
Debugging Techniques and Tools
V. Ruggiero (v.ruggiero@cineca.it)

Roma, 14 July 2017
SuperComputing Applications and Innovation Department

Outline

Introduction

Static analysis

Run-time analysis

Debugging

Conclusions

As soon as we started programming, we found to our surprise that it
wasn’t as easy to get programs right as we had thought. Debugging
had to be discovered. I can remember the exact instant when I
realized that a large part of my life from then on was going to be
spent in finding mistakes in my own programs.!

Maurice Wilkes discovers debugging, 1949.

Testing-Debugging

I TESTING: finds errors.
I DEBUGGING: localizes and repairs them.

TESTING DEBUGGING CYCLE:
we test, then debug, then repeat.

Program testing can be used to show the presence of bugs, but never
to show their absence!
Edsger Dijkstra

Testing-Debugging

I TESTING: finds errors.
I DEBUGGING: localizes and repairs them.

TESTING DEBUGGING CYCLE:
we test, then debug, then repeat.

Program testing can be used to show the presence of bugs, but never
to show their absence!
Edsger Dijkstra

What is a bug?

I Defect: An incorrect program code

=⇒ a bug in the code.

I Infection: An incorrect program state =⇒ a bug in the state.

I Failure: An osservable incorrect program behaviour =⇒ a bug in the
behaviour.

What is a bug?

I Defect: An incorrect program code =⇒ a bug in the code.

I Infection: An incorrect program state =⇒ a bug in the state.

I Failure: An osservable incorrect program behaviour =⇒ a bug in the
behaviour.

What is a bug?

I Defect: An incorrect program code =⇒ a bug in the code.

I Infection: An incorrect program state

=⇒ a bug in the state.

I Failure: An osservable incorrect program behaviour =⇒ a bug in the
behaviour.

What is a bug?

I Defect: An incorrect program code =⇒ a bug in the code.

I Infection: An incorrect program state =⇒ a bug in the state.

I Failure: An osservable incorrect program behaviour =⇒ a bug in the
behaviour.

What is a bug?

I Defect: An incorrect program code =⇒ a bug in the code.

I Infection: An incorrect program state =⇒ a bug in the state.

I Failure: An osservable incorrect program behaviour

=⇒ a bug in the
behaviour.

What is a bug?

I Defect: An incorrect program code =⇒ a bug in the code.

I Infection: An incorrect program state =⇒ a bug in the state.

I Failure: An osservable incorrect program behaviour =⇒ a bug in the
behaviour.

Infection chain

Defect

=⇒ Infection =⇒ Failure

I The programmer creates a defect in the program code (also known
as bug or fault).

I The defect causes an in infection in the program state.

I The infection creates a failure - an externally observable error.

Infection chain

Defect =⇒ Infection

=⇒ Failure

I The programmer creates a defect in the program code (also known
as bug or fault).

I The defect causes an in infection in the program state.

I The infection creates a failure - an externally observable error.

Infection chain

Defect =⇒ Infection =⇒ Failure

I The programmer creates a defect in the program code (also known
as bug or fault).

I The defect causes an in infection in the program state.

I The infection creates a failure - an externally observable error.

Tracking down defect

Defect⇐= Infection⇐=

Failure

I A Failure is visible to the end user of a program. For example, the
program prints an incorrect output.

I Infection is the underlying state of the program at runtime that leads
to a Failure. For example, the program might display the incorrect
output because the wrong value is stored in avariable.

I A Defect is the actual incorrect fragment of code that the programmer
wrote; this is what must be changed to fix the problem.

Tracking down defect

Defect⇐=

Infection⇐= Failure

I A Failure is visible to the end user of a program. For example, the
program prints an incorrect output.

I Infection is the underlying state of the program at runtime that leads
to a Failure. For example, the program might display the incorrect
output because the wrong value is stored in avariable.

I A Defect is the actual incorrect fragment of code that the programmer
wrote; this is what must be changed to fix the problem.

Tracking down defect

Defect⇐= Infection⇐= Failure

I A Failure is visible to the end user of a program. For example, the
program prints an incorrect output.

I Infection is the underlying state of the program at runtime that leads
to a Failure. For example, the program might display the incorrect
output because the wrong value is stored in avariable.

I A Defect is the actual incorrect fragment of code that the programmer
wrote; this is what must be changed to fix the problem.

First of all..

THE BEST WAY TO DEBUG A PROGRAM IS
TO MAKE NO MISTAKES

I Preventing bugs.
I Detecting/locating bugs.

Ca. 80 percent of software development costs spent on identifying
and correcting defects.

It is much more expensive (in terms of time and effort) to
detect/locate exisisting bugs, than prevent them in the first place.

First of all..

THE BEST WAY TO DEBUG A PROGRAM IS
TO MAKE NO MISTAKES

I Preventing bugs.
I Detecting/locating bugs.

Ca. 80 percent of software development costs spent on identifying
and correcting defects.

It is much more expensive (in terms of time and effort) to
detect/locate exisisting bugs, than prevent them in the first place.

First of all..

THE BEST WAY TO DEBUG A PROGRAM IS
TO MAKE NO MISTAKES

I Preventing bugs.
I Detecting/locating bugs.

Ca. 80 percent of software development costs spent on identifying
and correcting defects.

It is much more expensive (in terms of time and effort) to
detect/locate exisisting bugs, than prevent them in the first place.

The Fundamental question

How can I prevent Bugs?

I Design.

I Good writing.

I Self-checking code.

I Test scaffolding.

The Fundamental question

How can I prevent Bugs?

I Design.

I Good writing.

I Self-checking code.

I Test scaffolding.

Testing: a simple program

Input

Read three integer values from the command line.
The three values represent the lengths of the sides of a triangle.

Output

Tell whether the triangle is:
Scalene
Isosceles
Equilater.

Create a set of test cases for this program.
("The art of sotware testing" G.J. Myers)

Testing: a simple program

Input

Read three integer values from the command line.
The three values represent the lengths of the sides of a triangle.

Output

Tell whether the triangle is:
Scalene
Isosceles
Equilater.

Create a set of test cases for this program.
("The art of sotware testing" G.J. Myers)

Testing: a simple program

Input

Read three integer values from the command line.
The three values represent the lengths of the sides of a triangle.

Output

Tell whether the triangle is:
Scalene
Isosceles
Equilater.

Create a set of test cases for this program.

("The art of sotware testing" G.J. Myers)

Testing: a simple program

Input

Read three integer values from the command line.
The three values represent the lengths of the sides of a triangle.

Output

Tell whether the triangle is:
Scalene
Isosceles
Equilater.

Create a set of test cases for this program.
("The art of sotware testing" G.J. Myers)

Testing: a simple program

Q:1 Do you have a test case with three integers greater than zero
such that the sum of two of the numbers is less than the third ?

(4,1,2) is an invalide triangle.
(a,b,c) with a > b+c

4

2
1

Define valide triangles a < b + c

Testing: a simple program

Q:1 Do you have a test case with three integers greater than zero
such that the sum of two of the numbers is less than the third ?
(4,1,2) is an invalide triangle.
(a,b,c) with a > b+c

4

2
1

Define valide triangles a < b + c

Testing: a simple program

Q:2 Do you have a test case with some permutations of previous test?

(1,4,2) (4,1,2)

Fulfill above definition, but are still invalid.

Patch definition of valid triangles:
a < b + c
b < a + c
c < a + b

Testing: a simple program

Q:2 Do you have a test case with some permutations of previous test?

(1,4,2) (4,1,2)

Fulfill above definition, but are still invalid.

Patch definition of valid triangles:
a < b + c
b < a + c
c < a + b

Testing: a simple program

Q:3 Do you have a test case with three integers greater than zero
such that the sum of two numbers is equal to the third?

(4,2,2) is invalid triangle with equal sum.

4

2 2

Fulfill above definition, but is invalid:
a < b+c
b < a+c
c < a+b

Testing: a simple program

Q:3 Do you have a test case with three integers greater than zero
such that the sum of two numbers is equal to the third?
(4,2,2) is invalid triangle with equal sum.

4

2 2

Fulfill above definition, but is invalid:
a < b+c
b < a+c
c < a+b

Testing: a simple program

Do you have a test case:

4. with some permutations of previous test? (2,4,2) (2,2,4)

5. that represents a valid scalene triangle? (3,4,5)

6. that represents a valid equilateral triangle? (3,3,3)

7. that represents a valid isosceles triangle? (4,3,3)

8. with some permutations of previous test? (3,4,3) (3,3,4)

9. in which one side has a zero value? (0,4,3)

10. in which one side has a negative value? (-1,4,3)

11. in which all sides are zero? (0,0,0)

12. specifying at least one noninteger value? (2,2.5,4)

13. specifying the wrong number of values? (2,3) or (2,3,5,4)

14. For each test case did you specify the expected output from the program in addition to
the input values?

About the example

I A set of test case that satisfies these conditions does not guarantee
that all possibile errors would be found.

I An adeguate test of this program should expose at least these errors.
I Higly qualified professional programmers score, on the average, 7.8

out of a possibile 14.

Outline

Introduction

Static analysis

Run-time analysis

Debugging

Conclusions

Definitions

Static analysis refers to a method of examinig software that allows
developers to discover dangerous programming pratices or potential
errors in source code, without actually run the code.

I Using compiler options.

I Using static analyzer.

Definitions

Static analysis refers to a method of examinig software that allows
developers to discover dangerous programming pratices or potential
errors in source code, without actually run the code.

I Using compiler options.

I Using static analyzer.

Compiler and errors

Source Program =⇒ Compiler =⇒ Target program

⇓
Status Messages and/or Warning Messages and/or Error Messages

Compiler checks:
I Syntax.
I Semantic.

Compiler and errors

Source Program =⇒ Compiler =⇒ Target program

⇓
Status Messages and/or Warning Messages and/or Error Messages

Compiler checks:
I Syntax.
I Semantic.

Compilers

I Not all compilers find the same defects.

I The more information a compilers has, the more defects it can find.

I Some compilers operate in "forgiving" mode but have "strict" or
"pedantic" mode, if you request it.

Static analyzer for C

I splint [-option -option ...] filename [filename ...]
I Based on Lint

I Unused declarations.
I Type inconsistencies.
I Variables used before being assigned.
I Function return values that are ignored.
I Execution paths with no return.
I Apparent infinite loops.
I Dereferencing pointers with possible null values
I Problematic uses of macros.
I Memory leaks
I ...

Static analyzer for Fortran

I ftnchek Fortran 77 support. Free.
I Forcheck Full Fortran 2008 syntax support and verification of

standard conformance.
I Cleanscape FortranLint OpenMP support.
I plusFORT is a multi-purpose suite of tools for analyzing and

improving Fortran programs.
I ...

Static analyzer: errors and warnings

I 40% false positive reports of correct code.
I 40% multiple occurence of same problem.
I 10% minor or cosmetic problems.
I 10% serious bugs, very hard to find by other methods.

