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Heterogeneous computing

Gain performance or energy efficiency not just by adding the same type 
of processors, but by adding dissimilar coprocessors, usually 

incorporating specialized processing capabilities to handle particular 
tasks.

DISCLAIMER NOTE, some slides and images are courtesy of: NVIDIA (CUDA 
manual, CUDA Fortran examples), CUDA Team in CINECA (Luca Ferraro, 
Sergio Orlandini, Stefano Tagliaventi) and/or specified sources.



My aim for today

Overview of different approaches for 
heterogeneous computing…

...discuss their strengths and weaknesses...

… and some points to keep in mind!



Outline

● Introduction to accelerators
● GPU Architecture
● Programming models
● Some recommendations



GPUs
General Purpose Graphical Processing Units



GPU Architecture

● Difference between GPU and CPU

More transistors devoted to data processing
(but less optimized memory access and speculative execution)



GPU Architecture

● Difference between GPU and CPU

Performance:
Intel E5-2697 (Q3’13): SP  0.518 Tflops, DP  0.259 Tflops→ →
Nvidia K40 (Q4’13):  SP  4.29 Tflops, DP  1.43 Tflops→ →



GPU Achitecture

● Streaming Multiprocessor
– Perform the actual computations

– Each SM has its own: control units, registers, 
execution pipelines, caches

● Global Memory
– Similar to standard DRAM

– Accessible from both CPU and GPU



GPU Architecture



GPU Architecture

Fonte: NVIDIA Whitepaper: NVIDIA Next Generation CUDA Compute Architecture: Kepler GK110/210 
V1.0. 2014. 

● Core/DP Units: SP and DP arithmetic logic 
units.

● Load/Store Units: calculate source and 
destination addresses for 16 threads per 
clock. Load and store the data from/to cache 
or DRAM.

● Special Functions Units (SFUs): Execute 
transcendental instructions such as sin, 
cosine, reciprocal, and square root. Each 
SFU executes one instruction per thread, 
per clock.



Architecture details

Here’s your new toy! Two GPUs (GK210) per device
12GB RAM per GPU
480GB/s memory bandwidth

15 Multiprocessors (MP), 
192 CUDA Cores/MP =  2880 CUDA Cores

~ 500-800 Mhz Clocks 
~ 250 W



When/How to use them?

● Separate device memory
● Many-cores
● Multi-threading
● Vectors
● Memory strides matter
● Smaller caches



How to use them?

● Today
– Libraries

– Programming languages

● Tomorrow
– Standard and HW agnostic compiler directives

– Unified architecture, standardized programming language

– PGAS?

Directive based

APIs

?



How to deal with it?
First rule: do not reinvent the wheel!

NVIDIA cuBLAS NVIDIA cuRAND NVIDIA cuSPARSE NVIDIA NPP

Vector Signal
Image Processing

GPU Accelerated
Linear Algebra

Matrix Algebra on 
GPU and Multicore

NVIDIA 
cuFFT

C++ STL Features 
for CUDAIMSL Library

ArrayFire Matrix 
Computations

Sparse Linear 
Algebra
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First rule: do not reinvent the wheel!

NVIDIA cuBLAS NVIDIA cuRAND NVIDIA cuSPARSE NVIDIA NPP

Vector Signal
Image Processing

GPU Accelerated
Linear Algebra

Matrix Algebra on 
GPU and Multicore

NVIDIA 
cuFFT

C++ STL Features 
for CUDAIMSL Library

ArrayFire Matrix 
Computations

Sparse Linear 
Algebra

PROs:
● enables GPU acceleration without in-depth knowledge of GPU programming

● Almost “Drop-in”: libraries follow standard APIs, thus enabling acceleration 
generally requires with minimal code changes.

