
1

Introduction to
GPU Accelerators and

CUDA Programming

26th Summer School

on Parallel Computing

10-21 July 2017

Sergio Orlandini
s.orlandini@cineca.it

Agenda

2

Afternoon:

● GPU Memory Hierarchy
• Concurrency
• CPU-GPU Interaction
• Woring with multi-GPU
• Hands on

--- break ---

• CUDA-Toolkit
• CUDA Enabled Libraries
• OpenACC introduction
• Hands on

Morning:

● Introduction to GPGPU
• GPU architectures
• GPU programming model
• Data transfers CPU/GPU

--- break ---

• Compiling CUDA programs
• Error Checking
• Measuring Performances
• Hands on

3

 Introducion to GPGPU
• CPU vs GPGPU architecture
• Programming approaches
• nVIDIA GPU HPC architectures

 GPU programming model
• Thread indexing
• Vector-Vector Add
• handling data transfers from

CPU to GPU memory and back
• write and launch a CUDA program

What is a GPU ?

 Graphics Processor Unit
• a device equipped with an highly parallel

microprocessor (many-core) and a private
memory with very high bandwidth

 born in response to the growing
demand for high definition 3D
rendering graphic applications

4

CPU vs GPU Architectures

5

 GPU hardware is specialized for problems which can be
classified as intense data-parallel computations
• the same set of operation is executed many times in parallel

on different data
• designed such that more transistors are devoted to data

processing rather than data caching and flow control

Cache

ALU
Control

ALU

ALU

ALU

DRAM

CPU

DRAM

GPU

“The GPU devotes more transistors to Data Processing”
(NVIDIA CUDA Programming Guide)

GPU Architectures

6

 A typical GPU architecture
consists of:

– Main global memory
● high bandwidth

– Streaming Processor
● grouping independent

cores and control units

 Each SM unit has
– Many ALU cores
– Instruction scheduler

dispatchers
– Shared memory with

very fast access to data

shared memory

G
P

U

M
A

IN

M
E

M
O

R
Y

The concurrency revolution

7

A new direction in microprocessor design roadmaps

 CPU vendors tend to increase the computational power of single processing unit by
increasing the working frequency and adding more higher level control logic and pipelines

 GPU increased the number of processing units, less logic, lowering frequency and dropping
down power consumption

Peak GFlops (left) and bandwidth (right) trends of some nVIDIA GPU compared to Intel CPU products

GPGPU (General Purpose GPU) and GPU computing

8

 many applications that process large data sets can
use a data-parallel programming model to speed up
the computations

 many algorithms outside the field of image rendering
are accelerated by data-parallel processing

 ... so why not using GPU power for applications out of
the 3D graphics domain?

 many attemps where made by brave programmers
and researchers in order to force GPU APIs to threat
their scientific data (atoms, signals, events, etc) as
pixel or vertex in order to be computed by the GPU.

 not many survived, still the era of GPGPU computing
was just begun ...

GPGPU Programming Model

9

 GPU is seen as an auxiliary coprocessor equipped with
• thousands of cores
• global memory with high bandwidth

 computational-intensive data-parallel regions of a program
can be executed on the GPU device
• thousands of threads will be executed on the GPU
• each thread will insist on a different GPU core
• each thread can acts on a different data element independently
• the GPU parallelism is very close to the SPMD paradigm

 the more the working thread, the better are the performances
• GPU threads are very light

 no penalty is paid in case of context-switch (each thread has its own
registers)

 the more the threads, the more the chance to hide memory or
computational latencies

3 Ways to Accelerate Applications

10

Applications

Libraries

“Drop-in”
Acceleration

Programming
LanguagesDirectives

Maximum
Flexibility

Easily Accelerate
Applications

Portability Performance

GPGPU Programming Approaches

11

 nVIDIA CUDA (Compute Unified Device Architecture)
• a set of extensions to higher level programming language to use GPU

as a coprocessor for heavy parallel task
• a developer toolkit to compile, debug, profile programs and run them

easily in a heterogeneous systems

 OpenCL (Open Computing Language):
• a standard open-source programming model developed by major

brands of hardware manufacters (Apple, Intel, AMD/ATI, nVIDIA).
 like CUDA, provides extentions to C/C++ and a developer toolkit
 extensions for specific hardware (GPUs, FPGAs, MICs, etc)
 it’s very low level (verbose) programming