From "The Developer’s Guide to Debugging" T. Grotker, U.
Holtmann, H. Keding, M. Wloka

Static analyzer: Lessons learned

I Do not ignore compiler warnings, even if they appear to be harmless.
I Use multiple compilers to check the code.
I Familiarize yourself with a static checker.
I Reduce static checker errors to (almost) zero.
I Rerun all test cases after a code cleanup.
I Doing regular sweeps of the source code will pay off in long term.

From "The Developer’s Guide to Debugging" T. Grotker, U.
Holtmann, H. Keding, M. Wloka

Outline

Introduction

Static analysis

Run-time analysis
Memory checker

Debugging

Conclusions

Runtime signals

I When a job terminates abnormally, it usually tries to send a signal
(exit code) indicating what went wrong.

I The exit code from a job is a standard OS termination status.
I Typically, exit code 0 (zero) means successful completion.
I Your job itself calling exit() with a non-zero value to terminate itself

and indicate an error.
I The specific meaning of the signal numbers is platform-dependent.

Runtime signals

You can find out why the job was killed using:

[ruggiero@matrix1 ~]$ kill -l

1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL
5) SIGTRAP 6) SIGABRT 7) SIGBUS 8) SIGFPE
9) SIGKILL 10) SIGUSR1 11) SIGSEGV 12) SIGUSR2

13) SIGPIPE 14) SIGALRM 15) SIGTERM 16) SIGSTKFLT
17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP
21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU
25) SIGXFSZ 26) SIGVTALRM 27) SIGPROF 28) SIGWINCH
29) SIGIO 30) SIGPWR 31) SIGSYS 34) SIGRTMIN
....

Runtime signals

To find out what all the "kill -l" words mean:

[ruggiero@matrix1 ~]$ man 7 signal

.....
Signal Value Action Comment
--
SIGHUP 1 Term Hangup detected on controlling terminal

or death of controlling process
SIGINT 2 Term Interrupt from keyboard
SIGQUIT 3 Core Quit from keyboard
SIGILL 4 Core Illegal Instruction
SIGABRT 6 Core Abort signal from abort(3)
......

Action description

Term Default action is to terminate the process.
Ign Default action is to ignore the signal.
Core Default action is to terminate the process and dump the core.
Stop Default action is to stop the process.
Cont Default action is to continue the process if is currently stopped.

Common runtime signals

Signal name OS signal name Description

Floating point exception SIGFPE The program attempted

an arithmetic operation

with values that

do not make sense

Segmentation fault SIGSEGV The program accessed

memory incorrectly

Aborted SIGABRT Generated by the runtime

library of the program

or a library it uses,

after having detecting

a failure condition.

FPE example

1 main()
2 {
3 i n t a = 1.;
4 i n t b = 0.;
5 i n t c = a/b;
6 }

[ruggiero@matrix1 ~]$ gcc fpe_example.c

[ruggiero@matrix1 ~]$./a.out

Floating exception

FPE example

1 main()
2 {
3 i n t a = 1.;
4 i n t b = 0.;
5 i n t c = a/b;
6 }

[ruggiero@matrix1 ~]$ gcc fpe_example.c

[ruggiero@matrix1 ~]$./a.out

Floating exception

SEGV example

1 main()
2 {
3 i n t array[5]; i n t i;
4 for(i = 0; i < 255; i++) {
5 array[i] = 10;}
6 return 0;
7 }

[ruggiero@matrix1 ~]$ gcc segv_example.c

[ruggiero@matrix1 ~]$./a.out

Segmentation fault

SEGV example

1 main()
2 {
3 i n t array[5]; i n t i;
4 for(i = 0; i < 255; i++) {
5 array[i] = 10;}
6 return 0;
7 }

[ruggiero@matrix1 ~]$ gcc segv_example.c

[ruggiero@matrix1 ~]$./a.out

Segmentation fault

ABORT example

1 #include <assert.h>
2 main()
3 {
4 i n t i=0;
5 assert(i!=0);
6 }

[ruggiero@matrix1 ~]$ gcc abort_example.c

[ruggiero@matrix1 ~]$./a.out

a.out: abort_example.c:5: main: Assertion ‘i!=0’ failed.
Abort

ABORT example

1 #include <assert.h>
2 main()
3 {
4 i n t i=0;
5 assert(i!=0);
6 }

[ruggiero@matrix1 ~]$ gcc abort_example.c

[ruggiero@matrix1 ~]$./a.out

a.out: abort_example.c:5: main: Assertion ‘i!=0’ failed.
Abort

Common runtime errors

I Allocation Deallocation errors (AD).
I Array conformance errors (AC).
I Array Index out of Bound (AIOB).
I Language specific errors (LS).
I Floating Point errors (FP).
I Input Output errors (IO).
I Memory leaks (ML).
I Pointer errors (PE).
I String errors (SE).
I Subprogram call errors (SCE).
I Uninitialized Variables (UV).

Useful link

I Iowa State University’s High Performance Computing Group

I Run Time Error Detection Test Suites for Fortran, C, and C++

I http://rted.public.iastate.edu

Grading Methodology: score

I 0.0: is given when the error was not detected.
I 1.0: is given for error messages with the correct error name.
I 2.0: is given for error messages with the correct error name and line

number where the error occurred but not the file name where the
error occurred.

I 3.0: is given for error messages with the correct error name, line
number and the name of the file where the error occurred.

I 4.0: s given for error messages which contain the information for a
score of 3.0 but less information than needed for a score of 5.0 .

I 5.0: is given in all cases when the error message contains all the
information needed for the quick fixing of the error.

Grading Methodology : an example

!***
! copyright (c) 2005 Iowa State University, Glenn Luecke, James Coyle,
! James Hoekstra, Marina Kraeva, Olga Taborskaia, Andre Wehe, Ying Xu,
! and Ziyu Zhang, All rights reserved.
! Licensed under the Educational Community License version 1.0.
! See the full agreement at http://rted.public.iastate.edu/ .
!***
!***
!
! Name of the test: F_H_1_1_b.f90
!
! Summary: allocation/deallocation error
!
! Test description: deallocation twice
! for allocatable array in a subroutine
! contains in a main program
!
! Support files: Not needed
!
! Env. requirements: Not needed
!
! Keywords: deallocation error
! subroutine contains in a main program

Grading Methodology: an example

!
! Last modified: 1/17/2005
!
! Programmer: Ying Xu, Iowa State Univ.
!***

program tests
i m p l i c i t none
integer :: n=10, m=20
double precision :: var

c a l l sub(n,m,var)
pr in t *,var
contains

subroutine sub(n,m,var)
integer , in tent(in) :: n,m
double precision, in tent(inout) :: var
double precision, al locatable :: arr(:,:) ! DECLARE

Grading Methodology: an example

integer :: i,j
al locate(arr(1:n,1:m))
do i=1,n

do j=1,m
arr(i,j) = dble(i*j)

enddo
end do
var = arr(n,m)
deallocate(arr)
deallocate(arr) ! deallocate second time here. ERROR
return

end subroutine sub
end program tests

Grading Methodology: an example

Real message (grade 1.0)

Fortran runtime error: Internal: Attempt to DEALLOCATE
unallocated memory.

Ideal message (grade 5.0)

ERROR: unallocated array
At line 52 column 17 of subprogram ’sub’
in file ’F_H_1_1_b.f90’, the argument
’arr’ in the DEALLOCATE statement is an
unallocated array. The variable is declared
in line 41 in subprogram ’sub’ in file ’F_H_1_1_b.f90’.

Fortran Results

Compiler AC A D AIOB LS FP IO

gcc-4.3.2 1 0.981481 3.40025 2.88235 0 2.33333
gcc-4.3.2 1 1.38889 3.40025 2.88235 0 2.33333
gcc-4.4.3 1 1.38889 3.40025 2.88235 0 2.33333
gcc-4.6.3 1 1.27778 0.969504 0.94117 0 2.33333
gcc-4.7.0 1 1.38889 0.969504 0.94117 0.714286 2.33333
gcc-4.8.2 1 1.38889 0.969504 0.94117 0.142857 2.33333
gcc-4.9.2 1 1.42593 0.969504 0.94117 0.142857 2.33333
g95.4.0.3 0.421053 1.22222 3.60864 3.82353 0.571428 2.66667
intel-10.1.021 0.421053 1.42593 3.45362 2.82353 0.571428 2.11111
intel-11.0.074 0.421053 1.68519 3.446 2.82353 0.571428 2.11111
intel-11.1 1 1.90741 3.47649 2.88235 1.42857 2.33333
intel-12.0.2 0.421053 1.62963 3.44727 2.82353 0.571428 2.11111
intel-14.0.1 0.421053 1.62963 3.44854 2.82353 0.571428 2.11111
intel-15.0.2 0.421053 1.62963 3.44854 2.82353 2.85714 2.11111
open64.4.2.3 3 0.888889 2.63405 3 0 1
pgi-7.2-5 0.421053 0.388889 3.8526 3.82353 0 2.44444
pgi-8.0-1 0.421053 0.388889 3.8526 3.82353 0 2.44444
pgi-10.3 0.421053 0.388889 3.8526 3.82353 0 2.44444
pgi-11.8 0.421053 0.388889 3.8526 3.82353 0 2.44444
pgi-12.8 1 1 3.8831 3.82353 1 2.61111
pgi-13.10 1 1 3.8831 3.82353 1 2.72222
pgi-14.1.0 0.421053 0.5 3.8526 3.82353 0 2.61111
pgi-14.10.0 0.421053 0.5 3.8526 3.82353 0 2.61111
pgi-16.3 0.421053 0.5 3.8526 3.82353 0 2.61111
sun.12.1 3 2.77778 3.00381 3 2 2.16667
sun.12.1+bcheck 3 2.77778 3.03431 3 0.285714 2.16667

Fortran Results

Compiler ML PE SE SCE UV

gcc-4.3.2 0 3.49609 3.25 0 0.0159236
gcc-4.3.2 0 3.49609 3.25 0 0.0286624
gcc-4.4.3 0 3.49609 3.25 0 0.0286624
gcc-4.6.3 0 1 3.25 0.166667 0.22293
gcc-4.7.0 0 1 3.25 0.166667 0.130573
gcc-4.8.2 0 1 3.25 0.166667 0.0955414
gcc-4.9.2 0 1 3.25 0.166667 0.0955414
g95.4.0.3 1 3 3.43333 0 0.0159236
intel-10.1.021 0 3.5625 0 0.166667 0.286624
intel-11.0.074 0 3.55469 0 0.166667 0.299363
intel-11.1 1 3.55469 1 1 1.07643
intel-12.0.2 0 3.55469 0 0.166667 0.292994
intel-14.0.1 0 3.55469 0 0.166667 0.292994
intel-15.0.2 0 3.55469 0 0.166667 0.286624
open64.4.2.3 0 3.3625 0 0.0833333 0.286624
pgi-7.2-5 0 4 0 0 0.022293
pgi-8.0-1 0 4 0 0 0.022293
pgi-10.3 0 4 0 0 0.0254777
pgi-11.8 0 4 0 0 0.0127389
pgi-12.8 1 4 1 1 1
pgi-13.10 1 4 1 1 1
pgi-14.1.0 0 4 0 0 0.143312
pgi-14.10.0 0 4 0 0 0.0127389
pgi-16.3 0 4 0 0 0.136943
sun.12.1 0 3.03125 3 0 0.022293
sun.12.1+bcheck 1.25 3.03125 3 1 0.640127