● Libraries offer high-quality implementations of functions 
encountered in a broad range of applications and are tuned by experts

CONs
● May require code redesign

● Data migration can be a problem



GPU Programming

OpenACC, CUDA FortranFortran

OpenACC, CUDA C, OpenCL, ...C

Thrust, CUDA C++, OpenCL, ...C++

PyCUDA, CopperheadPython

MATLAB, Mathematica, LabVIEWNumerical analytics



CUDA

● Only Nvidia GPUs (*)

● Freely available and well documented
● A lot of stuff on the web
● Mature project, but still evolving
● Set of extensions to C/C++ to define the kernels 

and to configure the kernel execution  
● Proprietary software



Heterogeneous programming

● CPU and GPU are separate devices with 
separate memory spaces

● Different portions of the code runs on the 
CPU or on the GPU.



Heterogeneous programming

“host”: the CPU/DRAM

“device”: the GPU/and its memory

“kernel”: the chunk of your code that you 
invoke many times: once per input element.



Heterogeneous programming

● Typical code progression
– Memory allocated on host and device

– Data is transferred from the Host to the Device

– Kernel is lunched by the Host on the Device

– Data is transferred from the Device to the Host.

– Memory is deallocated.



Heterogeneous programming

http://rtcmagazine.com/articles/view/103718

Host

Device



CUDA Execution Model

● Warp: group of 32 threads handled by the scheduler. Always use 32*n!
● Thread: each execute the kernel. Can be synchronized. Can be arranged in 

3D: x,y,z. Useful for programming and memory access.
● Block: Group of threads.
● Grids: Group of Blocks



CUDA Execution Model
● maximum number of threads per dimension in a block is 1024(*)!



CUDA Execution Model 



CUDA Execution Model

● Where do I find all these info?!

$CUDA_HOME/samples/bin/x86_64/
linux/release/deviceQuery



CUDA Memory

Three types of memory (actually five, but...):
– Global memory
– Shared memory
– Local (or private) memory



CUDA Memory 

On the GPU:
● Memory optimization is vital on GPU.
● Different memory types have different latency.
● Coalescent access is mandatory.

On the DRAM:
● Pinned memory
● Pointers with restricted

If the memory addressed by the restrict-qualified pointer is 
modified, no other pointer will access that same memory.



CUDA Memory 

On the GPU:
● Memory optimization is vital on GPU.
● Different memory types have different latency.
● Coalescent access is mandatory.

On the DRAM:
● Pinned memory
● Pointers with restricted

If the memory addressed by the restrict-qualified pointer is 
modified, no other pointer will access that same memory.

ADV
AN
CED

!!



CUDA syntax
● A CUDA kernel function is defined using the 

__global__ 

● A CUDA kernel always returns void!
● when a CUDA kernel is called, it is executed N times in 

parallel by N different CUDA threads on one device.
● CUDA threads that execute that kernel are specified using 

the kernel execution configuration syntax:

CudaKernelFunction <<<…,…>>> (arg_1, arg_2,…, arg_n)



CUDA syntax
● each thread has a unique thread ID, threads 

within a block can be synchronized
● the thread ID is accessible through the built-in 

variable

threadIdx 
● threadIdx are a 3-component vector 

use .x, .y, .z to access its components

https://www.slideshare.net/pipatmet/hpp-week-1-summary



CUDA syntax

https://www.slideshare.net/pipatmet/hpp-week-1-summary



CUDA syntax

Imgs from: https://www.slideshare.net/pipatmet/hpp-week-1-summary

kernel_name<<<int,int>>> (args);
kernel_name<<<dim3,dim3>>> (args);

<<<gridDim, blockDim>>>



CUDA syntax

● “Standard” memory access
– cudaMalloc

– cudaFree

– cudaMemcpy

● Unified memory access
– cudaMallocManaged

– cudaFree



CUDA syntax

● “Standard” memory access
– cudaMalloc

– cudaFree

– cudaMemcpy
● Sync! Wait until kernel is finished,

no need for manual sync

● Unified memory access
– CudaMallocManaged

● Needs cudaDeviceSync

– cudaFree
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CUDA syntax

● “Standard” memory access
– cudaMalloc

– cudaFree

– cudaMemcpy

● Unified memory access
– cudaMallocManaged

– cudaFree



Your first (?) kernel
Kernel that runs on the GPU
must return void!

