support

compute_10 basic CUDA support

compute_13 improved memory accesses
+ double precision + atomics

compute_20 FERMI architecture
caches, fused multiply-add, 3D grids, surfaces,
ECC, P2P, concurrent kernels/copies, function
pointers, recursion

compute_30 KEPLER K10 architecture (support only single
precision)

compute_35 KEPLER K20, K20X, K40 architectures

Capability: resources constraints

5

How to compile a CUDA program

6

 When compiling a CUDA executable, you must specify:
• compute capability: virtual architecture for PTX code

• architecture targets: real GPU architectures where the executable will
run (using the cubin code)

nvcc -arch=compute_20 -code=sm_20,sm_21

• nvcc allows many shortcut switches as
 nvcc -arch=sm_20 to target FERMI architecture
which is equivalent to:
 nvcc -arch=compute_20 -code=sm_20

 CUDA Fortran: NVIDIA worked with The Portland Group (PGI)
to develop a CUDA Fortran Compiler that provides Fortran
language
• PGI CUDA Fortran does not require a new or separate compiler
• CUDA features are supported by the same PGI Fortran compiler
• Use –Mcuda option: pgf90 –Mcuda=cc20

virtual architecture
(PTX code)

real GPU architecture
(cubin)

Hands On

7

 deviceQuery (from the CUDA SDK): show information on CUDA
devices

 nvidia-smi (NVIDIA System Management Interface):
shows diagnostic informations on present CUDA enabled devices
(nvidia-smi –q –d UTILIZATION –l 1)

 nvcc –V shows current CUDA C compiler version

 Compile a CUDA program:
• cd Exercises/VectorAdd. Try the following compiling commands:
• nvcc vectoradd_cuda.cu -o vectoradd_cuda
• nvcc –arch=sm_35 vectoradd_cuda.cu -o vectoradd_cuda
• nvcc –arch=sm_35 –ptx vectoradd_cuda.cu
• nvcc –arch=sm_35 –keep vectoradd_cuda.cu -o vectoradd_cuda
• nvcc –arch=sm_35 –keep -clean vectoradd_cuda.cu -o
vectoradd_cuda
• Run resulting executable with:
• ./vectoradd_cuda

Hands On

8

 deviceQuery (from the CUDA SDK): show information on CUDA
devices

 nvidia-smi (NVIDIA System Management Interface):
shows diagnostic informations on present CUDA enabled devices
(nvidia-smi –q –d UTILIZATION –l 1)

 Compile a CUDA program:
• cd Exercises/VectorAdd. Try the following compiling commands:
• pgf90 –Mcuda=cc10 vectoradd_cuda.f90 -o vectoradd_cuda
• pgf90 –Mcuda=cc35 vectoradd_cuda.f90 -o vectoradd_cuda
• pgf90 –Mcuda=cc35,keepptx –ptx vectoradd_cuda.f90
• pgf90 –Mcuda=cc35,keepbin vectoradd_cuda.f90 -o
vectoradd_cuda

• Run resulting executable with:
• ./vectoradd_cuda

Hands On

9

 MatrixAdd:
• Write a program that performes square matrix

sum:
C = A + B
• Provide and compare results of CPU and CUDA

versions of the kernel
• Try CUDA version with different thread block

sizes
 (16,16) (32,32) (64,64)

 Home-works:
• Modify the previous kernel to let in-place sum:

 A = A + c*B

10

 Control and
performances:
• Error Handling
• Measuring Performances

 Hands on:
• Measure data transfer

performances
• Matrix-Matrix product

 simple implementation
 performances

Checking CUDA Errors

11

cudaError_t cerr = cudaMalloc(&d_a,size);

 if (cerr != cudaSuccess)
 fprintf(stderr, “%s\n”, cudaGetErrorString(cerr));

 All CUDA API returns an error code of type cudaError_t
• Special value cudaSuccess means that no error occurred

 CUDA runtime has a convenience function that translates
a CUDA error into a readable string with a human
understandable description of the type of error occured

char* cudaGetErrorString(cudaError_t code)