C Results

Compiler AD AIoB LS FP IO

gcc-4.3.2 0.44 0.00925926 0.0416667 0.2 0.0666667
gcc-4.4.3 0.44 0.00925926 0.0416667 0.2 0.0666667
gcc-4.6.3 0.44 0.00925926 0.0416667 0.2 0.2
gcc-4.7.0 0.44 0.00925926 0.0416667 0.2 0.2
gcc-4.8.2 0.4 0.00925926 0.0416667 0 0.2
gcc-4.9.2 0.4 0.00925926 0.0416667 0 0.2
intel-10.1.021 0.52 0.00925926 0.0416667 0 0.2
intel-11.0.074 0.52 0.00925926 0.0416667 0 0.2
intel-11.1 0.68 1 1 1 1
intel-12.0.2 0.44 0.00925926 0.0416667 0 0.2
intel-14.0.1 0.4 0.00925926 0.0416667 0 0.2
intel-15.0.2 0.4 0.00925926 0.0416667 0 0.2
open64-4.2.3 0.52 0.00925926 0.0416667 0 0.2
pgi-7.2-5 0.44 0.00925926 0.0416667 0 0.2
pgi-8.0-1 0.44 0.00925926 0.0416667 0 0.2
pgi-10.3 0.44 0.00925926 0.0416667 0 0.2
pgi-11.8 0.44 0.00925926 0.0416667 0 0.2
pgi-12.8 0.68 2.40741 2.16667 0 1
pgi-13.10 0.68 2.40741 2.16667 0 1
pgi-14.1-0 0.48 1.93519 1.625 0 0.2
pgi-14.10-0 0.44 1.93519 1.625 0 0.3
pgi-16.3 0.44 0.00925926 0.0416667 0 0.2
sun-12.1 0.44 0.00925926 0 0 0.2
sun-12.1+bcheck 0.16 0 0 0 0

C Results

Compiler ML PE SE SCE UV

gcc-4.3.2 0.0166667 0.0166667 0.05 0 0
gcc-4.4.3 0.0166667 0.0166667 0.05 0 0
gcc-4.6.3 0.0166667 0.0166667 0.05 0 0
gcc-4.7.0 0.0166667 0.0166667 0.05 0 0
gcc-4.8.2 0.0166667 0.0166667 0.075 0 0
gcc-4.9.2 0.0166667 0.0166667 0.075 0 0
intel-10.1.021 0.0666667 0.0166667 0.05 0 0
intel-11.0.074 0.0666667 0.0166667 0.05 0 0
intel-11.1 1 1 1 1 1
intel-12.0.2 0.0666667 0.0166667 0.05 0 0
intel-14.0.1 0.133333 0.0166667 0.05 0 0
intel-15.0.2 0.0166667 0.0166667 0.075 0 0
open64-4.2.3 0.0666667 0.0166667 0.05 0 0
pgi-7.2-5 0.0666667 0.0166667 0.05 0 0
pgi-8.0-1 0.0666667 0.0166667 0.05 0 0
pgi-10.3 0.0666667 0.0166667 0.05 0 0
pgi-11.8 0.0666667 0.0166667 0.05 0 0
pgi-12.8 1 1 1 1 1
pgi-13.10 1 1 1 1 1
pgi-14.1-0 0.133333 0.0166667 0.05 0 0
pgi-14.10-0 0.0666667 0.0166667 0.05 0 0
pgi-16.3 0.0666667 0.0166667 0.075 0 0
sun-12.1 0.0666667 0.0166667 0.05 0 0
sun-12.1+bcheck 1.13333 0.025 0 0 0

C++ Results

Compiler AD AIoB FP IO ML PE SE UV

gcc-4.3.2 0.44 0.00925926 0 0 0.0666667 0.0166667 0.05 0
gcc-4.4.3 0.44 0.00925926 0 0 0.0666667 0.0166667 0.05 0
gcc-4.6.3 0.44 0.00925926 0 0.2 0.0666667 0.0166667 0.05 0
gcc-4.7.0 0.44 0.00925926 0 0.2 0.0666667 0.0166667 0.05 0
gcc-4.8.2 0.4 0.00925926 0 0.2 0.0666667 0.0166667 0.075 0
gcc-4.9.2 0.4 0.00925926 0 0.2 0.0666667 0.0166667 0.075 0
intel-10.1.021 0.330275 0.00903614 0 0.0714286 0.047619 0.0254777 0.05 0
intel-11.0.074 0.330275 0.00903614 0 0.0714286 0.047619 0.0254777 0.05 0
intel-11.1 0.926606 1 1 1 1 1 1 1
intel-12.0.2 0.311927 0.00903614 0 0.0714286 0.047619 0.0254777 0.05 0
intel-14.1.0 0.4 0.00925926 0 0.2 0.133333 0.0166667 0.05 0
intel-15.0.2 0.4 0.00925926 0 0.2 0.0666667 0.0166667 0.075 0
open64-4.2.3 0.330275 0.00903614 0 0 0.047619 0.0254777 0.05 0
pgi-7.2.5 0.311927 0.00903614 0 0.0714286 0.047619 0.0254777 0.05 0
pgi-8.0.1 0.311927 0.00903614 0 0.0714286 0.047619 0.0254777 0.05 0
pgi-10.3 0.311927 0.00903614 0 0.0714286 0.047619 0.0254777 0.05 0
pgi-11.8 0.311927 0.00903614 0 0.0714286 0.047619 0.0254777 0.05 0
pgi-12.8 0.926606 2.23795 1 1 1 1 1 1
pgi-13.1 0.926606 2.23494 1 1 1 1 1 1
pgi-14.1-0 0.321101 1.69277 0 0.0714286 0.0714285 0.0254777 0.05 0
pgi-14.10-0 0.321101 1.69277 0 0.107143 0.047619 0.0254777 0.05 0
pgi-16.3 0.44 0.00925926 0 0.2 0.0666667 0.0166667 0.075 0
sun-12.1 0.311927 0.00903614 0 0 0.047619 0.0254777 0.05 0
sun-12.1+bcheck 0.247706 0.0150602 0 0 1.16667 0.0191083 0 0

Grading Methodology: Used options

Fortran

gcc -frange-check -O0 -fbounds-check -g -ffpe-trap=invalid,zero,overflow -fdiagnostics-show-location=every-line
g95 -O0 -fbounds-check -g -ftrace=full
intel -O0 -C -g -traceback -ftrapuv -check
open64 -C -g -O0
pgi -C -g -Mchkptr -O0
sun -g -C -O0 -xs -ftrap=%all -fnonstd -xcheck=%all

C

gcc -O0 -g -fbounds-check -ftrapv
intel -O0 -C -g -traceback
open64 -g -C -O0
pgi -g -C -Mchkptr -O0
sun -g -C -O0 -xs -ftrap=%all -fnonstd -xcheck=%all

C++

gcc -O0 -g -fbounds-check -ftrapv
intel -O0 -C -g -traceback
open64 -g -C -O0
pgi -g -C -Mchkptr -O0
sun -g -C -O0 -xs -ftrap=%all -fnonstd -xcheck=%all

Outline

Introduction

Static analysis

Run-time analysis
Memory checker

Debugging

Conclusions

Fixing memory problems

I Memory leaks are data structures that are allocated at runtime, but
not deallocated once they are no longer needed in the program.

I Incorrect use of the memory management is associated with
incorrect calls to the memory management: freeing a block of
memory more than once, accessing memory after freeing...

I Buffer overruns are bugs where memory outside of the allocated
boundaries is overwritten, or corrupted.

I Uninitialized memory bugs: reading uninitialized memory.

Valgrind

I Open Source Software, available on Linux for x86 and PowerPc
processors.

I Interprets the object code, not needed to modify object files or
executable, non require special compiler flags, recompiling, or
relinking the program.

I Command is simply added at the shell command line.
I No program source is required (black-box analysis).

www.valgrind.org

Valgrind:tools

I Memcheck: a memory checker.
I Callgrind: a runtime profiler.
I Cachegrind: a cache profiler.
I Helgrind: find race conditions.
I Massif: a memory profiler.

Why should I use Valgrind?

I Valgrind will tell you about tough to find bugs.
I Valgrind is very thorough.
I You may be tempted to think that Valgrind is too picky, since your

program may seem to work even when valgrind complains. It is
users’ experience that fixing ALL Valgrind complaints will save you
time in the long run.

But...

Valgrind is kind-of like a virtual x86 interpeter.
So your program will run 10 to 30 times slower than normal.
Valgrind won’t check static arrays.

Why should I use Valgrind?

I Valgrind will tell you about tough to find bugs.
I Valgrind is very thorough.
I You may be tempted to think that Valgrind is too picky, since your

program may seem to work even when valgrind complains. It is
users’ experience that fixing ALL Valgrind complaints will save you
time in the long run.

But...
Valgrind is kind-of like a virtual x86 interpeter.
So your program will run 10 to 30 times slower than normal.
Valgrind won’t check static arrays.

Use of uninitialized memory:test1.c

I Local Variables that have not been initialized.
I The contents of malloc’s blocks, before writing there.

1 #include <stdlib.h>
2 i n t main()
3 {
4 i n t p,t,b[10];
5 i f (p==5)

ERROR

6 t=p+1;
7 b[p]=100;

ERROR

8 return 0;
9 }

Use of uninitialized memory:test1.c

I Local Variables that have not been initialized.
I The contents of malloc’s blocks, before writing there.

1 #include <stdlib.h>
2 i n t main()
3 {
4 i n t p,t,b[10];
5 i f (p==5)

ERROR

6 t=p+1;
7 b[p]=100;

ERROR

8 return 0;
9 }

Use of uninitialized memory:test1.c

I Local Variables that have not been initialized.
I The contents of malloc’s blocks, before writing there.

1 #include <stdlib.h>
2 i n t main()
3 {
4 i n t p,t,b[10];
5 i f (p==5) ERROR
6 t=p+1;
7 b[p]=100; ERROR
8 return 0;
9 }

Valgrind output

ruggiero@shiva:> valgrind --tool=memcheck --leak-check=full ./t1

==7879== Memcheck, a memory error detector.
....

