
Programming techniques for

heterogeneous architectures
Pietro Bonfa’ – p.bonfa@cineca.it

SuperComputing Applications and Innovation Department

Heterogeneous computing

Gain performance or energy efficiency not just by adding the same type
of processors, but by adding dissimilar coprocessors, usually

incorporating specialized processing capabilities to handle particular
tasks.

DISCLAIMER NOTE, some slides and images are courtesy of: NVIDIA (CUDA
manual, CUDA Fortran examples), CUDA Team in CINECA (Luca Ferraro,
Sergio Orlandini, Stefano Tagliaventi) and/or specified sources.

My aim for today

Overview of different approaches for
heterogeneous computing…

...discuss their strengths and weaknesses...

… and some points to keep in mind!

Outline

● Introduction to accelerators
● GPU Architecture
● Programming models
● Some recommendations

GPUs
General Purpose Graphical Processing Units

GPU Architecture

● Difference between GPU and CPU

More transistors devoted to data processing
(but less optimized memory access and speculative execution)

GPU Architecture

● Difference between GPU and CPU

Performance:
Intel E5-2697 (Q3’13): SP 0.518 Tflops, DP 0.259 Tflops→ →
Nvidia K40 (Q4’13): SP 4.29 Tflops, DP 1.43 Tflops→ →

GPU Achitecture

● Streaming Multiprocessor
– Perform the actual computations

– Each SM has its own: control units, registers,
execution pipelines, caches

● Global Memory
– Similar to standard DRAM

– Accessible from both CPU and GPU

GPU Architecture

GPU Architecture

Fonte: NVIDIA Whitepaper: NVIDIA Next Generation CUDA Compute Architecture: Kepler GK110/210
V1.0. 2014.

● Core/DP Units: SP and DP arithmetic logic
units.

● Load/Store Units: calculate source and
destination addresses for 16 threads per
clock. Load and store the data from/to cache
or DRAM.

● Special Functions Units (SFUs): Execute
transcendental instructions such as sin,
cosine, reciprocal, and square root. Each
SFU executes one instruction per thread,
per clock.

Architecture details

Here’s your new toy! Two GPUs (GK210) per device
12GB RAM per GPU
480GB/s memory bandwidth

15 Multiprocessors (MP),
192 CUDA Cores/MP = 2880 CUDA Cores

~ 500-800 Mhz Clocks
~ 250 W

When/How to use them?

● Separate device memory
● Many-cores
● Multi-threading
● Vectors
● Memory strides matter
● Smaller caches

How to use them?

● Today
– Libraries

– Programming languages

● Tomorrow
– Standard and HW agnostic compiler directives

– Unified architecture, standardized programming language

– PGAS?

Directive based

APIs

?

How to deal with it?
First rule: do not reinvent the wheel!

NVIDIA cuBLAS NVIDIA cuRAND NVIDIA cuSPARSE NVIDIA NPP

Vector Signal
Image Processing

GPU Accelerated
Linear Algebra

Matrix Algebra on
GPU and Multicore

NVIDIA
cuFFT

C++ STL Features
for CUDAIMSL Library

ArrayFire Matrix
Computations

Sparse Linear
Algebra

How to deal with it?
First rule: do not reinvent the wheel!

NVIDIA cuBLAS NVIDIA cuRAND NVIDIA cuSPARSE NVIDIA NPP

Vector Signal
Image Processing

GPU Accelerated
Linear Algebra

Matrix Algebra on
GPU and Multicore

NVIDIA
cuFFT

C++ STL Features
for CUDAIMSL Library

ArrayFire Matrix
Computations

Sparse Linear
Algebra

PROs:
● enables GPU acceleration without in-depth knowledge of GPU programming

● Almost “Drop-in”: libraries follow standard APIs, thus enabling acceleration
generally requires with minimal code changes.