Memory allocation and 
movements handled by CUDA
API

https://devblogs.nvidia.com/par
allelforall/even-easier-
introduction-cuda/



Example 1
● Adding matrices



Example 2
● Calculating pi (THE WRONG WAY)



Example 3
● Calculating pi (THE RIGHT WAY)





CUDA Fortran

● Fortran analog to CUDA C
● Syntax is similar to CUDA, but more concise
● Complete syntax only on PGI compilers 

(16.10 community edition freely available)
● Partial implementation on IBM compilers



CUDA Fortran Syntax

● Allocate done by 
host, according to 
“device” attribute

● Memory is not 
virtual! You may 
run out, check!

● Just copy (no need 
for cuda sync).
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host, according to 
“device” attribute

● Memory is not 
virtual! You may 
run out, check!

● Just copy (no need 
for cuda sync)



CUDA Fortran Syntax

● Every copy 
statement is 
blocking

● Copy will wait 
until kernel has 
finished

● Scalars can be 
passed by value 
to kernels



CUDA Fortran Syntax

● Running kernels

You can create interfaces
Launch is asynchronous!

It will return immediately so be careful with timing.



CUDA Fortran Syntax

● Writing kernels:
– ”global” attribute defines kernels

– Scalars and fixed size arrays are in local memory

– Allowed data types:
● Integer(1..8), logical, real(4,8), complex(4,8), derivedtype

– Parameters by value

!



CUDA Fortran Syntax

● Writing kernels:
– Predefined variables:

● blockIdx, threadIdx, gridDim, blockDim, warpSize

– Valid statements
● Assignment
● For, do, while, if,

 goto, switch...
● Call device function
● Call intrinsic function



CUDA Fortran Syntax

● Writing kernels:
– INVALID statements

● I/O (read, write, open…)
● Pointer assignment
● Recursive calls
● ENTRY, ASSIGN

 statement
● Stop, pause
● (allocate/deallocate

in PGI 13.0)



CUDA Fortran Syntax



CUDA Fortran Syntax



CUDA Fortran Syntax



CUDA Fortran Syntax

● Cuf kernels, automatic kernel generation!





OpenACC

● Directive based
● Initiative to guide future OpenMP 

standardization
● Targets NVIDIA and AMD GPUs, Intel's Xeon 

Phi, FPGAs ... 
● Works with C, C++ and Fortran
● Standard available at: www.openacc.org



OpenACC

● Implementations:
– PGI

– GNU (experimental,  >= 5.1 )

● Main difference wrt OpenMP
– scalars are firstprivate by default 

– more concise

– data handling slightly different



OpenACC

● PROs:
– High-level.  No involvement of OpenCL, CUDA, etc.

– Single source.  No forking off a separate GPU code.  

– Experience shows very favorable comparison to low-
level implementations of same algorithms.

– Performance portable: in principles GPU accelerators 
and co-processors from any vendor.

– Incremental. Can be quick.

– Support AMD gpus (likely)



OpenACC

● CONs:
– Compilers availability limited (but growing)

– Not as low level as CUDA or OpenCL



How it looks like



Directive Syntax

● C
#pragma acc directive [clause [,] clause] …]

Often followed by a structured code block

● Fortran
!$acc directive [clause [,] clause] …]

Often paired with a matching end directive surrounding 
a structured  code block

!$acc end directive



OpenACC parallel
● Programmer  identifies a block of code suitable 

for parallelization and guarantees that no 
dependency occurs across iterations

● Compiler generates parallel instructions for that 
loop e.g., a parallel CUDA kernel for a GPU

#pragma acc parallel loop
for (int j=0;j<n;j++) {
  for (int i=0;i<n;i++) {
    A[j][i] = B[j][i] + C[j][i]
  }
}



OpenACC kernels
● The kernels construct expresses that 

a region may contain parallelism and 
the compiler determines what can be 
safely parallelized.
!$acc kernels
do i=1,n
  a(i) = 0.0
  b(i) = 1.0
  c(i) = 2.0
end do
do i=1,n
  a(i) = b(i) + c(i)
end do
!$acc end kernels