==7879== Conditional jump or move depends on uninitialised value(s)
==7879== at 0x8048399: main (test1.c:5)
==7879==
==7879== Use of uninitialised value of size 4
==7879== at 0x80483A7: main (test1.c:7)
==7879==
==7879== Invalid write of size 4
==7879== at 0x80483A7: main (test1.c:7)
==7879== Address 0xCEF8FE44 is not stack’d, malloc’d or (recently) free’d
==7879==
==7879== Process terminating with default action of signal 11 (SIGSEGV)
==7879== Access not within mapped region at address 0xCEF8FE44
==7879== at 0x80483A7: main (test1.c:7)
==7879==
==7879== ERROR SUMMARY: 3 errors from 3 contexts (suppressed: 3 from 1)
==7879== malloc/free: in use at exit: 0 bytes in 0 blocks.
==7879== malloc/free: 0 allocs, 0 frees, 0 bytes allocated.
==7879== For counts of detected errors, rerun with: -v
==7879== All heap blocks were freed -- no leaks are possible.
Segmentation fault

Valgrind output

ruggiero@shiva:> valgrind --tool=memcheck --leak-check=full ./t1

==7879== Memcheck, a memory error detector.
....

==7879== Conditional jump or move depends on uninitialised value(s)
==7879== at 0x8048399: main (test1.c:5)
==7879==
==7879== Use of uninitialised value of size 4
==7879== at 0x80483A7: main (test1.c:7)
==7879==
==7879== Invalid write of size 4
==7879== at 0x80483A7: main (test1.c:7)
==7879== Address 0xCEF8FE44 is not stack’d, malloc’d or (recently) free’d
==7879==
==7879== Process terminating with default action of signal 11 (SIGSEGV)
==7879== Access not within mapped region at address 0xCEF8FE44
==7879== at 0x80483A7: main (test1.c:7)
==7879==
==7879== ERROR SUMMARY: 3 errors from 3 contexts (suppressed: 3 from 1)
==7879== malloc/free: in use at exit: 0 bytes in 0 blocks.
==7879== malloc/free: 0 allocs, 0 frees, 0 bytes allocated.
==7879== For counts of detected errors, rerun with: -v
==7879== All heap blocks were freed -- no leaks are possible.
Segmentation fault

Illegal read/write test2.c

1 #include <stdlib.h>
2 i n t main()
3 {
4 i n t *p,i,a;
5 p=malloc(10*sizeof(i n t));
6 p[11]=1;

ERROR

7 a=p[11];

ERROR

8 free(p);
9 return 0;

10 }

Illegal read/write test2.c

1 #include <stdlib.h>
2 i n t main()
3 {
4 i n t *p,i,a;
5 p=malloc(10*sizeof(i n t));
6 p[11]=1; ERROR
7 a=p[11]; ERROR
8 free(p);
9 return 0;

10 }

Illegal read/write: Valgrind output

ruggiero@shiva:> valgrind --tool=memcheck --leak-check=full ./t2

.....
==8081== Invalid write of size 4
==8081== at 0x804840A: main (test2.c:6)
==8081== Address 0x417B054 is 4 bytes after a block of size 40 alloc’d
==8081== at 0x40235B5: malloc (in /usr/lib/valgrind/x86-linux/vgpreload_memcheck.so)
==8081== by 0x8048400: main (test2.c:5)
==8081==
==8081== Invalid read of size 4
==8081== at 0x8048416: main (test2.c:7)
==8081== Address 0x417B054 is 4 bytes after a block of size 40 alloc’d
==8081== at 0x40235B5: malloc (in /usr/lib/valgrind/x86-linux/vgpreload_memcheck.so)
==8081== by 0x8048400: main (test2.c:5)
==8081==
==8081== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 3 from 1)
==8081== malloc/free: in use at exit: 0 bytes in 0 blocks.
==8081== malloc/free: 1 allocs, 1 frees, 40 bytes allocated.
==8081== For counts of detected errors, rerun with: -v
==8081== All heap blocks were freed -- no leaks are possible.

Invalid free:test3.c

1 #include <stdlib.h>
2 i n t main()
3 {
4 i n t *p,i;
5 p=malloc(10*sizeof(i n t));
6 for(i=0;i<10;i++)
7 p[i]=i;
8 free(p);
9 free(p);

ERROR

10 return 0;
11 }

Invalid free:test3.c

1 #include <stdlib.h>
2 i n t main()
3 {
4 i n t *p,i;
5 p=malloc(10*sizeof(i n t));
6 for(i=0;i<10;i++)
7 p[i]=i;
8 free(p);
9 free(p); ERROR

10 return 0;
11 }

Invalid free: Valgrind output

ruggiero@shiva:> valgrind --tool=memcheck --leak-check=full ./t3

.....
==8208== Invalid free() / delete / delete[]
==8208== at 0x40231CF: free (in /usr/lib/valgrind/x86-linux/vgpreload_memcheck.so)
==8208== by 0x804843C: main (test3.c:9)
==8208== Address 0x417B028 is 0 bytes inside a block of size 40 free’d
==8208== at 0x40231CF: free (in /usr/lib/valgrind/x86-linux/vgpreload_memcheck.so)
==8208== by 0x8048431: main (test3.c:8)
==8208==
==8208== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 3 from 1)
==8208== malloc/free: in use at exit: 0 bytes in 0 blocks.
==8208== malloc/free: 1 allocs, 2 frees, 40 bytes allocated.
==8208== For counts of detected errors, rerun with: -v
==8208== All heap blocks were freed -- no leaks are possible.

Mismatched use of functions:test4.cpp

I If allocated with malloc,calloc,realloc,valloc or memalign, you
must deallocate with free.

I If allocated with new[], you must dealloacate with delete[].
I If allocated with new, you must deallocate with delete.

1 #include <stdlib.h>
2 i n t main()
3 {
4 i n t *p,i;
5 p=(i n t*)malloc(10*sizeof(i n t));
6 for(i=0;i<10;i++)
7 p[i]=i;
8 delete(p);

ERROR

9 return 0;
10 }

Mismatched use of functions:test4.cpp

I If allocated with malloc,calloc,realloc,valloc or memalign, you
must deallocate with free.

I If allocated with new[], you must dealloacate with delete[].
I If allocated with new, you must deallocate with delete.

1 #include <stdlib.h>
2 i n t main()
3 {
4 i n t *p,i;
5 p=(i n t*)malloc(10*sizeof(i n t));
6 for(i=0;i<10;i++)
7 p[i]=i;
8 delete(p);

ERROR

9 return 0;
10 }

Mismatched use of functions:test4.cpp

I If allocated with malloc,calloc,realloc,valloc or memalign, you
must deallocate with free.

I If allocated with new[], you must dealloacate with delete[].
I If allocated with new, you must deallocate with delete.

1 #include <stdlib.h>
2 i n t main()
3 {
4 i n t *p,i;
5 p=(i n t*)malloc(10*sizeof(i n t));
6 for(i=0;i<10;i++)
7 p[i]=i;
8 delete(p); ERROR
9 return 0;

10 }

Mismatched use of functions: Valgrind output

ruggiero@shiva:> valgrind --tool=memcheck --leak-check=full ./t4

.....
==8330== Mismatched free() / delete / delete []
==8330== at 0x4022EE6: operator delete(void*) (in /usr/lib/valgrind/x86-linux/vgpreload_memcheck.so)
==8330==by 0x80484F1: main (test4.c:8)
==8330==Address 0x4292028 is 0 bytes inside a block of size 40 alloc’d
==8330==at 0x40235B5: malloc (in /usr/lib/valgrind/x86-linux/vgpreload_memcheck.so)
==8330==by 0x80484C0: main (test4.c:5)
==8330==
==8330==ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 3 from 1)
==8330==malloc/free: in use at exit: 0 bytes in 0 blocks.
==8330==malloc/free: 1 allocs, 1 frees, 40 bytes allocated.
==8330==For counts of detected errors, rerun with: -v
==8330==All heap blocks were freed -- no leaks are possible.

Invalid system call parameter:test5.c

1 #include <stdlib.h>
2 #include <unistd.h>
3 i n t main()
4 {
5 i n t *p;
6 p=malloc(10);
7 read(0,p,100);

ERROR

8 free(p);
9 return 0;

10 }

Invalid system call parameter:test5.c

1 #include <stdlib.h>
2 #include <unistd.h>
3 i n t main()
4 {
5 i n t *p;
6 p=malloc(10);
7 read(0,p,100); ERROR
8 free(p);
9 return 0;

10 }

Invalid system call parameter: Valgrind output

ruggiero@shiva:> valgrind --tool=memcheck --leak-check=full ./t5

...
==18007== Syscall param read(buf) points to unaddressable byte(s)
==18007== at 0x4EEC240: __read_nocancel (in /lib64/libc-2.5.so)
==18007== by 0x40056F: main (test5.c:7)
==18007== Address 0x517d04a is 0 bytes after a block of size 10 alloc’d
==18007== at 0x4C21168: malloc (vg_replace_malloc.c:236)
==18007== by 0x400555: main (test5.c:6)
...

Memory leak detection:test6.c

1 #include <stdlib.h>
2 i n t main()
3 {
4 i n t *p,i;
5 p=malloc(5*sizeof(i n t));
6 for(i=0; i<5;i++)
7 p[i]=i;
8

free(p);

9 return 0;
10 }

Memory leak detection:test6.c

1 #include <stdlib.h>
2 i n t main()
3 {
4 i n t *p,i;
5 p=malloc(5*sizeof(i n t));
6 for(i=0; i<5;i++)
7 p[i]=i;
8 free(p);
9 return 0;

10 }

Memory leak detection: Valgrind output

ruggiero@shiva:> valgrind --tool=memcheck --leak-check=full ./t6

.....
==8237== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 3 from 1)

==8237== malloc/free: in use at exit: 20 bytes in 1 blocks.
==8237== malloc/free: 1 allocs, 0 frees, 20 bytes allocated.
==8237== For counts of detected errors, rerun with: -v
==8237== searching for pointers to 1 not-freed blocks.
==8237== checked 65,900 bytes.
==8237==
==8237== 20 bytes in 1 blocks are definitely lost in loss record 1 of 1
==8237== at 0x40235B5: malloc (in /usr/lib/valgrind/x86-linux/vgpreload_memcheck.so)

==8237== by 0x80483D0: main (test6.c:5)
==8237==
==8237== LEAK SUMMARY:
==8237== definitely lost: 20 bytes in 1 blocks.
==8237== possibly lost: 0 bytes in 0 blocks.
==8237== still reachable: 0 bytes in 0 blocks.
==8237== suppressed: 0 bytes in 0 blocks.

What won’t Valgrind find?

1 i n t main()
2 {
3 char x[10];
4 x[11]=’a’;
5 }

I Valgrind doesn’t perform bound checking on static arrays (allocated on stack).
I Solution for testing purposes is simply to change static arrays into dinamically allocated memory

taken from the heap, where you will get bounds-checking, though this could be a message of
unfreed memory.

What won’t Valgrind find?