 CUDA Asynchronous API returns an error which refers only on
errors which may occur during the call on host

 CUDA kernels are asynchronous and void type so they don’t
return any error code

Checking Errors for CUDA kernels

12

// reset internal state
cudaError_t cerr = cudaGetLastError();
// launch kernel
kernelGPU<<<dimGrid,dimBlock>>>(...);
cudaDeviceSynchronize();
cerr = cudaGetLastError();
if (cerr != cudaSuccess)
 fprintf(stderr, “%s\n”, cudaGetErrorString(cerr));

 The error status is also held in an internal variable, which is
modified by each CUDA API call or kernel launch.

 CUDA runtime has a function that returns the status of internal
error variable.

cudaError_t cudaGetLastError(void)
1. Returns the status of internal error variable (cudaSuccess or other)
2. Resets the internal error status to cudaSuccess
•. Error code from cudaGetLastError may refers to any other

preceeding CUDA API runtime calls
•. To check the error status of a CUDA kernel execution, we have to wait

for kernel completition using the following synchronization API:
cudaDeviceSynchronize()

Checking CUDA Errors

13

#define CUDA_CHECK(X) {\
 cudaError_t _m_cudaStat = X;\
 if(cudaSuccess != _m_cudaStat) {\
 fprintf(stderr,"\nCUDA_ERROR: %s in file %s line %d\n",\
 cudaGetErrorString(_m_cudaStat), __FILE__, __LINE__);\
 exit(1);\
 } }

...
CUDA_CHECK(cudaMemcpy(d_buf, h_buf, buffSize, cudaMemcpyHostToDevice));

 Error checking is strongly encouraged during developer phase

 Error checking may introduce overhead and unpleasant
synchronizations during production run

 Error check code can become very verbose and tedious
A common approach is to define a assert style preprocessor macro
which can be turned on/off in a simple manner

CUDA Events

14

 CUDA Events are special objects which can
be used as mark points in your code

 CUDA events markers can be used to:
• measure the elapsed time between two markers

(providing very high precision measures)
• identify synchronization point in the code

between CPU and GPU execution flow:
 for example we can prevent CPU to go any further

until some or all preceding CUDA kernels are really
completed

 we will provide further information on synchronization
techniques during the rest of the course

integer ierr
type (cudaEvent) :: start, stop
real elapsed

ierr = cudaEventCreate(start)
ierr = cudaEventCreate(stop)

ierr = cudaEventRecord(start, 0)
...
call kernel<<<grid,block>>>()
...
ierr = cudaEventRecord(stop, 0)
ierr = cudaEventSynchronize(stop)

ierr = cudaEventElapsedTime&
 (elapsed,start, stop)

ierr = cudaEventDestroy(start)
ierr = cudaEventDestroy(stop)

CUDA Events for Measuring Elapsed Time

15

cudaEvent_t start, stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);

cudaEventRecord(start);
...
kernel<<<grid, block>>>(...);
...
cudaEventRecord(stop);
cudaEventSynchronize(stop);

float elapsed;
// execution time between events
// in milliseconds
cudaEventElapsedTime(&elapsed,
start, stop);

cudaEventDestroy(start);
cudaEventDestroy(stop);

Flops:
Floating point operations per
second

• A common metric for
measuring performances of a
computational intensive
kernel (compute-buond
kernel)

• Common units are: Mflops,
Gflops, …

Performances

16

Which metric should we use to measure performances?

Bandwidth:
Amount of data transfered per
second

• A common metric for kernel that
spent the most of time in
executing memory instructions
(memory-bound kernel).