 Accelerator Directives Approach
• OpenACC
• OpenMP v4.x accelerator directives
• you hope your compiler understand what you want, and do a good job

 Library Based:
• MAGMA, CUDA Libraries, StarPu, ArrayFire, etc

General-Purpose Parallel Computing Architecture

12

Compute Unified Device Architecture (CUDA)

 a general purpose parallel computing platform and programming
model that easy GPU programming, which provides:
• a new hierarchical multi-threaded programming paradigm
• a new architecture instruction set called PTX (Parallel Thread eXecution)
• a small set of syntax extensions to higher level programming languages

(C, Fortran) to express thread parallelism within a familiar programming
environment
• A complete collection of development tools to compile, debug and profile

CUDA programs.

CUDA Parallel Computing ArchitectureCUDA Parallel Computing Architecture

GPU Computing ApplicationsGPU Computing Applications

CUDA CCUDA C OpenCLOpenCL CUDA
Fortran
CUDA

Fortran DirectComputeDirectCompute

NVIDIA GPU + DriverNVIDIA GPU + Driver

CUDA Driver Vs Runtime API

 CUDA is composed of two APIs:
• the CUDA runtime API
• the CUDA driver API

 They are mutually exclusive

 Runtime API:
• easier to program
• it eases device code management:

it’s where the C-for-CUDA language
lives

 Driver API:
• requires more code: no syntax sugar

for the kernel launch, for example
• finer control over the device

expecially in multithreaded
application

• doesn’t need nvcc to compile the
host code.

13

CUDA Driver API
 The driver API is implemented in the nvcuda dynamic library. All

its entry points are prefixed with cu.

 It is a handle-based, imperative API: most objects are
referenced by opaque handles that may be specified to
functions to manipulate the objects.

 The driver API must be initialized with cuInit() before any
function from the driver API is called. A CUDA context must then
be created that is attached to a specific device and made
current to the calling host thread.

 Within a CUDA context, kernels are explicitly loaded as PTX or
binary objects by the host code**.

 Kernels are launched using API entry points.

 **by the way, any application that wants to run on future device
architectures must load PTX, not binary code

14

NVIDIA Architectures naming

15

 Mainstream & laptops: GeForce
• Target: videogames and multi-media

 Workstation: Quadro
• Target: professional graphic applications

such as CAD, modeling 3D, animation and
visual effects

 GPGPU: Tesla
• Target: High Performance Computing

NVIDIA Fermi Architecture (2009)

16

 16 Streaming Multiprocessors
(SM)

 DDR3 Memory

• 4-6 GB global memory with ECC

 First model with a cache hierarchy:

• L1 (16-48KB) per SM

• L2 (768KB) shared among all SM

 2 independent controllers for data
transfer from/to host through PCI-
Express

 Global thread scheduler
(GigaThread global scheduler)
which manage and distribute
thread blocks to be processed on
SM resources

Fermi Streaming Multiprocessor (SM)

17

 32/48 CUDA cores with an
arithmetic logic unit (ALU) and a
floating point unit (FPU) fully
pipelined

 floating point operations are fully
IEEE 754-2008 a 32-bit e a 64-bit

 fused multiply-add (FMA) for both
single and double precision

 32768 registers (32-bit)

 64KB configurable L1

 shared-memory/cache

 48-16KB or 16-48KB shared/L1
cache

 16 load/store units

 4 Special Function Unit (SFU) to
handle trascendental mathematical
functions (sin, sqrt, recp-sqrt,..)

NVIDIA Kepler Architecture (2012)

18

 x3 performance/watt with respect
to FERMI

 28nm litography

 192 CUDA cores

 4 warp scheduler (2 dispatcher)
– 2 independent instruction/warp

 65536 registers per SM (32-bit)

 32 load/store units

 32 Special Function Unit

 1534KB L2 cache (x2 vs Fermi)

 64KB shared-memory/cache +
48KB read-only L1 cache

 16 texture units (x4 vs Fermi)
– Read-only cache

 Hyper-Q technology
– Enable dynamic parallelism

NVIDIA Pascal Architecture (2016)

19

 6 Compute Graphic Clusters
(CGC) with 10 SM each

 16nm litography
– 2X Watt/Flop respect

Kepler architecture

 4MB L2 cache

 3D stacked RAM HDDR5

 High Bandwidth Memory
– 16GB RAM

– 760 GB/s bandwidth

 NVLink tecnology
– 80GB/s bandwidth to

host data transfers

– 5X respect PCIe Gen3
16x

Peak Performance: 5,7 TFlops

NVIDIA Pascal Architecture (2016)