1 i n t main()
2 {
3 char x[10];
4 x[11]=’a’;
5 }

I Valgrind doesn’t perform bound checking on static arrays (allocated on stack).
I Solution for testing purposes is simply to change static arrays into dinamically allocated memory

taken from the heap, where you will get bounds-checking, though this could be a message of
unfreed memory.

sum.c: source

1 #include <stdio.h>
2 #include <stdlib.h>
3 i n t main (i n t argc, char* argv[]) {
4 const i n t size=10;
5 i n t n, sum=0;
6 i n t* A = (i n t*)malloc(sizeof(i n t)*size);
7

8 for(n=size; n>0; n--)
9 A[n] = n;

10 for(n=0; n<size; n++)
11 sum+=A[n];
12 printf("sum=%d\n", sum);
13 return 0;
14 }

sum.c: compilation and run

ruggiero@shiva:~> gcc -O0 -g -fbounds-check -ftrapv sum.c

ruggiero@shiva:~> ./a.out

sum=45

Valgrind:example

ruggiero@shiva:~> valgrind --leak-check=full --tool=memcheck ./a.out

==21579== Memcheck, a memory error detector.
...
==21791==Invalid write of size 4
==21791==at 0x804842A: main (sum.c:9)
==21791==Address 0x417B050 is 0 bytes after a block of size 40 alloc’d
==21791==at 0x40235B5: malloc (in /usr/lib/valgrind/x86-linux/vgpreload_memcheck.so)
==21791==by 0x8048410: main (sum.c:6)
==21791==Use of uninitialised value of size 4
==21791== at 0x408685B: _itoa_word (in /lib/libc-2.5.so)
==21791==by 0x408A581: vfprintf (in /lib/libc-2.5.so)
==21791==by 0x4090572: printf (in /lib/libc-2.5.so)
==21791==by 0x804846B: main (sum.c:12)
==21791==
==21791==Conditional jump or move depends on uninitialised value(s)
==21791==at 0x4086863: _itoa_word (in /lib/libc-2.5.so)
==21791==by 0x408A581: vfprintf (in /lib/libc-2.5.so)
==21791==by 0x4090572: printf (in /lib/libc-2.5.so)
==21791==by 0x804846B: main (sum.c:12)
==21791==40 bytes in 1 blocks are definitely lost in loss record 1 of 1
==21791==at 0x40235B5: malloc (in /usr/lib/valgrind/x86-linux/vgpreload_memcheck.so)
==21791==by 0x8048410: main (sum.c:6)
==21791==

outbc.c

1 #include <stdio.h>
2 #include<stdlib.h>
3 i n t main (void)
4 {
5 i n t i;
6 i n t *a = (i n t*) malloc(9*sizeof(i n t));
7

8 for (i=0; i<=9; ++i){
9 a[i] = i;

10 printf ("%d\n ", a[i]);
11 }
12

13 free(a);
14 return 0;
15 }

outbc.c: compilation and run

ruggiero@shiva:~> icc -C -g outbc.c

ruggiero@shiva:~> ./a.out

0
1
2
3
4
5
6
7
8
9

outbc.c: compilation and run

ruggiero@shiva:~> pgcc -C -g outbc.c

ruggiero@shiva:~> ./a.out

0
1
2
3
4
5
6
7
8
9

Electric Fence

I Electric Fence (efence) stops your program on the exact instruction
that overruns (or underruns) a malloc() memory buffer.

I GDB will then display the source-code line that causes the bug.
I It works by using the virtual-memory hardware to create a red-zone

at the border of each buffer - touch that, and your program stops.
I Catch all of those formerly impossible-to-catch overrun bugs that

have been bothering you for years.

Electric Fence

ruggiero@shiva:~> icc -g outbc.c libefence.a -o outbc -lpthread

ruggiero@shiva:~> ./outbc

0
1
2
3
4
5
6
7
8
Segmentation fault

Outline

Introduction

Static analysis

Run-time analysis

Debugging
gdb
Totalview

Conclusions

My program fails!

I Erroneous program results.

I Execution deadlock.

I Run-time crashes.

The ideal debugging process

I Find origins.

I Identify test case(s) that reliably show existence of fault (when
possible). Duplicate the bug.

I Isolate the origins of infection.

I Correlate incorrect behaviour with program logic/code error.
I Correct.

I Fixing the error, not just a symptom of it.
I Verify.

I Where there is one bug, there is likely to be another.
I The probability of the fix being correct is not 100 percent.
I The probability of the fix being correct drops as the size of the program

increases.
I Beware of the possibility that an error correction creates a new error.

Bugs that can’t be duplicated

I Dangling pointers.

I Initializations errors.

I Poorly syinchronized threads.

I Broken hardware.

Isolate the origins of infection

I Divide and conqueror.
I Change one thing at time.
I Determine what you changed since the last time it worked.
I Write down what you did, in what order, and what happened as a

result.
I Correlate the events.

Why is debugging so difficult?

I The symptom and the cause may be geographically remote.
I The symptom may disappear (temporarily) when another error is

corrected.
I The symptom may actually be caused by nonerrors

(e.g., round-off inaccuracies).
I It may be difficult to accurately reproduce input conditions

(e.g, a real time application in which input ordering is indeterminate).
I The symptom may be due to causes that are distributed across a

number of tasks running on different processors.

Why use a Debugger?

I No need for precognition of what the error might be.
I Flexible.

I Allows for ”live” error checking (no need to re−write and re−compile
when you realize a certain type of error may be occuring).

I Dynamic.
I Execution Control Stop execution on specified conditions: breakpoints
I Interpretation Step-wise execution code
I State Inspection Observe value of variables and stack
I State Change Change the state of the stopped program.

Why people don’t use debuggers?

I With simple errors, may not want to bother with starting up the
debugger environment.

I Obvious error.
I Simple to check using prints/asserts.

I Hard-to-use debugger environment.
I Error occurs in optimized code.
I Changes execution of program

(error doesn’t occur while running debugger).

Why don’t use print?

I Cluttered code.
I Cluttered output.
I Slowdown.
I Time consuming.
I And can be misleading.

I Moves things around in memory, changes execution timing, etc.
I Common for bugs to hide when print statements are added, and

reappear when they’re removed.

Outline

Introduction

Static analysis

Run-time analysis

Debugging
gdb
Totalview

Conclusions

What is gdb?

I The GNU Project debugger, is an open-source debugger.
I Protected by GNU General Public License (GPL).
I Runs on many Unix-like systems.
I Was first written by Richard Stallmann in 1986 as part of his GNU

System.
I Is an Workstation Application Code extremely powerful all-purpose

debugger.
I Its text-based user interface can be used to debug programs written

in C, C++, Pascal, Fortran, and several other languages, including
the assembly language for every micro-processor that GNU supports.

I www.gnu.org/software/gdb

Two levels of control

I Basic:
I Run the code and wait for it crash
I Identify line where it crashes
I With luck the problem is obvious

I Advanced:
I Set breakpoints
I Analyze data at breakpoints
I Watch specific variables

prime-numbers finding program

I Print a list of all primes which are less than or equal to the
user-supplied upper bound UpperBound .

I See if J divides K ≤ UpperBound , for all values J which are
I themselves prime (no need to try J if it is nonprime)
I less than or equal to sqrt(K) (if K has a divisor larger than this square

root, it must also have a smaller one, so no need to check for larger
ones).

I Prime[I] will be 1 if I is prime, 0 otherwise.

Main.c

1 #include <stdio.h>
2 #define MaxPrimes 50
3 i n t Prime[MaxPrimes],UpperBound;
4 i n t main()
5 {
6 i n t N;
7 printf("enter upper bound\n");
8 scanf("%d",UpperBound);
9 Prime[2] = 1;

10 for (N = 3; N <= UpperBound; N += 2)
11 CheckPrime(N);
12 i f (Prime[N]) printf("%d is a prime\n",N);
13 return 0;
14 }

CheckPrime.c

1 #define MaxPrimes 50
2 extern i n t Prime[MaxPrimes];
3 void CheckPrime(i n t K)
4 {
5 i n t J;
6 for (J = 2; J*J <=K; J++)
7 i f (Prime[J] == 1)
8 i f (K % J == 0) {
9 Prime[K] = 0;

10 return ;
11 }
12 Prime[K] = 1;
13 }

Compilation and run

<ruggiero@matrix2 ~>gcc Main.c CheckPrime.c -O3 -o check_prime

<ruggiero@matrix2 ~> ./check_prime

enter upper bound

20

Segmentation fault

Compilation and run

<ruggiero@matrix2 ~>gcc Main.c CheckPrime.c -O3 -o check_prime

<ruggiero@matrix2 ~> ./check_prime

enter upper bound

20

Segmentation fault

Compilation and run

<ruggiero@matrix2 ~>gcc Main.c CheckPrime.c -O3 -o check_prime

<ruggiero@matrix2 ~> ./check_prime

enter upper bound

20

Segmentation fault

Compilation and run

<ruggiero@matrix2 ~>gcc Main.c CheckPrime.c -O3 -o check_prime

<ruggiero@matrix2 ~> ./check_prime

enter upper bound

20

Segmentation fault

Compilation and run

<ruggiero@matrix2 ~>gcc Main.c CheckPrime.c -O3 -o check_prime

<ruggiero@matrix2 ~> ./check_prime

enter upper bound

20

Segmentation fault

Compilation options for gdb

I You will need to compile your program with the appropriate flag to enable
generation of symbolic debug information, the -g option is used for this.

I Don’t compile your program with optimization flags while you are debugging
it.
Compiler optimizations can "rewrite" your program and produce machine
code that doesn’t necessarily match your source code.
Compiler optimizations may lead to:

I Misleading debugger behaviour.
I Some variables you declared may not exist at all
I some statements may execute in different places because they were

moved out of loops
I Obscure the bug.

Lower optimization level

I When your program has crashed, disable or lower optimization to see
if the bug disappears.
(optimization levels are not comparable between compilers, not even
-O0).

I If the bug persists =⇒ you can be quite sure there’s something
wrong in your application.

I If the bug disappears,without a serious performance penalty =⇒
send the bug to your computing center and continue your simulations.

I But your program may still contain a bug that simply doesn’t show up
at lower optimization =⇒ have some checks to verify the correctness
of your code.

<ruggiero@matrix2 ~>gcc Main.c CheckPrime.c -g -O0 -o check_prime

Lower optimization level

I When your program has crashed, disable or lower optimization to see
if the bug disappears.
(optimization levels are not comparable between compilers, not even
-O0).

I If the bug persists =⇒ you can be quite sure there’s something
wrong in your application.

I If the bug disappears,without a serious performance penalty =⇒
send the bug to your computing center and continue your simulations.

I But your program may still contain a bug that simply doesn’t show up
at lower optimization =⇒ have some checks to verify the correctness
of your code.

<ruggiero@matrix2 ~>gcc Main.c CheckPrime.c -g -O0 -o check_prime

Lower optimization level

I When your program has crashed, disable or lower optimization to see
if the bug disappears.
(optimization levels are not comparable between compilers, not even
-O0).