• Common unit of performance is
GB/s.
Reference value depends on peak
bandwidth performances provided
by the bus or network hardware
involved in the data transfer

(s) Time Elapsed

(flop) N
flops OPERATIONS POINTFLOATING (s) Time Elapsed

(byte)data d transfereof Size
bandwidth 

D2H and H2D Data Transfers

 GPU devices are connected to the host with a PCIe bus
• PCIe bus is characterized by very low latency, but

also by a low bandwidth with respect to other bus

 Data transfers can easily become a bottleneck in
heterogeneous environment equipped with
accelerators
• Best Practice: minimize transfers between host and device or

execute them in overlap with computations

Technology Peak Bandwidth

PCIex GEN2 (16x, full
duplex)

8 GB/s (peak)

PCIex GEN3 (16x, full
duplex)

16 GB/s (peak)

DDR3 (full duplex) 26 GB/s (single channel)

17

Hands on: measuring bandwidth

18

Size (MB) HtoD DtoH DtoD

1

10

100

1024

 Measure memory bandwidth versus increasing
data size, for Host to Device, Device to Host and
Device to Device transfers

1. Write a simple program using CUDA events

2. Use bandwidthTest provided with CUDA SDK

./bandwidthTest --mode=range --start= --end= --increment=

Hands on: measuring bandwidth

19

 Measure memory bandwidth versus increasing data
size, for Host to Device, Device to Host and Device
to Device transfers

1. Write a simple program using CUDA events

2. Use bandwidthTest provided with CUDA SDK

./bandwidthTest --mode=range --start= --end= --increment=

Size (MB) HtoD DtoH DtoD

1 2059 2024 69198

10 3493 3076 83274

100 3317 2869 86284

1024 3548 3060 86650

Matrix-Matrix product: HOST Kernel
void MatrixMulOnHost (float* M, float* N, float* P, int Width)
{
 // loop on rows
 for (int row = 0; row < Width; ++row) {
 // loop on columns
 for (int col = 0; col < Width; ++col) {

 // accumulate element-wise products
 float pval = 0;
 for (int k = 0; k < Width; ++k) {
 float a = M[row * Width + k];
 float b = N[k * Width + col];
 pval += a * b;
 }

 // store final results
 P[row * Width + col] = pval;
 }
 }
}

P = M * N

20

Matrix-Matrix product: CUDA Kernel

__global__ void MMKernel (float* dM, float *dN, float *dP,
 int width)
{
 // row,col from built-in thread indeces (2D block of threads)
 int col = threadIdx.x;
 int row = threadIdx.y;

 // accumulate element-wise products
 // NB: pval stores the dP element computed by the thread
 float pval = 0;
 for (int k=0; k < width; k++) {
 float a = dM[row * width + k];
 float b = dN[k * width + col];
 pval += a * b;
 }

 // store final results (each thread writes one element)
 dP[row * width + col] = Pvalue;
}

21

Matrix-Matrix product: HOST code

void MatrixMultiplication (float* hM, float *hN, float *hP,
 int width) {
 float *dM, *dN, *dP;
 cudaMalloc((void**)&dM, width*width*sizeof(float));
 cudaMalloc((void**)&dN, width*width*sizeof(float));
 cudaMalloc((void**)&dP, width*width*sizeof(float));

 cudaMemcpy(dM, hM, size, cudaMemcpyHostToDevice);
 cudaMemcpy(dN, hN, size, cudaMemcpyHostToDevice);

 dim3 gridDim(1,1);
 dim3 blockDim(width,width);

 MMKernel<<<gridDim, blockDim>>>(dM, dN, dP, width);

 cudaMemcpy(hP, dP, size, cudaMemcpyDeviceToHost);

 cudaFree(dM); cudaFree(dN); cudaFree(dP);
}

22

Matrix-Matrix product: launch grid

WARNING:
 there’s a limit on the maximum number of allowed threads per

block

• depends on the compute capability

How to select an appropriate (or best) thread grid ?

 respect compute capability limits for threads per block

 select the block grid so to cover all elements to be processed

 select block size so that each thread can process one or more
data elements without raise conditions with other threads
• use builtin variables blockIdx and blockDim to identify which matrix

subblock belong to current thread block

23

Matrix-Matrix product: launch grid

24

 Let each thread compute only one
matrix element of resulting P
matrix

 Choose a block grid large enough
to cover all elements to be
computed

• check if some thread is
accessing elements outside of
the domain

 Let each thread read one element
from global memory, cycling
through the elements in a row of
matrix M and elements in the a
column of matrix N