20

 SM composed of two
independent blocks

 Each block sports:
• 1 warps x 2

dispatchers
• 32 ALU SIMD units
• 16FP64 units
• 8 Load/Store units
• 8 SFU units
• 32768 32bits registers

 Each block accesses:
• 64KB shared memory
• L1 64KB cache
• 4 texture units

Compute Capability

21

 the compute capability of a device describes its architecture
• registers, memory sizes, features and capabilities

 the compute capability is identified by a code like “compute_Xy”
 major number (X): identifies base line chipset architecture
 minor number (y): indentifies variants and releases of the base line chipset

 a compute capability select the set of usable PTX instructions

compute capability feature support

compute_20 FERMI architecture

compute_30 KEPLER K10 architecture (only single precision)

compute_35 KEPLER K20, K20X, K40 architectures

compute_37 KEPLER K80 architecture (two K40 on a single
board)

compute_53 MAXWELL GM200 architecture (only single
precision)

compute_60 PASCAL GP100 architecture

Capability: resources constraints

22

23

 CUDA programming
model
• Heterogeneous execution
• Writing a CUDA Kernels
• Thread Hierarchy

 Getting started with CUDA
programming:
• Vector-Vector Add
• Handling data transfers

from
CPU to GPU and back

• Write and launch a CUDA
program

GPU Programming Model

24

 GPU is seen as an auxilirary coprocessor with its own memory
space

 data-parallel, computational-intensive portions of a program
can be executed on the GPU
• each data-parallel computational portion can be isolated into a

function, called CUDA kernel, that is executed on the GPU
• CUDA kernels are executed by many different threads in parallel
• each thread can compute different data elements independently
• the GPU parallelism is very close to the SPMD (Single Program

Multiple Data) paradigm. Single Instruction Multiple Threads (SIMT)
according to the Nvidia definition.

 GPU threads are extremely light weight
• no penalty in case of a context-switch (each thread has its own

registers)
• the more are the threads in flight, the more the GPU hardware is

able to hide memory or computational latencies, i.e better overall
performances at executing the kernel function

GPU Execution Model

25

 Serial portions of a program, or those with low level of parallelism,
keep running on the CPU (host)

 Data-parallel , computational intensive portions of the program
are isolated into CUDA kernel function. The kernel are executed
onto the GPU (device)

 Required data is moved on GPU memory and back to HOST
memory

Host code (CPU)

Host code (CPU)

Device code (GPU)

. . .

. . .

Device code (GPU)

GPU Thread Hierarchy

26

 In order to compute N elements
on the GPU in parallel, at least N
concurrent threads must be
created on the device

 GPU threads are grouped
together in teams or blocks of
threads

 Threads belonging to the same
block or team can cooperate
together exchanging data
through the shared memory
area

Grid

Block
(0,1)

Block
(1,1)

Block
(2,1)

Block
(0,0)

Block
(1,0)

Block
(2,0)

Thread
(0,0)

Thread
(1,0)

Thread
(2,0)

Thread
(3,0)

Thread
(4,0)

Thread
(0,1)

Thread
(1,1)

Thread
(2,1)

Thread
(3,1)

Thread
(4,1)

Thread
(0,2)

Thread
(1,2)

Thread
(2,2)

Thread
(3,2)

Thread
(4,2)

Thread
(0,3)

Thread
(1,3)

Thread
(2,3)

Thread
(3,3)

Thread
(4,3)

more on the GPU Execution Model

27

when a kernel is invoked:

 each thread block is assigned to a SM in a round-
robin mode
• a maximum number of blocks can be assigned to each

SM, depending on hardware generation and on how many
resorses each block needs to be executed (registers,
shared memory, etc)

• the runtime system maintains a list of blocks that need to
execute and assigns new blocks to SMs as they complete
the execution of blocks previously assigned to them.

• once a block is assigned to a SM, it remains on that SM
until the work for all threads in the block is completed

• each block execution is independent from the other
(no synchronization is possible among them)

 thread of each block are partitioned into warps of
32 threads each, so to map each thread with a
unique consecutive thread index in the block,
starting from index 0.

 the scheduler select for execution a warp from
one of the residing blocks in each SM.