I If the bug persists =⇒ you can be quite sure there’s something
wrong in your application.

I If the bug disappears,without a serious performance penalty =⇒
send the bug to your computing center and continue your simulations.

I But your program may still contain a bug that simply doesn’t show up
at lower optimization =⇒ have some checks to verify the correctness
of your code.

<ruggiero@matrix2 ~>gcc Main.c CheckPrime.c -g -O0 -o check_prime

Running under debugger

I Option 1: Run gdb with the program passed in as parameter

<ruggiero@matrix2 ~>gdb check_prime

GNU gdb (GDB) Red Hat Enterprise Linux (7.0.1-23.el5_5.1)
Copyright (C) 2009 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-redhat-linux-gnu".
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.

(gdb) r

Running under debugger

I Option 1: Run gdb with the program passed in as parameter

<ruggiero@matrix2 ~>gdb check_prime

GNU gdb (GDB) Red Hat Enterprise Linux (7.0.1-23.el5_5.1)
Copyright (C) 2009 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-redhat-linux-gnu".
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.

(gdb) r

Running under debugger

I Option 2: Run gdb first and then load and execute the program from
the debugger command line:

<ruggiero@matrix2 ~>gdb

GNU gdb (GDB) Red Hat Enterprise Linux (7.0.1-23.el5_5.1)
Copyright (C) 2009 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-redhat-linux-gnu".
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.

(gdb) exec-file check_prime

(gdb) r

Running under debugger

I Option 2: Run gdb first and then load and execute the program from
the debugger command line:

<ruggiero@matrix2 ~>gdb

GNU gdb (GDB) Red Hat Enterprise Linux (7.0.1-23.el5_5.1)
Copyright (C) 2009 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-redhat-linux-gnu".
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.

(gdb) exec-file check_prime

(gdb) r

Running under debugger

I Option 2: Run gdb first and then load and execute the program from
the debugger command line:

<ruggiero@matrix2 ~>gdb

GNU gdb (GDB) Red Hat Enterprise Linux (7.0.1-23.el5_5.1)
Copyright (C) 2009 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-redhat-linux-gnu".
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.

(gdb) exec-file check_prime

(gdb) r

Running under debugger

I Option 3: Attach the debugger to a running program

<ruggiero@matrix2 ~> ps -u |grep check_prime

ruggiero 25934 0.0 0.0 4168 356 pts/80 T 13:55 0:00 ./check_prime

(gdb) attach 25934

Running under debugger

I Option 3: Attach the debugger to a running program

<ruggiero@matrix2 ~> ps -u |grep check_prime

ruggiero 25934 0.0 0.0 4168 356 pts/80 T 13:55 0:00 ./check_prime

(gdb) attach 25934

Running under debugger

I Option 3: Attach the debugger to a running program

<ruggiero@matrix2 ~> ps -u |grep check_prime

ruggiero 25934 0.0 0.0 4168 356 pts/80 T 13:55 0:00 ./check_prime

(gdb) attach 25934

Running under debugger

I Option 3: Attach the debugger to a running program

<ruggiero@matrix2 ~> ps -u |grep check_prime

ruggiero 25934 0.0 0.0 4168 356 pts/80 T 13:55 0:00 ./check_prime

(gdb) attach 25934

Using gdb

I When you run the gdb command
I The -d option is useful when source and executable reside in different

directories
I Use -q to skip the licensing message.

I In the gdb environment
I Type help at any time to see a list of the debugger options and

commands.
I Type she execute the rest of the line as a shell command.

Starting gdb

<ruggiero@matrix2 ~>gdb check_prime

GNU gdb (GDB) Red Hat Enterprise Linux (7.0.1-23.el5_5.1)
Copyright (C) 2009 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-redhat-linux-gnu".
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.

(gdb)

Starting gdb

<ruggiero@matrix2 ~>gdb check_prime

GNU gdb (GDB) Red Hat Enterprise Linux (7.0.1-23.el5_5.1)
Copyright (C) 2009 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-redhat-linux-gnu".
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.

(gdb)

gdb: Basic commands

command shorthand argument description
run/kill r/k NA start/end program being debugged
continue c NA continue running program from last breakpoint
step s NA take a single step in the program from last position
next n NA Step program, proceeding through subroutine calls
where/backtrace NA/bt NA Print backtrace of all stack frames, or innermost COUNT frames

negative value print outermost -COUNT frames
print p variableNamee show value of a variable
list l SrcFile:lineNumber show the specified source code line
break b SrcFile:lineNumber set breakpoint at specified line

functionName set breakpoint at function name
watch NA variableName stops when the variable changes value
display NA variableName print value of variable name each time the program stops.
quit q NA exit gdb

prime-number finding program

(gdb) r

Starting program: check_prime
enter upper bound

20

Program received signal SIGSEGV, Segmentation fault.
0xd03733d4 in number () from /usr/lib/libc.a(shr.o)

(gdb) where

#0 0x0000003faa258e8d in _IO_vfscanf_internal () from /lib64/libc.so.6
#1 0x0000003faa25ee7c in scanf () from /lib64/libc.so.6
#2 0x000000000040054f in main () at Main.c:8

prime-number finding program

(gdb) r

Starting program: check_prime
enter upper bound

20

Program received signal SIGSEGV, Segmentation fault.
0xd03733d4 in number () from /usr/lib/libc.a(shr.o)

(gdb) where

#0 0x0000003faa258e8d in _IO_vfscanf_internal () from /lib64/libc.so.6
#1 0x0000003faa25ee7c in scanf () from /lib64/libc.so.6
#2 0x000000000040054f in main () at Main.c:8

prime-number finding program

(gdb) r

Starting program: check_prime
enter upper bound

20

Program received signal SIGSEGV, Segmentation fault.
0xd03733d4 in number () from /usr/lib/libc.a(shr.o)

(gdb) where

#0 0x0000003faa258e8d in _IO_vfscanf_internal () from /lib64/libc.so.6
#1 0x0000003faa25ee7c in scanf () from /lib64/libc.so.6
#2 0x000000000040054f in main () at Main.c:8

prime-number finding program

(gdb) r

Starting program: check_prime
enter upper bound

20

Program received signal SIGSEGV, Segmentation fault.
0xd03733d4 in number () from /usr/lib/libc.a(shr.o)

(gdb) where

#0 0x0000003faa258e8d in _IO_vfscanf_internal () from /lib64/libc.so.6
#1 0x0000003faa25ee7c in scanf () from /lib64/libc.so.6
#2 0x000000000040054f in main () at Main.c:8

prime-number finding program

(gdb) r

Starting program: check_prime
enter upper bound

20

Program received signal SIGSEGV, Segmentation fault.
0xd03733d4 in number () from /usr/lib/libc.a(shr.o)

(gdb) where

#0 0x0000003faa258e8d in _IO_vfscanf_internal () from /lib64/libc.so.6
#1 0x0000003faa25ee7c in scanf () from /lib64/libc.so.6
#2 0x000000000040054f in main () at Main.c:8

prime-number finding program

(gdb) list Main.c:8

#0 0x0000003faa258e8d in _IO_vfscanf_internal () from /lib64/libc.so.6
#1 0x0000003faa25ee7c in scanf () from /lib64/libc.so.6
#2 0x000000000040054f in main () at Main.c:8

3 int Prime[MaxPrimes],UpperBound;
5 main()
6 { int N;
7 printf("enter upper bound\n");
8 scanf("%d",UpperBound);
9 Prime[2] = 1;
10 for (N = 3; N <= UpperBound; N += 2)
11 CheckPrime(N);
12 if (Prime[N]) printf("%d is a prime\n",N);

prime-number finding program

(gdb) list Main.c:8

#0 0x0000003faa258e8d in _IO_vfscanf_internal () from /lib64/libc.so.6
#1 0x0000003faa25ee7c in scanf () from /lib64/libc.so.6
#2 0x000000000040054f in main () at Main.c:8

3 int Prime[MaxPrimes],UpperBound;
5 main()
6 { int N;
7 printf("enter upper bound\n");
8 scanf("%d",UpperBound);
9 Prime[2] = 1;
10 for (N = 3; N <= UpperBound; N += 2)
11 CheckPrime(N);
12 if (Prime[N]) printf("%d is a prime\n",N);

Main.c :new version

1 #include <stdio.h>
2 #define MaxPrimes 50
3 i n t Prime[MaxPrimes],UpperBound;
4 i n t main()
5 {
6 i n t N;
7 printf("enter upper bound\n");
8 scanf("%d",

&

UpperBound);
9 Prime[2] = 1;

10 for (N = 3; N <= UpperBound; N += 2)
11 CheckPrime(N);
12 i f (Prime[N]) printf("%d is a prime\n",N);
13 return 0;
14 }

In other shell COMPILATION

Main.c :new version

1 #include <stdio.h>
2 #define MaxPrimes 50
3 i n t Prime[MaxPrimes],UpperBound;
4 i n t main()
5 {
6 i n t N;
7 printf("enter upper bound\n");
8 scanf("%d", &UpperBound);
9 Prime[2] = 1;

10 for (N = 3; N <= UpperBound; N += 2)
11 CheckPrime(N);
12 i f (Prime[N]) printf("%d is a prime\n",N);
13 return 0;
14 }

In other shell COMPILATION

Main.c :new version

1 #include <stdio.h>
2 #define MaxPrimes 50
3 i n t Prime[MaxPrimes],UpperBound;
4 i n t main()
5 {
6 i n t N;
7 printf("enter upper bound\n");
8 scanf("%d", &UpperBound);
9 Prime[2] = 1;

10 for (N = 3; N <= UpperBound; N += 2)
11 CheckPrime(N);
12 i f (Prime[N]) printf("%d is a prime\n",N);
13 return 0;
14 }

In other shell COMPILATION

prime-number finding program

(gdb)

Kill the program being debugged? (y or n)

y

(gdb) run

Starting program: check_prime
enter upper bound

20

Program exited normally.

prime-number finding program

(gdb)

Kill the program being debugged? (y or n) y

(gdb) run

Starting program: check_prime
enter upper bound

20

Program exited normally.

prime-number finding program

(gdb)

Kill the program being debugged? (y or n) y

(gdb) run

Starting program: check_prime
enter upper bound

20

Program exited normally.

prime-number finding program

(gdb)

Kill the program being debugged? (y or n) y

(gdb) run

Starting program: check_prime
enter upper bound

20

Program exited normally.