 Multiply and accumulate each
single element product into a scalar
variable, and write the final result
into correct location of matrix P

M

N

P

Matrix-Matrix product: launch grid

i = blockIdx.x * blockDim.x + threadIdx.x;
j = blockIdx.y * blockDim.y + threadIdx.y;

index = j * MatrixWidth + i;

Matrix

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(0,2) (1,2) (2,2)

(0,3) (1,3) (2,3)

i

j

gridDim.x * blockDim.x

* index

MatrixWidth

25

Matrix-Matrix product: CUDA Kernel

__global__ void MMKernel (float* dM, float *dN, float *dP,
 int width) {
 // row,col from built-in thread indeces(2D block of threads)
 int col = blockIdx.x * blockDim.x + threadIdx.x;
 int row = blockIdx.y * blockDim.y + threadIdx.y;

 // check if current CUDA thread is inside matrix borders
 if (row < width && col < width) {

 // accumulate element-wise products
 // NB: pval stores the dP element computed by the thread
 float pval = 0;
 for (int k=0; k < width; k++)
 pval += dM[row * width + k] * dN[k * width + col];

 // store final results (each thread writes one element)
 dP[row * width + col] = Pvalue;
 }
}

26

Matrix-Matrix product: HOST code

void MatrixMultiplication (float* hM, float *hN, float *hP,
 int width) {
 float *dM, *dN, *dP;
 cudaMalloc((void**)&dM, width*width*sizeof(float));
 cudaMalloc((void**)&dN, width*width*sizeof(float));
 cudaMalloc((void**)&dP, width*width*sizeof(float));

 cudaMemcpy(dM, hM, size, cudaMemcpyHostToDevice);
 cudaMemcpy(dN, hN, size, cudaMemcpyHostToDevice);

 dim3 blockDim(TILE_WIDTH, TILE_WIDTH);
 dim3 gridDim((width-1)/TILE_WIDTH+1,(width-1)/TILE_WIDTH+1);

 MMKernel<<<gridDim, blockDim>>>(dM, dN, dP, width);

 cudaMemcpy(hP, dP, size, cudaMemcpyDeviceToHost);

 cudaFree(dM); cudaFree(dN); cudaFree(dP);
}

27

Resources per Thread Block

28

 Each CUDA kernel needs a specific
amount of resources to run

 Once blocks are assigned to the SM,
registers are assigned to each thread
block, depending on kernel required
resources

 Once assigned, registers will belong to
that thread until the thread block
complete its work

 So that each thread can access only its
own assigned registers

 Allow for zero-overload schedule when
content switching among different warp
execution

Assigning Thread Blocks to SM

29

 Let’s provide an example of block assignmend
on a SM:
• Fermi architecture: 32768 register per SM
• CUDA kernel grid with 32x8 thread blocks
• CUDA kernel needs 30 registers

 How many thread blocks can host a single SM?
• each block requires

30x32x8 = 7680 registers
• 32768/7680 = 4 blocks + “reminder”
• only 4 blocks can be hosted (out of 8)

 What happen if we modify the kernel a little
bit, moving to an implementation which
requires 33 registers?
• each block now requires

33x32x8 = 8448 registers
• 32768/8448 = 3 blocks + “reminder”
• only 3 blocks! (out of 8)

 25% reduction of potential parallelism

4 blocks 3 blocks

Matrix-Matrix product: thread block size

30

Which is the best thread block size to select (i.e. TILE_WIDTH)?

On Fermi architectures: each SM can handle up to 1536 total
threads

 TILE_WIDTH = 8
8x8 = 64 threads >>> 1536/64 = 24 blocks needed to fully load a SM
… yet there is a limit of maximum 8 resident blocks per SM for cc 2.x
so we end up with just 64x8 = 512 threads per SM on a maximum of
1536 (only 33% occupancy)

 TILE_WIDTH = 16
16x16 = 256 threads >>> 1536/256 = 6 blocks to fully load a SM
6x256 = 1536 threads per SM … reaching full occupancy per SM!

