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Disadvantages of MPI
• Each MPI process can only access its local memory

• The data to be shared must be exchanged with explicit
inter-process communications (messages)

• It is the responsibility of the programmer to design and
implement the exchange of data between processes

• You can not adopt a strategy of incremental parallelization
• The communication structure of the entire program has to be

implemented

• The communications have a cost
• It is difficult to have a single version of the code for the serial

and MPI program
• Additional variables are needed
• You need to manage the correspondence between local

variables and global data structure
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What is OpenMP?

• De-facto standard Application Program Interface (API) to write
shared memory parallel applications in C, C++ and Fortran

• Consists of compilers directives, run-time routines and
environment variables

• "Open specifications for Multi Processing" maintained by the
OpenMP Architecture Review Board (http://www.openmp.org)

• The "workers" who do the work in parallel (thread) "cooperate"
through shared memory

• Memory accesses instead of explicit messages
• "local" model parallelization of the serial code
• It allows an incremental parallelization
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History

• Born to satisfy the need of unification of proprietary solutions
• The past

• October 1997 - Fortran version 1
• October 1998 - C/C++ version 1
• November 1999 - Fortran version 1.1 (interpretations)
• November 2000 - Fortran version 2
• March 2002 - C/C++ version 2
• May 2005 - combined C/C++ and Fortran version 2
• May 2008 - version 3.0

• The present
• July 2011 - version 3.1
• July 2013 - version 4.0
• November 2015 - version 4.5

• The future
• version 5.0
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Distributed and shared memory
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UMA and NUMA systems
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Process and thread
• A process is an instance of a

computer program
• Some information included in a

process are:
• Text

• Machine code
• Data

• Global variables
• Stack

• Local variables
• Program counter (PC)

• A pointer to the istruction
to be executed
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Multi-threaded processes

• The process contains several
concurrent execution flows
(threads)

• Each thread has its own
program counter (PC)

• Each thread has its own
private stack (variables local
to the thread)

• The instructions executed by
a thread can access:

• the process global
memory (data)

• the thread local stack
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Execution model
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Why should I use OpenMP?

1 Standardized
• enhance portability

2 Ease of use
• limited set of directives
• fast code parallelization
• parallelization is incremental
• coarse/fine parallelism

3 Portability
• C, C++ and Fortran API
• part of many compilers
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OpenMP (possible) issues

1 Performance
• may be non-portable
• increase memory traffic

2 Limitations
• shared memory systems
• mainly used for loops
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Structure of an OpenMP program
1 Execution model

• the program starts with an initial thread
• when a parallel construct is encountered a team is created
• parallel regions may be nested arbitrarily
• worksharing constructs permit to divide work among threads

2 Shared-memory model
• all threads have access to the memory
• each thread is allowed to have a temporary view of the memory
• each thread has access to a thread-private memory
• two kinds of data-sharing attributes: private and shared
• data-races trigger undefined behavior

3 Programming model
• compiler directives + environment variables + run-time library
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OpenMP core elements

OpenMP language
extensions

parallel control
structures

work sharing
data

environment
synchronization

runtime
functions, env.

variables

governs flow of
control in the
program

parallel directive

distributes work
among threads

do/parallel do
and
section directives

scopes
variables

shared and
private
clauses

coordinates thread
execution

critical and
atomic directives
barrier directive

runtime environment

omp_get_thread_num()
OMP_NUM_THREADS
OMP_SCHEDULE

omp_set_num_threads()
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Conditional compilation

C/C++
#ifdef _OPENMP
printf("OpenMP support:%d",_OPENMP);
#else
printf("Serial execution.");
#endif

Fortran
!$ print *,"OpenMP support"

1 The macro _OPENMP has the value yyyymm

2 Fortran 77 supports !$, *$ and c$ as sentinels
3 Fortran 90 supports !$ only

15 / 80



Directive format
C/C++

#pragma omp directive-name [clause...]

Fortran

sentinel directive-name [clause...]