 A warp execute one common instruction at a
time
• each GPU core take care of one thread in the warp
• fully efficiency when all threads agree on their execution

path

Software Hardware

Thread
GPU
core

Thread
Block Streaming

 Multiprocessor

...

Grid GPU

Transparent Scalability

28

 GPU runtime system can execute blocks in any order
relative to each other.

 This flexibility enables to execute the same application
code on hardware with different numbers of SM

Device

SM1

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

SM1 SM2 SM3 SM4

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7time

SM2

Warps

29

 The GPU multiprocessor creates, manages, schedules, and
executes threads in groups of 32 parallel threads called warps.

 Individual threads composing a warp start together at the same
program address, but they have their own instruction address
counter and register state and are therefore free to branch and
execute independently

 each warp can execute
instructions on
 SM cores
 load/store units
 SFUs units

Hiding Latencies

30

 What is latency?
• the number of clock cycles needed to complete an istruction
• ... that is, the number of cycles I need to wait for before another dependent
operation can start

 arithmetic latency (~ 18-24 cycles)
 memory access latency (~ 400-800 cycles)

 We cannot discard latencies (it’s an hardware design effect), but we
can lesser their effect and hide them.
• saturating computational pipelines in computational bound problems
• saturating bandwidth in memory bound problems

 We can organize our code so to provide the scheduler a sufficient
number of independent operations, so that the more the warp are
available, the more content-switch can hide latencies and proceed
with other useful operations

 There are two possible ways and paradigms to use (can be combined
too!)
• Thread-Level Parallelism (TLP)
• Instruction-Level Parallelism (ILP)

Thread-Level Parallelism (TLP)

31

 Strive for high SM occupancy: that is try to provide as
much threads per SM as possible, so to easy the scheduler
find a warp ready to execute, while the others are still
busy

 This kind of approach is effective when there is a low level
of independet operations per CUDA kernels

Instruction-Level Parallelism (ILP)

32

 Strive for multiple independent operations inside you CUDA
kernel: that is, let your kernel act on more than one data

 this will grant the scheduler to stay on the same warp and
fully load each hardware pipeline

 note: the scheduler
will not select a new
warp until there are
eligible instructions
ready to execute on
the current warp

Data movement

33

 data must be moved from HOST to DEVICE memory in order
to be processed by a CUDA kernel

 when data is processed, and no more needed on the GPU,
it is transferred back to HOST

HOST RAM

CUDA
KERNEL

. . .

GPU RAM

D2H and H2D Data Transfers

 GPU devices are connected to the host with a PCIe bus
• PCIe bus is characterized by very low latency, but

also by a low bandwidth with respect to other bus

 Data transfer can easily become a bottleneck in
heterogeneous environment equipped with
accelerators
• strive to minimize transfers or execute them in overlap with

computations (advanced technique, more on this later)

Technology Peak Bandwidth
PCIex GEN2 (16x, full duplex) 8 GB/s (peak)

PCIex GEN3 (16x, full duplex) 16 GB/s (peak)

NVLink (full duplex) 80/160 GB/s (peak)

DDR3 (full duplex) 26 GB/s (single channel)

34

Connection Scheme of host/device

35

36

 GPU programming model
• Design a porting to GPU

architecture
• Thread hierarchy and indexing
• Writing a kernel
• Handling data transfers from

CPU to GPU memory and back
• Vector-Vector Add
• Write and launch a GPU

program

Three steps for a CUDA porting

37

1. identify data-parallel, computational intensive portions
1. isolate them into functions (CUDA kernels candidates)
2. identify involved data to be moved between CPU and GPU

2. translate identified CUDA kernel candidates into real
CUDA kernels
1. choose the appropriate thread index map to access data
2. change code so that each thead acts on its own data

3. modify code in order to manage memory and kernel calls
1. allocate memory on the device
2. transfer needed data from host to device memory
3. insert calls to CUDA kernel with execution configuration syntax
4. transfer resulting data from device to host memory

Identify data-parallel intensive portions

38

int main(int argc, char *argv[]) {
 int i;
 const int N = 1000;
 double u[N], v[N], z[N];

 initVector (u, N, 1.0);
 initVector (v, N, 2.0);
 initVector (z, N, 0.0);

 printVector (u, N);
 printVector (v, N);