 TILE_WIDTH = 32
32x32 = 1024 threads >>> 1536/1024 = 1.5 = 1 block fully loads SM
1024 threads per SM (only 66% occupancy)

TILE_WIDTH = 16

Matrix-Matrix product: thread block size

31

Which is the best thread block size to select (i.e. TILE_WIDTH)?

On Kepler architectures: each SM can handle up to 2048 total
threads

 TILE_WIDTH = 8
8x8 = 64 threads >>> 2048/64 = 32 blocks needed to fully load a
SM
… yet there is a limit of maximum 16 resident blocks per SM for cc 3.x
so we end up with just 64x16 = 1024 threads per SM on a maximum
of 2048 (only 50% occupancy)

 TILE_WIDTH = 16
16x16 = 256 threads >>> 2048/256 = 8 blocks to fully load a SM
8x256 = 2048 threads per SM … reaching full occupancy per SM!

 TILE_WIDTH = 32
32x32 = 1024 threads >>> 2048/1024 = 2 blocks fully load a SM
2x1024 = 2048 threads per SM … reaching full occupancy per SM!

TILE_WIDTH = 16 or 32

Matrix-Matrix product: checking error

32

● Hands on: matrix-matrix product

● Use the proper CUDA API to check error codes

– use cudaGetLastError() to check that kernel has been
completed with no errors

● Try to use block size greater than 32x32. What kind of
error is reported?

mycudaerror=cudaGetLastError() ;
<chiamata kernel>

cudaDeviceSynchronize() ;
mycudaerror=cudaGetLastError() ;
if(mycudaerror != cudaSuccess)
fprintf(stderr,”%s\n”,
cudaGetErrorString(mycudaerror)) ;

mycudaerror=cudaGetLastError()
<chiamata kernel>

ierr = cudaDeviceSynchronize()
mycudaerror=cudaGetLastError()
if(mycudaerror .ne. 0) write(*,*) &
‘Error in kernel: ‘,mycudaerror

Matrix-Matrix product: performances

33

● Measure performances of matrix-matrix product, both for CPU and GPU version,
using CUDA Events

● Follow these steps:

– Declare a start and stop cuda event and initialize them with:
cudaEventCreate

– Plase start and stop events at proper place in the code

– Record the start event using: cudaEventRecord

– Launch the CPU or GPU (remember to check for errors)

– Record the stop event using: cudaEventRecord

– Synchronize host code just after the stop event with:
cudaEventSynchronize

– Measure the elapsed time between events with: cudaEventElapsedTime

– Destroy events with: cudaEventDestroy
● Express performance metric using Gflops, knowing that the matrix-matrix

product algorithm requires 2N3 operations

 C
 Gflops

 Fortran

	Slide 1
	Slide 2
	CUDA Compilation Workflow
	Compute Capability
	Capability: resources constraints
	How to compile a CUDA program
	Hands On
	Hands On
	Hands On
	Slide 10
	Checking CUDA Errors
	Checking Errors for CUDA kernels
	Checking CUDA Errors
	CUDA Events
	Using CUDA Events for Measuring Elapsed Time
	Performances
	D2H and H2D Data Transfers
	Hands on: measuring bandwidth
	Hands on: measuring bandwidth
	Matrix-Matrix product: HOST Kernel
	Matrix-Matrix product: CUDA Kernel
	Matrix-Matrix product: HOST code
	Matrix-Matrix product: launch grid
	Slide 24
	Matrix-Matrix product: launch grid
	Matrix-Matrix product: CUDA Kernel
	Matrix-Matrix product: HOST code
	Resources per Thread Block
	Assigning Thread Blocks to SM
	Matrix-Matrix product: selecting optimum thread block size
	Matrix-Matrix product: selecting optimum thread block size
	Slide 32
	Slide 33