1 Follows conventions of C and C++ compiler directives
2 From here on free-form directives will be considered
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parallel construct

1 The encountering thread becomes the master of the new team
2 All threads execute the parallel region
3 There is an implied barrier at the end of the parallel region
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Nested parallelism

PARALLEL

PARALLEL PARALLEL

foo() foo() bar()

1 Nested parallelism is allowed in OpenMP 3.1
2 Most constructs bind to the innermost parallel region
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OpenMP: Hello world

C/C++
i n t main () {

/* Serial part */

#pragma omp parallel
{

printf("Hello world\n");

}

/* Serial part */

return 0;
}

20 / 80



OpenMP: Hello world

C/C++
i n t main () {
/* Serial part */

#pragma omp parallel
{

printf("Hello world\n");
}

/* Serial part */
return 0;

}

20 / 80



OpenMP: Hello world

Fortran
PROGRAM HELLO

! Serial code

!$OMP PARALLEL

Pr int *, "Hello World!!!"

!$OMP END PARALLEL

! Resume serial code

END PROGRAM HELLO

21 / 80



OpenMP: Hello world

Fortran
PROGRAM HELLO
! Serial code

!$OMP PARALLEL
Pr int *, "Hello World!!!"

!$OMP END PARALLEL

! Resume serial code

END PROGRAM HELLO
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OpenMP: Hello world

What’s wrong?
i n t main() {

i n t i;
#pragma omp parallel
{

for(i = 0; i < 10; ++i)
printf("iteration %d\n", i);

}
return 0;

}
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Race condition

• A race condition (or data race) is when two or more threads
access the same memory location:

• asyncronously and,
• without holding any common exclusive locks and,
• at least one of the accesses is a write/store

• In this case the resulting values are undefined
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Defined or undefined?
What’s the result?
#include <stdio.h>
#include <omp.h>

void main(){
i n t a;
a = 0;
#pragma omp parallel
{

// omp_get_thread_num returns the id
// of the thread
a = a + omp_get_thread_num();

}
printf("%d\n", a);

}
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Race condition
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Worksharing constructs: rules

1 Distribute the execution of the associated region

2 A worksharing region has no barrier on entry

3 An implied barrier exists at the end, unless nowait is specified

4 Each region must be encountered by all threads or none
• Every thread must encounter the same sequence of

worksharing regions and barrier regions
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Worksharing constructs: types

• The OpenMP API defines four worksharing constructs:

• loop

• sections

• single

• workshare
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Loop construct: syntax
C/C++

#pragma omp for [clause[[,] clause] ... ]
for-loops

Fortran

!$omp do [clause[[,] clause] ... ]
do-loops

[!$omp end do [nowait] ]
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Loop construct: restrictions

• Only loops with canonical forms are allowed

• The iteration count needs to be computed before executing the
loops

• incr-expr: addition or subtraction expression.
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Wrong loop construct

wrong incremental expression
#include <stdio.h>
#include <omp.h>

void incr( i n t *var){

*var = *var + 1;
}
void main(){

i n t a;
# i f d e f _OPENMP

#pragma omp parallel for
#endif

for (a=0;a<10;incr(&a))
printf("%d\n", a);

}
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Loop construct: the rules

1 The iterations of the loop are distributed over the threads that
already exist in the team

2 The iteration variable in the for loop
• if shared, is implicitly made private
• must not be modified during the execution of the loop
• has an unspecified value after the loop

3 The schedule clause:
• may be used to specify how iterations are divided into chunks

4 The collapse clause:
• may be used to specify how many loops are parallelized
• valid values are constant positive integer expressions
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Loop construct: scheduling
C/C++

#pragma omp for schedule(kind[, chunk_size])
for-loops

Fortran

!$omp do schedule(kind[, chunk_size])
do-loops

[!$omp end do [nowait] ]
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Loop construct: schedule kind

1 static
• if no chunk_size is specified the iterations space is diveded in

chunks of equal size and one chunk per thread
• if chunk_size is specified, chunks are assigned to the threads

in a round-robin fashion
• must be reproducible within the same parallel region

2 dynamic
• iterations are divided into chunks of size chunk_size
• the chunks are assigned to the threads as they request them
• the default chunk_size is 1