 // z = u + v
 for (i=0; i<N; i++)
 z[i] = u[i] + v[i];

 printVector (z, N);

 return 0;
}

program vectoradd
integer :: i
integer, parameter :: N=1000
real(kind(0.0d0)), dimension(N):: u, v, z

call initVector (u, N, 1.0)
call initVector (v, N, 2.0)
call initVector (z, N, 0.0)

call printVector (u, N)
call printVector (v, N)

! z = u + v
do i = 1,N
 z(i) = u(i) + v(i)
end do

call printVector (z, N)

end program

A simple CUDA program

39

int main(int argc, char *argv[]) {
 int i;
 const int N = 1000;
 double u[N], v[N], z[N];

 initVector (u, N, 1.0);
 initVector (v, N, 2.0);
 initVector (z, N, 0.0);

 printVector (u, N);
 printVector (v, N);

 // z = u + v
 for (i=0; i<N; i++)
 z[i] = u[i] + v[i];

 printVector (z, N);

 return 0;
}

__global__
void gpuVectAdd(const double *u,
 const double *v, double *z)

{ // use GPU thread id as index
 i = threadIdx.x;
 z[i] = u[i] + v[i];
}

int main(int argc, char *argv[]) {
 ...

 // z = u + v
 {
 // run on GPU using
 // 1 block of N threads in 1D
 gpuVectAdd <<<1,N>>> (u, v, z);
 }
 ...
}

CUDA syntax extensions to the C language

40

CUDA defines a small set of extensions to the high level language
as the C in order to define the kernels and to configure the kernel
execution.

 A CUDA kernel function is defined using the __global__
declaration

 when a CUDA kernel is called, it will be executed N times in
parallel by N different CUDA threads on the device

 the number of CUDA threads that execute that kernel is
specified using a new syntax, called kernel execution
configuration
• cudaKernelFunction <<<...>>> (arg_1, arg_2, ..., arg_n)

 each thread has a unique thread ID
• the thread ID is accessible within the CUDA kernel through the built-in

threadIdx variable

 the built-in variables threadIdx are a 3-component vector
• use .x, .y, .z to access its components

Manage kernel calls

41

Insert calls to CUDA kernels using the execution configuration syntax:

kernelCUDA<<<numBlocks,numThreads>>>(...)

specifying the thread/block hierarchy you want to apply:
• numBlocks: specify grid size in terms of thread blocks along each
dimension
• numThreads: specify the block size in terms of threads along each
dimension

dim3 numThreads(32);
dim3 numBlocks((N – 1) / numThreads.x + 1);
gpuVectAdd<<<numBlocks, numThreads>>>(N, u_dev, v_dev, z_dev);

type(dim3) :: numBlocks, numThreads
numThreads = dim3(32, 1, 1)
numBlocks = dim3((N - 1) / numThreads%x + 1, 1, 1)
call gpuVectAdd<<<numBlocks,numThreads>>>(N, u_dev, v_dev, z_dev)

CUDA Threads

42

 Threads are organized into blocks of threads
• blocks can be 1D, 2D, 3D sized in threads

 Blocks can be organized into a 1D, 2D, 3D grid of blocks

• Each block of threads will be executed
independently

● No assumption is made on the blocks
execution order

 Each block has a unique block ID
• The block ID is accessible within the CUDA kernel

through the built-in blockIdx variable

 The built-in variable blockIdx is a 3-component
vector
• Use .x, .y, .z to access its components

Grid

Block
(0,1)

Block
(1,1)

Block
(2,1)

Block
(0,0)

Block
(1,0)

Block
(2,0)

Thread
(0,0)

Thread
(1,0)

Thread
(2,0)

Thread
(3,0)

Thread
(4,0)

Thread
(0,1)

Thread
(1,1)

Thread
(2,1)

Thread
(3,1)

Thread
(4,1)

Thread
(0,2)

Thread
(1,2)

Thread
(2,2)

Thread
(3,2)

Thread
(4,2)

Thread
(0,3)

Thread
(1,3)

Thread
(2,3)

Thread
(3,3)