● Libraries offer high-quality implementations of functions
encountered in a broad range of applications and are tuned by experts

CONs
● May require code redesign

● Data migration can be a problem

GPU Programming

OpenACC, CUDA FortranFortran

OpenACC, CUDA C, OpenCL, ...C

Thrust, CUDA C++, OpenCL, ...C++

PyCUDA, CopperheadPython

MATLAB, Mathematica, LabVIEWNumerical analytics

CUDA

● Only Nvidia GPUs (*)

● Freely available and well documented
● A lot of stuff on the web
● Mature project, but still evolving
● Set of extensions to C/C++ to define the kernels

and to configure the kernel execution
● Proprietary software

Heterogeneous programming

● CPU and GPU are separate devices with
separate memory spaces

● Different portions of the code runs on the
CPU or on the GPU.

Heterogeneous programming

“host”: the CPU/DRAM

“device”: the GPU/and its memory

“kernel”: the chunk of your code that you
invoke many times: once per input element.

Heterogeneous programming

● Typical code progression
– Memory allocated on host and device

– Data is transferred from the Host to the Device

– Kernel is lunched by the Host on the Device

– Data is transferred from the Device to the Host.

– Memory is deallocated.

Heterogeneous programming

http://rtcmagazine.com/articles/view/103718

Host

Device

CUDA Execution Model

● Warp: group of 32 threads handled by the scheduler. Always use 32*n!
● Thread: each execute the kernel. Can be synchronized. Can be arranged in

3D: x,y,z. Useful for programming and memory access.
● Block: Group of threads.
● Grids: Group of Blocks

CUDA Execution Model
● maximum number of threads per dimension in a block is 1024(*)!

CUDA Execution Model

CUDA Execution Model

● Where do I find all these info?!

$CUDA_HOME/samples/bin/x86_64/
linux/release/deviceQuery

CUDA Memory

Three types of memory (actually five, but...):
– Global memory
– Shared memory
– Local (or private) memory

CUDA Memory

On the GPU:
● Memory optimization is vital on GPU.
● Different memory types have different latency.
● Coalescent access is mandatory.

On the DRAM:
● Pinned memory
● Pointers with restricted

If the memory addressed by the restrict-qualified pointer is
modified, no other pointer will access that same memory.

CUDA Memory

On the GPU:
● Memory optimization is vital on GPU.
● Different memory types have different latency.
● Coalescent access is mandatory.

On the DRAM:
● Pinned memory
● Pointers with restricted

If the memory addressed by the restrict-qualified pointer is
modified, no other pointer will access that same memory.

ADV
AN
CED

!!

CUDA syntax
● A CUDA kernel function is defined using the

__global__

● A CUDA kernel always returns void!
● when a CUDA kernel is called, it is executed N times in

parallel by N different CUDA threads on one device.
● CUDA threads that execute that kernel are specified using

the kernel execution configuration syntax:

CudaKernelFunction <<<…,…>>> (arg_1, arg_2,…, arg_n)

CUDA syntax
● each thread has a unique thread ID, threads

within a block can be synchronized
● the thread ID is accessible through the built-in

variable

threadIdx
● threadIdx are a 3-component vector

use .x, .y, .z to access its components

https://www.slideshare.net/pipatmet/hpp-week-1-summary

CUDA syntax

https://www.slideshare.net/pipatmet/hpp-week-1-summary

CUDA syntax

Imgs from: https://www.slideshare.net/pipatmet/hpp-week-1-summary

kernel_name<<<int,int>>> (args);
kernel_name<<<dim3,dim3>>> (args);

<<<gridDim, blockDim>>>

CUDA syntax

● “Standard” memory access
– cudaMalloc

– cudaFree

– cudaMemcpy

● Unified memory access
– cudaMallocManaged

– cudaFree

CUDA syntax

● “Standard” memory access
– cudaMalloc

– cudaFree

– cudaMemcpy
● Sync! Wait until kernel is finished,

no need for manual sync

● Unified memory access
– CudaMallocManaged

● Needs cudaDeviceSync

– cudaFree

CUDA syntax

● “Standard” memory access
– cudaMalloc

– cudaFree

– cudaMemcpy

● Unified memory access
– cudaMallocManaged

– cudaFree

CUDA syntax

● “Standard” memory access
– cudaMalloc

– cudaFree

– cudaMemcpy

● Unified memory access
– cudaMallocManaged

– cudaFree

CUDA syntax

● “Standard” memory access
– cudaMalloc

– cudaFree

– cudaMemcpy

● Unified memory access
– cudaMallocManaged

– cudaFree

Your first (?) kernel
Kernel that runs on the GPU
must return void!