3 guided
• iterations are divided into chunks of decreasing size
• the chunks are assigned to the threads as they request them
• chunk_size controls the minimum size of the chunks
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Loop construct: schedule kind
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0 200 400 600 800 1000

Figure: Different scheduling for a 1000 iterations loop with 4 threads:
guided (top), dynamic (middle), static (bottom)
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Loop construct: nowait clause

Where are the implied barriers?
void nowait_example( i n t n, i n t m, f l o a t *a,

f l o a t *b, f l o a t *y, f l o a t *z) {
#pragma omp parallel
{

#pragma omp for
for ( i n t i=1; i<n; i++)
b[i] = (a[i] + a[i-1]) / 2.0;

#pragma omp for
for ( i n t i=0; i<m; i++)
y[i] = sqrt(z[i]);

}
}
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Loop construct: nowait clause

Where are the implied barriers?
void nowait_example( i n t n, i n t m, f l o a t *a,

f l o a t *b, f l o a t *y, f l o a t *z) {
#pragma omp parallel
{

#pragma omp for nowait
for ( i n t i=1; i<n; i++)
b[i] = (a[i] + a[i-1]) / 2.0;

#pragma omp for nowait
for ( i n t i=0; i<m; i++)
y[i] = sqrt(z[i]);

}
}
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Loop construct: nowait clause
Is the following snippet semantically correct?
...
i n t i;
#pragma omp parallel
{

#pragma omp for
for (i=0; i<n; i++)
c[i] = (a[i] + b[i]) / 2.0f;

#pragma omp for
for (i=0; i<n; i++)
z[i] = sqrtf(c[i]);

#pragma omp for
for (i=1; i<=n; i++)
y[i] = z[i-1] + a[i];

}
...
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Loop construct: nowait clause

c[i] = (a[i] + b[i]) / 2.0f;
// ...
z[i] = sqrtf(c[i]);
// ...
y[i] = z[i-1] + a[i];

We can explot the static schedule. Say we have 100 iterations
and 10 threads

th 0 for i knows
c[i] i=0,99 0,...,9
z[i] i=0,99 0,...,9 c[0,...,9]
y[i] i=1,100 1,...,10 z[0,...,9]
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Loop construct: nowait clause
Is the following snippet semantically correct?
...
i n t i;
#pragma omp parallel
{

#pragma omp for schedule(s t a t i c) nowait
for (i=0; i<n; i++)
c[i] = (a[i] + b[i]) / 2.0f;

#pragma omp for schedule(s t a t i c) nowait
for (i=0; i<n; i++)
z[i] = sqrtf(c[i]);

#pragma omp for schedule(s t a t i c) nowait
for (i=1; i<=n; i++)
y[i] = z[i-1] + a[i];

}
...
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Loop construct: nested loops

Am I allowed to do the following?
#pragma omp parallel
{
#pragma omp for

for( i n t ii = 0; ii < n; ii++) {
#pragma omp for

for( i n t jj = 0; jj < m; jj ++) {
A[ii][jj] = ii*m + jj;

}
}

}
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Loop construct: collapse clause

The right way to collapse nested loops
#pragma omp parallel
{
#pragma omp for collapse(2)

for( i n t ii = 0; ii < n; ii++) {
for( i n t jj = 0; jj < m; jj ++) {
A[ii][jj] = ii*m + jj;

}
}

}
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Loop collapse

• Allows parallelization of perfectly nested rectangular loops
• The collapse clause indicates how many loops should be

collapsed
• Compiler forms a single loop (e.g. of length NxM) and then

parallelizes it
• Useful if N < no. of threads, so parallelizing the outer loop

makes balancing the load difficult.
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Loop dependencies

loop carried dependencies
i n t i, j, ARR[N];
j = 3;
for (i=0; i<N; i++) {

j+=2;
ARR[i] = func(j);

}

i j
0 3+2
1 3+4
2 3+6
... ...
n 3+(2*n+2)
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Removing loop dependencies

removig loop carried dependencies
i n t i, j, ARR[N];
for (i=0; i<N; i++) {

j = 3+(2*i+2);
ARR[i] = func(j);

}
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Sections construct: syntax

C/C++

#pragma omp sections [clause[[,] clause]...]
{
#pragma omp section
structured-block