Thread
(4,3)

threadIdx:
thread coordinates inside a block

blockDim:
block dimensions in thread units

blockIdx:
block coordinates inside the grid

gridDim:
grid dimensions in block units

Composing 1D CUDA Thread Indexing

index = blockIdx.x * blockDim.x + threadIdx.x;

threadIdx: thread coordinates inside a block

blockIdx: block coordinates inside the grid

blockDim: block dimensions in thread units

gridDim: grid dimensions in block units

(2) (3) (2) (5) (6) (7)(0) (1) (2) (3) (4)*(1)(0)

index

blockIdx.x * blockDim.x

VectorSize

43

CUDA Vector add – 1D thread grid

44

__global__ void gpuVectAdd(int N, const double *u, const double *v, double
*z)

{

 // use GPU thread id as index

 index = blockIdx.x * blockDim.x + threadIdx.x;

 // check out of border access

 if (index < N) {

 z[index] = u[index] + v[index];

 }

}

int main(int argc, char *argv[]) {

 ...

 // use 1D block threads

 dim3 blockSize = 512;

 // use 1D grid blocks

 dim3 gridSize = (N - 1) / blockSize.x + 1;

 gpuVectAdd <<< gridSize,blockSize >>> (N, u, v, z);

 ...

}

Composing 2D CUDA Thread Indexing

i = blockIdx.x * blockDim.x + threadIdx.x;
j = blockIdx.y * blockDim.y + threadIdx.y;

index = j * gridDim.x * blockDim.x + i;

threadIdx:
thread coordinates inside
a block

blockIdx:
block coordinates inside
the grid

blockDim:
block dimensions in thread
units

gridDim:
grid dimensions in block
units

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(0,2) (1,2) (2,2)

(0,3) (1,3) (2,3)

gridDim.x * blockDim.x

(0,0) (1,0) (2,0) (3,0) (4,0)

(0,1) (1,1) (2,1) (3,1) (4,1)

(0,2) (1,2) (2,2) (3,2) (4,2)

(0,3) (1,3) (2,3) (3,3) (4,3)
*(index)

i

j
Matrix

MatrixWidth

i = blockIdx.x * blockDim.x + threadIdx.x;
j = blockIdx.y * blockDim.y + threadIdx.y;

index = j * MatrixWidth + i; 45

CUDA Matrix add - 2D thread grid

46

__global__ void matrixAdd(int N, const float *A, const float *B, float *C) {
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 int j = blockIdx.y * blockDim.y + threadIdx.y;

 // matrix elements are organized in row major order in memory
 int index = j * N + i;

 if (i < N && j < N)
 C[index] = A[index] + B[index];
}

int main(int argc, char *argv[]) {
 ...
 // use 2D block threads
 dim3 blockSize(32,32);
 // use 2D grid blocks
 dim3 gridSize((N-1)/block.x + 1, (N-1)/block.y + 1);
 // add NxN matrices on GPU
 matrixAdd <<< gridSize, blockSize >>> (N, A, B, C);
 ...
}

 each thread execute the same kernel, but act on different data:
• turn the loop into a CUDA kernel function
• map each CUDA thread onto a unique index to access data
• let each thread retrieve, compute and store its own data using the unique address
• prevent out of border access to data if data is not a multiple of thread block size

 Translate parallel portions into kernels

47

const int N = 1000;
double u[N], v[N], z[N];

// z = u + v
for (i=0; i<N; i++)
 z[i] = u[i] + v[i];

__global__ void gpuVectAdd (int N, const double *u, const double *v, double *z)
{
 // index is a unique identifier for each GPU thread
 int index = blockIdx * blockDim.x + threadIdx.x ;
 if (index < N)
 z[index] = u[index] + v[index];
}

Translate parallel portions into kernels

__global__ void gpuVectAdd (int N, const double *u, const double *v, double *z)
{
 // index is a unique identifier of each GPU thread
 int index = blockIdx.x * blockDim.x + threadIdx.x ;
 if (index < N)
 z[index] = u[index] + v[index];
}

(0) (1) (2)

^(index)

(3)(0) (1) (2) (3) (4)