gdb: Breakpoint control

I Stop the execution of the program
I Allow you to examine the execution state in detail
I Can be assigned to a line or function
I Can be set conditionally

command argument description
info breakpoints/b/br Prins to screen all breakpoints
breakpoint srcFile:lineNumber a<b Conditional insertion of breakpoint
enable/disable breakpointNumber Enable/disable a breakpoint
delete breakpointNumber Delete a breakpoint
clear srcFile:lineNumber Clear breakpoints at given line

functionName or function

gdb: Examining data

C Fortran Result
(gdb) p x (gdb) p x Print scalar data x value
(gdb) p V (gdb) p V Print all V vector components
(gdb) p V[i] (gdb) p V(i) Print element i of V vector
(gdb) p V[i]@n (gdb) p V(i)@n Print n consecutive elements starting with V_i
(gdb) p M (gdb) p M Print all matrix M elements
(gdb) p M[i] Not Available Print row i of matrix M
(gdb) p M[i]@n Not Available Print n consecutive rows starting with i row
(gdb) p M[i][j] (gdb) p M(i,j) Print matrix element Mij
(gdb) p M[i][j]@n (gdb) p M(i,j)@n Print n consecutive elements starting with Mij

gdb commands

(gdb) break Main.c:1

Breakpoint 1 at 0x8048414: file Main.c, line 1.

gdb commands

(gdb) break Main.c:1

Breakpoint 1 at 0x8048414: file Main.c, line 1.

prime-number finding program

(gdb) next

main () at Main.c:7
7 printf("enter upper bound\n");

prime-number finding program

(gdb) next

main () at Main.c:7
7 printf("enter upper bound\n");

prime-number finding program
(gdb) next

8 scanf("%d",&UpperBound);

(gdb) next

20

9 Prime[2] = 1;

(gdb) next

10 for (N = 3; N <= UpperBound; N += 2)

(gdb) next

11 CheckPrime(N);

prime-number finding program
(gdb) next

8 scanf("%d",&UpperBound);

(gdb) next

20

9 Prime[2] = 1;

(gdb) next

10 for (N = 3; N <= UpperBound; N += 2)

(gdb) next

11 CheckPrime(N);

prime-number finding program
(gdb) next

8 scanf("%d",&UpperBound);

(gdb) next

20

9 Prime[2] = 1;

(gdb) next

10 for (N = 3; N <= UpperBound; N += 2)

(gdb) next

11 CheckPrime(N);

prime-number finding program
(gdb) next

8 scanf("%d",&UpperBound);

(gdb) next

20

9 Prime[2] = 1;

(gdb) next

10 for (N = 3; N <= UpperBound; N += 2)

(gdb) next

11 CheckPrime(N);

prime-number finding program
(gdb) next

8 scanf("%d",&UpperBound);

(gdb) next

20

9 Prime[2] = 1;

(gdb) next

10 for (N = 3; N <= UpperBound; N += 2)

(gdb) next

11 CheckPrime(N);

prime-number finding program
(gdb) next

8 scanf("%d",&UpperBound);

(gdb) next

20

9 Prime[2] = 1;

(gdb) next

10 for (N = 3; N <= UpperBound; N += 2)

(gdb) next

11 CheckPrime(N);

prime-number finding program
(gdb) display N

1: N = 3

(gdb) step

CheckPrime (K=3) at CheckPrime.c:6
6 for (J = 2; J*J <= K; J++)

(gdb) next

12 Prime[K] = 1;

(gdb) next

13 }

prime-number finding program
(gdb) display N

1: N = 3

(gdb) step

CheckPrime (K=3) at CheckPrime.c:6
6 for (J = 2; J*J <= K; J++)

(gdb) next

12 Prime[K] = 1;

(gdb) next

13 }

prime-number finding program
(gdb) display N

1: N = 3

(gdb) step

CheckPrime (K=3) at CheckPrime.c:6
6 for (J = 2; J*J <= K; J++)

(gdb) next

12 Prime[K] = 1;

(gdb) next

13 }

prime-number finding program
(gdb) display N

1: N = 3

(gdb) step

CheckPrime (K=3) at CheckPrime.c:6
6 for (J = 2; J*J <= K; J++)

(gdb) next

12 Prime[K] = 1;

(gdb) next

13 }

prime-number finding program
(gdb) n

10 for (N = 3; N <= UpperBound; N += 2)
1: N = 3
}

(gdb) n

11 CheckPrime(N);
1: N = 5

(gdb) n

10 for (N = 3; N <= UpperBound; N += 2)
1: N = 5

(gdb) n

11 CheckPrime(N);
1: N = 7

prime-number finding program
(gdb) n

10 for (N = 3; N <= UpperBound; N += 2)
1: N = 3
}

(gdb) n

11 CheckPrime(N);
1: N = 5

(gdb) n

10 for (N = 3; N <= UpperBound; N += 2)
1: N = 5

(gdb) n

11 CheckPrime(N);
1: N = 7

prime-number finding program
(gdb) n

10 for (N = 3; N <= UpperBound; N += 2)
1: N = 3
}

(gdb) n

11 CheckPrime(N);
1: N = 5

(gdb) n

10 for (N = 3; N <= UpperBound; N += 2)
1: N = 5

(gdb) n

11 CheckPrime(N);
1: N = 7

prime-number finding program
(gdb) n

10 for (N = 3; N <= UpperBound; N += 2)
1: N = 3
}

(gdb) n

11 CheckPrime(N);
1: N = 5

(gdb) n

10 for (N = 3; N <= UpperBound; N += 2)
1: N = 5

(gdb) n

11 CheckPrime(N);
1: N = 7

prime-number finding program
(gdb) n

10 for (N = 3; N <= UpperBound; N += 2)
1: N = 3
}

(gdb) n

11 CheckPrime(N);
1: N = 5

(gdb) n

10 for (N = 3; N <= UpperBound; N += 2)
1: N = 5

(gdb) n

11 CheckPrime(N);
1: N = 7

prime-number finding program

(gdb) l Main.c:10

5 main()
6 { int N;
7 printf("enter upper bound\n");
8 scanf("%d",&UpperBound);
9 Prime[2] = 1;
10 for (N = 3; N <= UpperBound; N += 2)
11 CheckPrime(N);
12 if (Prime[N]) printf("%d is a prime\n",N);
13 return 0;
14 }

prime-number finding program

(gdb) l Main.c:10

5 main()
6 { int N;
7 printf("enter upper bound\n");
8 scanf("%d",&UpperBound);
9 Prime[2] = 1;
10 for (N = 3; N <= UpperBound; N += 2)
11 CheckPrime(N);
12 if (Prime[N]) printf("%d is a prime\n",N);
13 return 0;
14 }

Main.c :new version

1 #include <stdio.h>
2 #define MaxPrimes 50
3 i n t Prime[MaxPrimes],
4 UpperBound;
5 main()
6 { i n t N;
7 printf("enter upper bound\n");
8 scanf("%d",&UpperBound);
9 Prime[2] = 1;

10 for (N = 3; N <= UpperBound; N += 2)

{

11 CheckPrime(N);
12 i f (Prime[N]) printf("%d is a prime\n",N);
13

}

14 return 0;
15 }

Main.c :new version

1 #include <stdio.h>
2 #define MaxPrimes 50
3 i n t Prime[MaxPrimes],
4 UpperBound;
5 main()
6 { i n t N;
7 printf("enter upper bound\n");
8 scanf("%d",&UpperBound);
9 Prime[2] = 1;

10 for (N = 3; N <= UpperBound; N += 2){
11 CheckPrime(N);
12 i f (Prime[N]) printf("%d is a prime\n",N);
13 }
14 return 0;
15 }

prime-number finding program

In other shell COMPILATION

(gdb) kill

Kill the program being debugged? (y or n) y

(gdb) d

Delete all breakpoints? (y or n) y

(gdb)r

Starting program: check_prime
enter upper bound

20

prime-number finding program

In other shell COMPILATION

(gdb) kill

Kill the program being debugged? (y or n)

y

(gdb) d

Delete all breakpoints? (y or n) y

(gdb)r

Starting program: check_prime
enter upper bound

20

prime-number finding program

In other shell COMPILATION

(gdb) kill

Kill the program being debugged? (y or n) y

(gdb) d

Delete all breakpoints? (y or n) y

(gdb)r

Starting program: check_prime
enter upper bound

20

prime-number finding program

In other shell COMPILATION

(gdb) kill

Kill the program being debugged? (y or n) y

(gdb) d

Delete all breakpoints? (y or n)

y

(gdb)r

Starting program: check_prime
enter upper bound

20

prime-number finding program

In other shell COMPILATION

(gdb) kill

Kill the program being debugged? (y or n) y

(gdb) d

Delete all breakpoints? (y or n) y

(gdb)r

Starting program: check_prime
enter upper bound

20

prime-number finding program

In other shell COMPILATION

(gdb) kill

Kill the program being debugged? (y or n) y

(gdb) d

Delete all breakpoints? (y or n) y

(gdb)r

Starting program: check_prime
enter upper bound

20

prime-number finding program

In other shell COMPILATION

(gdb) kill

Kill the program being debugged? (y or n) y

(gdb) d

Delete all breakpoints? (y or n) y

(gdb)r

Starting program: check_prime
enter upper bound

20

prime-number finding program

In other shell COMPILATION

(gdb) kill

Kill the program being debugged? (y or n) y

(gdb) d

Delete all breakpoints? (y or n) y

(gdb)r

Starting program: check_prime
enter upper bound

20

prime-number finding program

3 is a prime
5 is a prime
7 is a prime
11 is a prime
13 is a prime
17 is a prime
19 is a prime

Program exited normally.

prime-number finding program

(gdb) list Main.c:6

1 #include <stdio.h>
2 #define MaxPrimes 50
3 int Prime[MaxPrimes],
4 UpperBound;
5 main()
6 { int N;
7 printf("enter upper bound\n");
8 scanf("%d",&UpperBound);
9 Prime[2] = 1;
10 for (N = 3; N <= UpperBound; N += 2){

prime-number finding program

(gdb) list Main.c:6

1 #include <stdio.h>
2 #define MaxPrimes 50
3 int Prime[MaxPrimes],
4 UpperBound;
5 main()
6 { int N;
7 printf("enter upper bound\n");
8 scanf("%d",&UpperBound);
9 Prime[2] = 1;
10 for (N = 3; N <= UpperBound; N += 2){

prime-number finding program

(gdb) break Main.c:8

Breakpoint 1 at 0x10000388: file Main.c, line 8.

(gdb)run

Starting program: check_prime
enter upper bound
Breakpoint 1, main () at /afs/caspur.it/user/r/ruggiero/Main.c:8
8 scanf("%d",&UpperBound);

(gdb) next

20

9 Prime[2] = 1;

prime-number finding program

(gdb) break Main.c:8

Breakpoint 1 at 0x10000388: file Main.c, line 8.

(gdb)run

Starting program: check_prime
enter upper bound
Breakpoint 1, main () at /afs/caspur.it/user/r/ruggiero/Main.c:8
8 scanf("%d",&UpperBound);

(gdb) next

20

9 Prime[2] = 1;

prime-number finding program

(gdb) break Main.c:8

Breakpoint 1 at 0x10000388: file Main.c, line 8.