Memory allocation and
movements handled by CUDA
API

https://devblogs.nvidia.com/par
allelforall/even-easier-
introduction-cuda/

Example 1
● Adding matrices

Example 2
● Calculating pi (THE WRONG WAY)

Example 3
● Calculating pi (THE RIGHT WAY)

CUDA Fortran

● Fortran analog to CUDA C
● Syntax is similar to CUDA, but more concise
● Complete syntax only on PGI compilers

(16.10 community edition freely available)
● Partial implementation on IBM compilers

CUDA Fortran Syntax

● Allocate done by
host, according to
“device” attribute

● Memory is not
virtual! You may
run out, check!

● Just copy (no need
for cuda sync).

CUDA Fortran Syntax

● Allocate done by
host, according to
“device” attribute

● Memory is not
virtual! You may
run out, check!

● Just copy (no need
for cuda sync)

CUDA Fortran Syntax

● Every copy
statement is
blocking

● Copy will wait
until kernel has
finished

● Scalars can be
passed by value
to kernels

CUDA Fortran Syntax

● Running kernels

You can create interfaces
Launch is asynchronous!

It will return immediately so be careful with timing.

CUDA Fortran Syntax

● Writing kernels:
– ”global” attribute defines kernels

– Scalars and fixed size arrays are in local memory

– Allowed data types:
● Integer(1..8), logical, real(4,8), complex(4,8), derivedtype

– Parameters by value

!

CUDA Fortran Syntax

● Writing kernels:
– Predefined variables:

● blockIdx, threadIdx, gridDim, blockDim, warpSize

– Valid statements
● Assignment
● For, do, while, if,

 goto, switch...
● Call device function
● Call intrinsic function

CUDA Fortran Syntax

● Writing kernels:
– INVALID statements

● I/O (read, write, open…)
● Pointer assignment
● Recursive calls
● ENTRY, ASSIGN

 statement
● Stop, pause
● (allocate/deallocate

in PGI 13.0)

CUDA Fortran Syntax

CUDA Fortran Syntax

CUDA Fortran Syntax

CUDA Fortran Syntax

● Cuf kernels, automatic kernel generation!

OpenACC

● Directive based
● Initiative to guide future OpenMP

standardization
● Targets NVIDIA and AMD GPUs, Intel's Xeon

Phi, FPGAs ...
● Works with C, C++ and Fortran
● Standard available at: www.openacc.org

OpenACC

● Implementations:
– PGI

– GNU (experimental, >= 5.1)

● Main difference wrt OpenMP
– scalars are firstprivate by default

– more concise

– data handling slightly different

OpenACC

● PROs:
– High-level. No involvement of OpenCL, CUDA, etc.

– Single source. No forking off a separate GPU code.

– Experience shows very favorable comparison to low-
level implementations of same algorithms.

– Performance portable: in principles GPU accelerators
and co-processors from any vendor.

– Incremental. Can be quick.