OpenACC parallel vs kernel

parallel

● Requires analysis by 
programmer to ensure safe 
parallelism

● Straightforward path from 
OpenMP

● Mandatory to fully control the 
different levels of parallelism

● Implicit barrier at the end of 
the parallel region

kernels

● Compiler performs parallel 
analysis and parallelizes what it 
believes safe

● Can cover larger area of code 
with a single directive

● Needs clean codes and 
sometime directives to help the 
compiler

● Implicit barrier at the end and 
between each kernel (e.g. loop)



OpenACC loop

● Applies to a loop which must immediately follow this directive
● Describes:

– type of parallelism

– loop-private variables, arrays, and reduction operations

● We already encountered it combined with the parallel directive

C
#pragma acc loop [clause …]
{ for block }

Fortran
!$acc loop [clause …]
{ do block }



OpenACC independent

● In a kernels construct, the independent loop clause helps the compiler 
in guaranteeing that the iterations of the loop are independent wrt 
each other

● E.g., consider m>n

#pragma acc kernels
#pragma acc loop independent
for(int i;i<n;i++)
  c[i] = 2.*c[m+i];

● In parallel construct the independent clause is implied on all loop 
directives without a seq clause



OpenACC seq

● The seq clause specifies that the associated loops 
have to be executed sequentially on the 
accelerator

● Beware: the loop directive applies to the 
immediately following loop

#pragma acc parallel 
#pragma acc loop // independent is automatically enforced
for(int i;i<n;i++)
  for(int k;k<n;k++)
#pragma acc loop seq
    for(int j;j<n;j++)
       c[i][j][k] = 2.*c[i][j+1][k];



OpenACC reduction

● The reduction clause on a loop specifies a reduction operator on one or 
more scalar variables
– For each variable, a private copy is created for each thread executing the associated 

loops

– At the end of the loop, the values for each thread are combined using the reduction clause

● Common operators are supported: +  *  max  min  &&  || ....

#pragma acc parallel loop reduction(max:err) shared(A,Anew,m,n)
for(int j = 1; j < n-1; j++) {
  for(int i= 1; i< m-1; i++) {
    Anew[j][i] = 0.25 * (A[j][i+1]+A[j][i-1]+A[j-1][i]+A[j+1][i]);
    err = max(err, abs(Anew[j][i] -A[j][i]);
  }
}





OpenMP 4.5

● Spec. available since Nov. 2015
● Already implemented in:

– GCC 6.0 (almost)

– Clang

● Similar directives but:
– No independent clause

– No kernels,  you have to be the paranoid!



OpenMP 4.5

● target
● teams
● distribute
● parallel
● for / do
● simd
● is_device_ptr(...)

● parallel / kernels
● parallel / kernels
● loop gang
● parallel / kernels
● loop worker or loop gang
● loop vector
● deviceptr(...)





PGAS model

● Partitioned Global Address Space (PGAS) programming model 
● Assumes a global memory address space that is logically 

partitioned and a portion of it is local to each process or thread.
● A process can directly access a memory portion owned by 

another process.
● Combine the advantages of a SPMD programming style for 

distributed memory systems (as employed by MPI) with the 
data referencing semantics of shared memory systems.



PGAS Model

● Unified Parallel C (UPC)
● CoArray Fortran (CAF)
● X10 (IBM)
● Chapel (CRAY, chapel.cray.com)



PGAS model

Memory models

Thread Count Memory Count Nonlocal Access

Serial 1 1 N/A

OpenMP 1 to p 1 N/A

MPI p p No. Use 
messages.

UPC, CAF p p YES

X10, Chapel p q YES



Coarray

● Cray Compiler (Gold standard - Commercial)
● Intel Compiler (Commercial)
● GNU Fortran (Free - GCC)
● Rice Compiler (Free - Rice University)
● OpenUH (Free - University of Houston)



Unified Parallel C

● extension of the C Programming language 
designed for high performance computing on 
large-scale parallel machines

● Same concept of CAF
● Cray compilers, as well as through Berkeley 

UPC



CAF – basic rules

● A program is treated as if it were replicated at the start of 
execution (SPMD), each replication is called an image.