The __global__ qualifier declares a CUDA
kernel

CUDA kernels are special C functions:
• can be called from host only
• must be called using the execution configuration

syntax
• the return type must be void
• they are asynchronous: control is returned

immediately to the host code
• an explicit synchronization is needed in order to

be sure that a CUDA kernel has completed the
execution

48

Translate parallel portions into kernels

49

module vector_algebra_cuda
use cudafor
contains
attributes(global) subroutine gpuVectAdd (N, u, v, z)
 implicit none
 integer, intent(in), value :: N
 real, intent(in) :: u(N), v(N)
 real, intent(inout) :: z(N)
 integer :: i

 i = (blockIdx%x - 1) * blockDim%x + threadIdx%x

 if (i .gt. N) return

 z(i) = u(i) + v(i)
end subroutine
end module vector_algebra_cuda

Translate parallel portions into kernels

50

attributes(global) subroutine gpuVectAdd (N, u, v, z)
 ...
end subroutine

program vectorAdd
use cudafor
implicit none
interface
 attributes(global) subroutine gpuVectAdd (N, u, v, z)
 integer, intent(in), value :: N
 real, intent(in) :: u(N), v(N)
 real, intent(inout) :: z(N)
 integer :: i
 end subroutine
end interface
 ...

end program vectorAdd

If the kernels are not defined
within a module, then an
explicit interface must be
provided for each kernel you
want to launch within a
program unit.

 Memory allocation on GPU device

 CUDA API provides functions to manage data
allocation on the device global memory:

 cudaMalloc(void** bufferPtr, size_t n)
• It allocates a buffer into the device global memory
• The first parameter is the address of a generic

pointer variable that must point to the allocated
buffer

 it must be cast to (void**)!

• The second parameter is the size in bytes of the
buffer to be allocated

 cudaFree(void* bufferPtr)
• It frees the storage space of the object

51

 Memory allocation on GPU device

52

double *u_dev;

cudaMalloc(, N*sizeof(double));

 &u_dev
• u_dev it’s a variable defined on the host memory
• u_dev contains an address of the device memory
• C pass arguments to function by value

 we need to pass u_dev by reference to let its value be modified by the
cudaMalloc function

 this has nothing to do with CUDA, it’s a C common idiom
 if you don’t understand this, probably you are not ready for this course

 (void **) is a cast to force cudaMalloc to handle pointer to
memory of any kind

 again, if you don’t understand this…

(void **) &u_dev

 Memory allocation on GPU device

53

double *u_dev, *v_dev, *z_dev;

cudaMalloc((void **)&u_dev, N * sizeof(double));
cudaMalloc((void **)&v_dev, N * sizeof(double));
cudaMalloc((void **)&z_dev, N * sizeof(double));

real(kind(0.0d0)), device, allocatable, dimension(:) :: u_dev, v_dev, z_dev

allocate(u_dev(N), v_dev(N), z_dev(N))

 CUDA C API: cudaMalloc(void **p, size_t size)
• allocates size bytes of GPU global memory
• p is a valid device memory address (i.e. SEGV if you

dereference p on the host)

 in CUDA Fortran the attribute device needs to be used while
declaring a GPU array. The array can be allocated by using the
Fortran statement allocate:

 Memory Initialization on GPU device

 cudaMemset(void* devPtr, int value, size_t
count)

It fills the first count bytes of the memory area
pointed to by devPtr with the constant byte of the
int value converted to unsigned char.
• it’s like the standard library C memset() function
• devPtr - Pointer to device memory
• value - Value to set for each byte of specified memory
• count - Size in bytes to set

 REM: to initialize an array of double (float, int, …) to
a specific value you need to execute a CUDA kernel.

54

Memory copy between CPU and GPU

55

 cudaMemcpy(void *dst, void *src, size_t size,
direction)
• dst: destination buffer pointer
• src: source buffer pointer
• size: number of bytes to copy
• direction: macro name which defines the direction of data

copy
 from CPU to GPU: cudaMemcpyHostToDevice (H2D)
 from GPU to CPU: cudaMemcpyDeviceToHost (D2H)
 on the same GPU: cudaMemcpyDeviceToDevice

• the copy begins only after all previous kernel have finished
• the copy is blocking: it prevents CPU control to proceed

further in the program until last byte has been transfered
• returns only after copy is complete

 Manage memory transfers

56

cudaMemcpy(u_dev, u, sizeof(u), cudaMemcpyHostToDevice);
cudaMemcpy(v_dev, v, sizeof(v), cudaMemcpyHostToDevice);

u_dev = u ; v_dev = v

 CUDA C API:
cudaMemcpy(void *dst, void *src, size_t size, direction)

• copy size bytes from the src to dst buffer

 in CUDA Fortran you can use the array syntax

CUDA 4.x - Unified Virtual Addressing
 CUDA 4.0 introduces a unique virtual address space for memory