#pragma omp section
structured-block

...
}
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Sections construct: syntax

Fortran

!$omp sections [clause[[,] clause]...]
!$omp section
structured-block

!$omp section
structured-block

...
!$omp end sections [nowait]
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Sections construct: some facts

1 sections is a non-iterative worksharing construct
• it contains a set of structured-blocks
• each one is executed once by one of the threads

2 Scheduling of the sections is implementation defined

3 There is an implied barrier at the end of the construct
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Single construct: syntax
C/C++

#pragma omp single [clause[[,] clause]...]
structured-block

Fortran

!$omp single [clause[[,] clause] ... ]
structured-block

[!$omp end single [nowait] ]
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Single construct: some facts

1 The associated structured block is executed by only one thread

2 The other threads wait at an implicit barrier

3 The method of choosing a thread is implementation defined
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Workshare construct: syntax

Fortran

!$omp workshare
structured-block

!$omp end workshare [nowait]

Divides the following into shared units of work:
1 array assignments
2 FORALL statements or constructs
3 WHERE statements or constructs
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Reduction clause: some facts

1 The reduction clause:
• is valid on parallel, loop and work-sharing constructs
• specifies an operator and one or more list items

2 A list item that appears in a reduction clause must be shared
3 For each item in the list:

• a local copy is created and initialized appropriately based on
the reduction operation (e.g * -> 1)

• updates occur on the local copy.
• local copies are reduced into a single value and combined with

the original global value.

4 Items must not be const-qualified
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Reduction clause: example

Sum over many iterations

int a = 5;
#pragma omp parallel
{
#pragma omp for reduction(+:a)
for(int i = 0; i < 10; ++i)

++a;
}
printf("%d\n", a);
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Master construct: syntax
C/C++

#pragma omp master
structured-block

Fortran

!$omp master
structured-block

!$omp end master
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Master construct: some facts

1 The master construct specifies a structured block:
• that is executed by the master thread
• with no implied barrier on entry or exit

2 Used mainly in:
• hybrid MPI-OpenMP programs
• progress/debug logging
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Critical construct: syntax
C/C++

#pragma omp critical [name]
structured-block

Fortran

!$omp critical [name]
structured-block

!$omp end critical [name]

55 / 80



Critical contruct: some facts

1 The critical construct restricts the execution:
• to a single thread at a time (wait on entry)

2 An optional name may be used to identify a region. All
critical without a name share the same unspecified tag

3 When a thread encounters a critical construct, it waits until no
other thread is executing a critical region with the same name.

4 In Fortran the names of critical constructs:
• are global entities of the program
• may conflict with other names (and trigger undefined behavior)
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Critical construct: example

Named critical regions

#pragma omp parallel
{
#pragma omp critical(long_critical_name)
doSomeCriticalWork_1();

#pragma omp critical
doSomeCriticalWork_2();

#pragma omp critical
doSomeCriticalWork_3();

}
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Barrier construct: syntax

C/C++

#pragma omp barrier

Fortran

!$omp barrier

The barrier construct specifies an explicit barrier at the point
at which the construct appears

58 / 80



Barrier construct: example

Waiting for the master

int counter = 0;
#pragma omp parallel
{
#pragma omp master
counter = 1;

#pragma omp barrier
printf("%d\n", counter);

}
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Atomic construct: syntax

C/C++

#pragma omp atomic \
[read | write | update | capture]
expression-stmt

#pragma omp atomic capture
structured-block
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Atomic construct: syntax

Fortran

!$omp atomic read
capture-statement

[!$omp end atomic]

!$omp atomic write
write-statement

[!$omp end atomic]
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Atomic construct: syntax

Fortran

!$omp atomic [update]
update-statement

[!$omp end atomic]

!$omp atomic capture
update-statement
capture-statement

!$omp end atomic
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Atomic construct: some facts

1 The atomic construct:
• ensures a specific storage location to be updated atomically
• does not expose it to multiple, simultaneous writing threads

2 The binding thread set for an atomic region is all threads
3 The atomic construct with the clause:
read forces an atomic read regardless of the machine word size
write forces an atomic write regardless of the machine word size

update forces an atomic update (default)
capture same as an update, but captures original or final value