(gdb)run

Starting program: check_prime
enter upper bound
Breakpoint 1, main () at /afs/caspur.it/user/r/ruggiero/Main.c:8
8 scanf("%d",&UpperBound);

(gdb) next

20

9 Prime[2] = 1;

prime-number finding program

(gdb) break Main.c:8

Breakpoint 1 at 0x10000388: file Main.c, line 8.

(gdb)run

Starting program: check_prime
enter upper bound
Breakpoint 1, main () at /afs/caspur.it/user/r/ruggiero/Main.c:8
8 scanf("%d",&UpperBound);

(gdb) next

20

9 Prime[2] = 1;

prime-number finding program

(gdb) break Main.c:8

Breakpoint 1 at 0x10000388: file Main.c, line 8.

(gdb)run

Starting program: check_prime
enter upper bound
Breakpoint 1, main () at /afs/caspur.it/user/r/ruggiero/Main.c:8
8 scanf("%d",&UpperBound);

(gdb) next

20

9 Prime[2] = 1;

prime-number finding program

(gdb) set UpperBound=40
(gdb) continue

Continuing.
3 is a prime
5 is a prime
7 is a prime
11 is a prime
13 is a prime
17 is a prime
19 is a prime
23 is a prime
29 is a prime
31 is a prime
37 is a prime

Program exited normally.

prime-number finding program

(gdb) set UpperBound=40
(gdb) continue

Continuing.
3 is a prime
5 is a prime
7 is a prime
11 is a prime
13 is a prime
17 is a prime
19 is a prime
23 is a prime
29 is a prime
31 is a prime
37 is a prime

Program exited normally.

Debugging post mortem

I When a program exits abnormally the operating system can write out core file, which contains the
memory state of the program at the time it crashed.

I Combined with information from the symbol table produced by -g the core file can be used fo find
the line where program stopped, and the values of its variables at that point.

I Some systems are configured to not write core file by default, since the files can be large and
rapidly fill up the available hard disk space on a system.

I In the GNU Bash shell the command ulimit -c control the maximum size of the core files. If the size
limit is set to zero, no core files are produced.

ulimit -c unlimited
gdb exe_file core

Debugging post mortem

I When a program exits abnormally the operating system can write out core file, which contains the
memory state of the program at the time it crashed.

I Combined with information from the symbol table produced by -g the core file can be used fo find
the line where program stopped, and the values of its variables at that point.

I Some systems are configured to not write core file by default, since the files can be large and
rapidly fill up the available hard disk space on a system.

I In the GNU Bash shell the command ulimit -c control the maximum size of the core files. If the size
limit is set to zero, no core files are produced.

ulimit -c unlimited
gdb exe_file core

Graphical Debuggers

I gdb -tui or gdbtui
I ddd (data dysplay debugger) is a graphical front-end for

command-line debuggers.
I ddt (Distributed Debugging Tool) is a comprehensive graphical

debugger for scalar, multi-threaded and large-scale parallel
applications that are written in C, C++ and Fortran.

I Etc.

Why don’t optmize?

1 i n t main(void)
2 {
3 f l o a t q;
4 q=3.;
5 return 0;
6 }

<ruggiero@shiva ~/CODICI>gcc opt.c -g -O0 -o opt
<ruggiero@matrix2 ~>gdb opt
(gdb) b main

Breakpoint 1 at 0x8048395: file opt.c, line 4.

<ruggiero@shiva ~/CODICI>gcc opt.c -g -O3 -o opt
<ruggiero@matrix2 ~>gdb opt
(gdb) b main

Breakpoint 1 at 0x8048395: file opt.c, line 6.

Why don’t optmize?

1 i n t main(void)
2 {
3 f l o a t q;
4 q=3.;
5 return 0;
6 }

<ruggiero@shiva ~/CODICI>gcc opt.c -g -O0 -o opt
<ruggiero@matrix2 ~>gdb opt
(gdb) b main

Breakpoint 1 at 0x8048395: file opt.c, line 4.

<ruggiero@shiva ~/CODICI>gcc opt.c -g -O3 -o opt
<ruggiero@matrix2 ~>gdb opt
(gdb) b main

Breakpoint 1 at 0x8048395: file opt.c, line 6.

Why don’t optmize?

1 i n t main(void)
2 {
3 f l o a t q;
4 q=3.;
5 return 0;
6 }

<ruggiero@shiva ~/CODICI>gcc opt.c -g -O0 -o opt
<ruggiero@matrix2 ~>gdb opt
(gdb) b main

Breakpoint 1 at 0x8048395: file opt.c, line 4.

<ruggiero@shiva ~/CODICI>gcc opt.c -g -O3 -o opt
<ruggiero@matrix2 ~>gdb opt
(gdb) b main

Breakpoint 1 at 0x8048395: file opt.c, line 6.

Outline

Introduction

Static analysis

Run-time analysis

Debugging
gdb
Totalview

Conclusions

Totalview (www.totalviewtech.com)

I Used for debugging and analyzing both serial and parallel programs.

I Supported languages include the usual HPC application languages:

I C,C++,Fortran
I Mixed C/C++ and Fortran
I Assembler

I Supported many commercial and Open Source Compilers.
I Designed to handle most types of HPC parallel coding (multi-process and/or

multi-threaded applications).
I Supported on most HPC platforms.
I Provides both a GUI and command line interface.
I Can be used to debug programs, running processes, and core files.
I Provides graphical visualization of array data.
I Includes a comprehensive built-in help system.
I And more...

Compilation options for Totalview

I You will need to compile your program with the appropriate flag to
enable generation of symbolic debug information. For most
compilers, the -g option is used for this.

I It is recommended to compile your program without optimization
flags while you are debugging it.

I TotalView will allow you to debug executables which were not
compiled with the -g option. However, only the assembler code can
be viewed.

I Some compilers may require additional compilation flags. See the
TotalView User’s Guide for details.

ifort [option] -O0 -g file_source.f -o filename

Starting Totalview

Command Action
totalview Starts the debugger.You can then load a program or corefile,

or else attach to a running process.
totalview filename Starts the debugger and

loads the program specified by filename.
totalview filename corefile Starts the debugger and

loads the program specified by filename
and its core file specified by corefile.

totalview filename -a args Starts the debugger and
passes all subsequent arguments (specified

by args) to the program specified by filename.
The -a option must appear after all other
TotalView options on the command line.

Totalview:panel

1. Stack Trace
I Call sequence

2. Stack Frame
I Local variables and their values

3. Source Window
I Indicates presently executed

statement
I Last statement executed if

program crashed

4. Info tabs
I Informations about processes and

action points.

Totalview:Action points

I Breakpoint stops the excution of the process and threads that reach
it.

I Unconditional
I Conditional: stop only if the condition is satisfied.
I Evaluation: stop and excute a code fragment when reached.

I Process barrier point synchronizes a set of processes or threads.
I Watchpoint monitors a location in memory and stop execution when

its value changes.

Totalview:Setting Action points

I Breakpoint
I Right click on a source line→ Set breakpoint
I Click on the line number

I Watchpoint
I Right click on a variable→ Create watchpoint

I Barrier point
I Right click on a source line→ Set barrier

I Edit action point property
I Rigth click on a action point in the Action Points tab→ Properties.

Totalview:Status

Status
Code

Description

T Thread is stopped
B Stopped at a breakpoint
E Stopped because of a error
W At a watchpoint
H In a Hold state
M Mixed - some threads in a process are running and some not
R Running

Totalview:Execution control commands

Command Description
Go Start/resume excution
Halt Stop excution
Kill Terminate the job
Restart Restarts a running program, or one that has stopped without exiting
Next Run to next source line or instruction. If the next line/instruction calls a function

the entire function will be excuted and control will return to the next source line or instruction.
Step Run to next source line or instruction. If the next line/instruction calls a function,

excution will stop within function.
Out Excute to the completion of a function.

Returns to the instruction after one which called the function.
Run to Allows you to arbitrarily click on any source line and then run to that point.

Totalview:Mouse buttons

Mouse Button Purpose Description Examples
Left Select Clicking on object causes it to be Clicking a line number sets a breakpoint.

selected and/ or to perform its action Clicking on a process/thread name in the root
window will cause its source code to appear

in the Process Window’s source frame.
Middle Dive Shows additional information about Clicking on an array object in the source

the object - usually by popping frame will cause a new window
open a new window. to pop open, showing the array’s values.

Rigth Menu Pressing and holding this button Holding this but ton while the mouse pointer
a window/frame will cause its is in the Root Window will cause
associated menu to pop open. the Root Window menu to appear.

A menu selection can then be made by
dragging the mouse pointer while continuing

to press the middle button down.

I’ve checked everything!

what else could it be?
I Full file system.
I Disk quota exceeded.
I File protection.
I Maximum number of processes exceeded.
I Are all object file are up do date? Use Makefiles to build your projects
I What did I change since last version of my code?

Use a version control system: CVS,RCS,...
I Does any environment variable affect the behaviour of my program?

Outline

Introduction

Static analysis

Run-time analysis

Debugging

Conclusions

Last resorts

I Ask for help.

I Explain your code to somebody.

I Go for a walk, to the movies,leave it to tomorrow.

Errare humanum est ...

I Where was error made?
I Who made error?
I What was done incorrectly?
I How could the error have been prevented?
I Why wasn’t the error detected earlier?
I How could the error have been detected earlier?

Bibliography

I Why program fail. A guide to systematic debugging. A. Zeller Morgan Kaufmann
Publishers 2005.

I Expert C Programming deep C secrets P. Van der Linden Prentice Hall PTR 1994.
I How debuggers works Algorithms, data,structure, and Architecture J. B.

Rosemberg John Wiley & Sons 1996.
I Software Exorcism: A Handbook for Debugging and Optimizing Legacy Code R.

B. Blunden Apress 2003.
I Debugging: The 9 Indispensable Rules for Finding Even the Most Elusive

Software and Hardware Problems D.J. Agans American Management Association
2002.

I The Art of Debugging N. Matloff, P. J. Salzman No starch press 2008.

Bibliography

I Debugging With GDB: The Gnu Source-Level Debugger R.M. Stallmann, R.H.
Pesch, S. Shebs Free Software Foundation 2002.

I The Practice of Programming B.W. Kernighan, R. Pike Addison-Wesley 1999.
I Code Complete S. McConnell Microsoft Press 2004.
I Software Testing Technique B. Beizer The Coriolis Group 1990.
I The Elements of Programming Style B. W. Kernighan P.J. Plauger Computing

Mcgraw-Hill 1978.
I The Art of Software testing K.J. Myers Kindle Edition 1979.
I The Developer’s Guide to Debugging H. Grotker, U. Holtmann, H. Keding, M.Wloka

Kindle Edition 2008.
I The Science of DEBUGGING M. Telles Y. Hsieh The Coriolis Group 2001.

	Introduction
	Static analysis
	Run-time analysis
	Memory checker

	Debugging
	gdb
	Totalview

	Conclusions