● Each image executes asynchronously.
● An image has an image index, that is a number between 

one and the number of images, inclusive.
● A coarray is indicated by trailing [ ]. 

a(2)[*]

P0 P1 P2

0 1 0 1 0 1

0 1 2

C o-Arr a y Fortr an:

Plac es:

Arr a y:

Loc al Inde x es:

C o Inde x es:



CAF – basic rules

● A coarray could be a scalar or array, static or 
dynamic, and of intrinsic or derived type.

● A data object declared without trailing [ ] is local.
● If not specified, coarrays on local image are 

accessed.
● Explicit synchronization statements are used to 

maintain program correctness



CAF – basic rules

● When we declare a coarray variable the 
following statements are true:
– The coarray variable exists on each image.

– The coarray name is the same on each image.

– The size is the same on each image.

x(:) = y(:)[q]



CAF memory decalration

!  Scalar  coarray
integer  :: x[*]

! Array  coarray
real , dimension(n) :: a[*]

!  Another  array  declaration
real , dimension(n), codimension [*] :: a

!  Scalar  coarray  corank  3
integer  :: cx[10 ,10, *]

! Array  coarray  corank  3

!  different  cobounds
real :: c(m,n) :: [0:10 ,10 ,*]

!  Allocatable  coarray
real , allocatable  :: mat (: ,:)[:]
allocate(mat(m,n)[*])

!  Derived  type  scalar  coarray
type(mytype) :: xc[*]



CAF segments

● A segment is a piece of code between synchronization points. Sync 
are SYNC ALL, SYNC MEMORY, SYNC IMAGES 

● The compiler is free to apply optimizations within a segment.
● Segments are ordered by synchronization statement and automatic 

sync happens at dynamic memory actions ([de]allocate).

real :: p[*] ! :
! Segment  1

sync  all
if (this_image ()==1)  then ! Segment  2
  read  (*,*) p ! :
  do i = 2, num_images () ! :
    p[i] = p ! :
  end do ! :
end if ! Segment  2
sync  all

! Segment  3



CAF segments

● A segment is a piece of code between synchronization points. Sync 
are SYNC ALL, SYNC MEMORY, SYNC IMAGES 

● The compiler is free to apply optimizations within a segment.
● Segments are ordered by synchronization statement and automatic 

sync happens at dynamic memory actions ([de]allocate).

real :: p[*] ! :
! Segment  1

sync  all
if (this_image ()==1)  then ! Segment  2
  read  (*,*) p ! :
  do i = 2, num_images () ! :
    p[i] = p ! :
  end do ! :
end if ! Segment  2
sync  all

! Segment  3



OpenCL

● Similar to CUDA, but even more low level
● Targets all kind of accelerators!
● If you have CUDA kernels, you may get OpenCL kernels rather 

easily
● Experience: performance not as good as CUDA
● Missing Fortran direct access (C wrap needed)
● Lot of code available, reuse possible.
● Open standard maintained by a non-profit technology 

consortium (Khronos Group).



ROCm

● Alternative to CUDA for (multi) GPU 
programming

● Extremenly new (started in 2016)
– HC C++ API: C++ 11/14 compiler

– HIP: Tools and API to convert CUDA to portable C++ 
API. 



Let’s take a breath and look 
around...

http://llvm-hpc2-workshop.github.io/slides/Tian.pdf



Take home message

● Complexity will increase
– Many GPUs

– Many different many Core chips

– FPGA (?)



Take home message

● Accelerators’ architecture is evolving quickly
– Eg. AMD heavily targeting GPGPU for scientific computation lately.

● Portability is recommended for today and for tomorrow
– Code maintenance

– Code evolution

● Open standards  (eg. OpenACC, OpenMP) must be considered.
– Code not bound to  a specific company’s will/fate.

– Community effort for standardization, evolution and support.

● Choose a reasonable compromise between readability, maintainability and 
performance.



Take home message 

● Use libraries
● Separate computation intensive part from the 

main code: separate independent 
components. (Eg. Hamiltonian construction & solution)

● Think of data distribution/locality
● Facilitate overlap of communication and 

computation



Take home message
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