(Unified Virtual Address) shared between GPU and HOST:
• the actual memory type a data resides is automatically understood at runtime
• greatly simplify programming model
• allow simple addressing and transfer of data among GPU devices

Pre-UVA UVA

A macro for each combination
of source/destination

The system keeps track of
the buffer location.

cudaMemcpyHostToHost
cudaMemcpyHostToDevice
cudaMemcpyDeviceToHost
cudaMemcpyDeviceToDevice

cudaMemcpyDefault

57

CUDA 6.x - Unified Memory

 Unified Memory creates a pool of memory with an
address space that is shared between the CPU and GPU.
In other word, a block of Unified Memory is accessible to
both the CPU and GPU by using the same pointer;

 the system automatically migrates data allocated in
Unified Memory mode between the host and device
memory
• no need to explicitly declare device memory regions
• no need to explicitly copy back and forth data between CPU

and GPU devices
• greatly simplifies programming and speeds up CUDA ports

 REM: it can result in performances degradation with
respect to an explicit, finely tuned data transfer.

58

void sortfile(FILE *fp, int N) {
 char *data;

 cudaMallocManaged(&data, N);

 fread(data, 1, N, compare);

 qsort<<< ... >>> (data, N, 1, compare);

 cudaDeviceSynchronize();

 use_data(data);

 cudaFree(data);
}

Sample code using CUDA Unified Memory

59

void sortfile (FILE *fp, int N) {
 char *data;

 data = (char *) malloc (N);

 fread(data, 1, N, fp);

 qsort(data, N, 1, compare);

 use_data(data);

 free(data)
}

CPU code GPU code

Vector Sum: the complete CUDA code

60

double *u_dev, *v_dev, *z_dev;
cudaMalloc((void **)&u_dev, N * sizeof(double));
cudaMalloc((void **)&v_dev, N * sizeof(double));
cudaMalloc((void **)&z_dev, N * sizeof(double));

cudaMemcpy(u_dev, u, sizeof(u), cudaMemcpyHostToDevice);
cudaMemcpy(v_dev, v, sizeof(v), cudaMemcpyHostToDevice);

dim3 numThreads(256); // 128-512 are good choices
dim3 numBlocks((N + numThreads.x - 1) / numThreads.x);
gpuVectAdd<<<numBlocks, numThreads>>>(N, u_dev, v_dev, z_dev);
cudaMemcpy(z, z_dev, N * sizeof(double), cudaMemcpyDeviceToHost);

real(kind(0.0d0)), device, allocatable, dimension(:,:) :: u_dev, v_dev, z_dev

type(dim3) :: numBlocks, numThreads

allocate(u_dev(N), v_dev(N), z_dev(N))

u_dev = u; v_dev = v

numThreads = dim3(256, 1, 1) ! 128-512 are good choices

numBlocks = dim3((N + numThreads%x – 1) / numThreads%x, 1, 1)

call gpuVectAdd<<<numBlocks,numThreads>>>(N, u_dev, v_dev, z_dev)

z = z_dev

	Slide 1
	Agenda
	Slide 3
	Slide 4
	CPU vs GPU Architectures
	Slide 6
	The concurrency revolution
	GPGPU (General Purpose GPU) and GPU computing
	GPGPU Programming Model
	GPGPU Programming Approaches
	A General-Purpose Parallel Computing Architecture
	CUDA Driver Vs Runtime API
	CUDA Driver API
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	NVIDIA Pascal Architecture (2016)
	Slide 21
	Slide 22
	Slide 23
	CUDA Programming Model
	CUDA Execution Model
	GPU Thread Hierarchy
	more on the CUDA Execution Model
	Trasparent Scalability
	Warps
	Hiding Latencies
	Thread-Level Parallelism (TLP)
	Instruction-Level Parallelism (ILP)
	Data movement
	D2H and H2D Data Transfers
	Connection Scheme of host/device
	Slide 36
	Three steps for a CUDA porting
	Vector Sum
	A simple CUDA program
	CUDA syntax extensions to the C language
	Slide 41
	CUDA Threads
	Composing 2D CUDA Thread Indexing
	Simple 1D CUDA vector add
	Slide 45
	2D array element-wise add (matrix add)
	Vector Sum
	Vector Sum
	Vector Sum
	Vector Sum
	Slide 51
	Slide 52
	Vector Sum
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Vector Sum: the complete CUDA code