– Support AMD gpus (likely)

OpenACC

● CONs:
– Compilers availability limited (but growing)

– Not as low level as CUDA or OpenCL

How it looks like

Directive Syntax

● C
#pragma acc directive [clause [,] clause] …]

Often followed by a structured code block

● Fortran
!$acc directive [clause [,] clause] …]

Often paired with a matching end directive surrounding
a structured code block

!$acc end directive

OpenACC parallel
● Programmer identifies a block of code suitable

for parallelization and guarantees that no
dependency occurs across iterations

● Compiler generates parallel instructions for that
loop e.g., a parallel CUDA kernel for a GPU

#pragma acc parallel loop
for (int j=0;j<n;j++) {
 for (int i=0;i<n;i++) {
 A[j][i] = B[j][i] + C[j][i]
 }
}

OpenACC kernels
● The kernels construct expresses that

a region may contain parallelism and
the compiler determines what can be
safely parallelized.
!$acc kernels
do i=1,n
 a(i) = 0.0
 b(i) = 1.0
 c(i) = 2.0
end do
do i=1,n
 a(i) = b(i) + c(i)
end do
!$acc end kernels

OpenACC parallel vs kernel

parallel

● Requires analysis by
programmer to ensure safe
parallelism

● Straightforward path from
OpenMP

● Mandatory to fully control the
different levels of parallelism

● Implicit barrier at the end of
the parallel region

kernels

● Compiler performs parallel
analysis and parallelizes what it
believes safe

● Can cover larger area of code
with a single directive

● Needs clean codes and
sometime directives to help the
compiler

● Implicit barrier at the end and
between each kernel (e.g. loop)

OpenACC loop

● Applies to a loop which must immediately follow this directive
● Describes:

– type of parallelism

– loop-private variables, arrays, and reduction operations

● We already encountered it combined with the parallel directive

C
#pragma acc loop [clause …]
{ for block }

Fortran
!$acc loop [clause …]
{ do block }

OpenACC independent

● In a kernels construct, the independent loop clause helps the compiler
in guaranteeing that the iterations of the loop are independent wrt
each other

● E.g., consider m>n

#pragma acc kernels
#pragma acc loop independent
for(int i;i<n;i++)
 c[i] = 2.*c[m+i];

● In parallel construct the independent clause is implied on all loop
directives without a seq clause

OpenACC seq

● The seq clause specifies that the associated loops
have to be executed sequentially on the
accelerator

● Beware: the loop directive applies to the
immediately following loop

#pragma acc parallel
#pragma acc loop // independent is automatically enforced
for(int i;i<n;i++)
 for(int k;k<n;k++)
#pragma acc loop seq
 for(int j;j<n;j++)
 c[i][j][k] = 2.*c[i][j+1][k];

OpenACC reduction

● The reduction clause on a loop specifies a reduction operator on one or
more scalar variables
– For each variable, a private copy is created for each thread executing the associated

loops

– At the end of the loop, the values for each thread are combined using the reduction clause

● Common operators are supported: + * max min && ||

#pragma acc parallel loop reduction(max:err) shared(A,Anew,m,n)
for(int j = 1; j < n-1; j++) {
 for(int i= 1; i< m-1; i++) {
 Anew[j][i] = 0.25 * (A[j][i+1]+A[j][i-1]+A[j-1][i]+A[j+1][i]);
 err = max(err, abs(Anew[j][i] -A[j][i]);
 }
}

OpenMP 4.5

● Spec. available since Nov. 2015
● Already implemented in:

– GCC 6.0 (almost)

– Clang

● Similar directives but:
– No independent clause

– No kernels, you have to be the paranoid!

OpenMP 4.5

● target
● teams
● distribute
● parallel
● for / do
● simd
● is_device_ptr(...)

● parallel / kernels
● parallel / kernels
● loop gang
● parallel / kernels
● loop worker or loop gang
● loop vector
● deviceptr(...)

PGAS model

● Partitioned Global Address Space (PGAS) programming model
● Assumes a global memory address space that is logically

partitioned and a portion of it is local to each process or thread.
● A process can directly access a memory portion owned by

another process.
● Combine the advantages of a SPMD programming style for

distributed memory systems (as employed by MPI) with the
data referencing semantics of shared memory systems.

PGAS Model

● Unified Parallel C (UPC)
● CoArray Fortran (CAF)
● X10 (IBM)
● Chapel (CRAY, chapel.cray.com)

PGAS model

Memory models

Thread Count Memory Count Nonlocal Access

Serial 1 1 N/A

OpenMP 1 to p 1 N/A

MPI p p No. Use
messages.