4 Accesses to the same location must have compatible types
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Data-sharing attributes: C/C++

1 The following are always shared:
• objects with dynamic storage duration
• variables with static storage duration
• file scope variables

2 The following are always private:
• loop iteration variable in the loop construct
• variables with automatic storage duration

3 Arguments passed by reference inherit the attributes
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Data-sharing attributes: Fortran

1 The following are always private:
• variables with automatic storage duration
• loop iteration variable in the loop construct

2 The following are always shared:
• assumed size arrays
• variables with save attribute
• variables belonging to common blocks or in modules

3 Arguments passed by reference inherit the attributes
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Data-sharing clauses: syntax

C/C++

#pragma omp ... shared(...) private(...)

Fortran

!$omp ... shared(...) private(...)
...
!$omp end ...
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Default/shared/private clauses

1 The clause default:
• is valid on parallel
• accepts only shared or none in C/C++ and Fortran
• accepts also private and firstprivate in Fortran
• default(none) requires each variable to be listed in a clause

2 The clause shared(list):
• is valid only on parallel contruct
• declares one or more list items to be shared

3 The clause private(list):
• is valid on parallel, and worksharing contructs
• declares one or more list items to be private
• allocates a new item of the same type with undefined value

67 / 80



Default/shared/private clauses

Example

int q,w;
#pragma omp parallel private(q) shared(w)
{
q = 0;

#pragma omp single
w = 0;

#pragma omp critical(stdout_critical)
printf("%d %d\n", q, w);

}
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Firstprivate clause
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Firstprivate clause
Example

int q = 3, w;
#pragma omp parallel firstprivate(q) shared(w)
{
#pragma omp single
w = 0;

#pragma omp critical(stdout_critical)
printf("%d %d\n", q, w);

}

Same as private, but initializes items
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Lastprivate clause
Example

#pragma omp parallel
{
#pragma omp for lastprivate(i)
for(i = 0; i < (n1); ++i)

a[i] = b[i] + b[i + 1];
}
a[i] = b[i];

1 valid on for, sections
2 the value of each new list item is the sequentially last value
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Copyprivate clause

C/C++

#pragma omp single copyprivate(tmp)
{
tmp = (float *) malloc(sizeof(float));

} /* copies the pointer only */

1 Valid only on single

2 Broadcasts the value of a private variable
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False sharing

• say we have array elements contiguous in memory
• if independent data elements are on the same cache line

threads might share the same cache line
• each update on one element will cause the cache lines of the

remaining threads to be trashed
• this is called false sharing
• poor scalability

• Solution:
• When updates to an item are frequent, work with local copies of

data instead of an array indexed by the thread ID.
• Pad arrays so elements you use are on distinct cache lines.
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Runtime library routines

Most used functions

int omp_get_num_threads(void);// # of threads
int omp_get_thread_num(void);// thread id
double omp_get_wtime(void);// get wall-time

1 Prototypes for C/C++ runtime are provided in omp.h

2 Interface declarations for Fortran are provided as:
• a Fortran include file named omp_lib.h
• a Fortran 90 module named omp_lib
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Environment variables

OMP_NUM_THREADS sets the number of threads for parallel regions

OMP_STACKSIZE specifies the size of the stack for threads

OMP_SCHEDULE controls schedule type and chunk size of runtime

OMP_PROC_BIND controls whether threads are bound to processors

OMP_NESTED enables or disables nested parallelism
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OpenMP Compilers

GNU:
(Version >= 4.3.2) Compile with -fopenmp For Linux, Solaris,
AIX, MacOSX, Windows.

IBM:
Compile with -qsmp=omp for Windows, AIX and Linux.

Intel:
Compile with -Qopenmp on Windows, or -qopenmp on Linux
or Mac
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OpenMP Compilers

Sun Microsystems:

Compile with -xopenmp for Solaris and Linux.

Portland Group Compilers:

Compile with -mp Emit useful information to stderr. -Minfo=mp
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OpenMP: THE END!!!

Good luck and enjoy OpenMP!!!
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