UPC, CAF p p YES

X10, Chapel p q YES

Coarray

● Cray Compiler (Gold standard - Commercial)
● Intel Compiler (Commercial)
● GNU Fortran (Free - GCC)
● Rice Compiler (Free - Rice University)
● OpenUH (Free - University of Houston)

Unified Parallel C

● extension of the C Programming language
designed for high performance computing on
large-scale parallel machines

● Same concept of CAF
● Cray compilers, as well as through Berkeley

UPC

CAF – basic rules

● A program is treated as if it were replicated at the start of
execution (SPMD), each replication is called an image.

● Each image executes asynchronously.
● An image has an image index, that is a number between

one and the number of images, inclusive.
● A coarray is indicated by trailing [].

a(2)[*]

P0 P1 P2

0 1 0 1 0 1

0 1 2

C o-Arr a y Fortr an:

Plac es:

Arr a y:

Loc al Inde x es:

C o Inde x es:

CAF – basic rules

● A coarray could be a scalar or array, static or
dynamic, and of intrinsic or derived type.

● A data object declared without trailing [] is local.
● If not specified, coarrays on local image are

accessed.
● Explicit synchronization statements are used to

maintain program correctness

CAF – basic rules

● When we declare a coarray variable the
following statements are true:
– The coarray variable exists on each image.

– The coarray name is the same on each image.

– The size is the same on each image.

x(:) = y(:)[q]

CAF memory decalration

! Scalar coarray
integer :: x[*]

! Array coarray
real , dimension(n) :: a[*]

! Another array declaration
real , dimension(n), codimension [*] :: a

! Scalar coarray corank 3
integer :: cx[10 ,10, *]

! Array coarray corank 3

! different cobounds
real :: c(m,n) :: [0:10 ,10 ,*]

! Allocatable coarray
real , allocatable :: mat (: ,:)[:]
allocate(mat(m,n)[*])

! Derived type scalar coarray
type(mytype) :: xc[*]

CAF segments

● A segment is a piece of code between synchronization points. Sync
are SYNC ALL, SYNC MEMORY, SYNC IMAGES

● The compiler is free to apply optimizations within a segment.
● Segments are ordered by synchronization statement and automatic

sync happens at dynamic memory actions ([de]allocate).

real :: p[*] ! :
! Segment 1

sync all
if (this_image ()==1) then ! Segment 2
 read (*,*) p ! :
 do i = 2, num_images () ! :
 p[i] = p ! :
 end do ! :
end if ! Segment 2
sync all

! Segment 3

CAF segments

● A segment is a piece of code between synchronization points. Sync
are SYNC ALL, SYNC MEMORY, SYNC IMAGES

● The compiler is free to apply optimizations within a segment.
● Segments are ordered by synchronization statement and automatic

sync happens at dynamic memory actions ([de]allocate).

real :: p[*] ! :
! Segment 1

sync all
if (this_image ()==1) then ! Segment 2
 read (*,*) p ! :
 do i = 2, num_images () ! :
 p[i] = p ! :
 end do ! :
end if ! Segment 2
sync all

! Segment 3

OpenCL

● Similar to CUDA, but even more low level
● Targets all kind of accelerators!
● If you have CUDA kernels, you may get OpenCL kernels rather

easily
● Experience: performance not as good as CUDA
● Missing Fortran direct access (C wrap needed)
● Lot of code available, reuse possible.
● Open standard maintained by a non-profit technology

consortium (Khronos Group).

ROCm

● Alternative to CUDA for (multi) GPU
programming

● Extremenly new (started in 2016)
– HC C++ API: C++ 11/14 compiler

– HIP: Tools and API to convert CUDA to portable C++
API.

Let’s take a breath and look
around...

http://llvm-hpc2-workshop.github.io/slides/Tian.pdf

Take home message

● Complexity will increase
– Many GPUs

– Many different many Core chips

– FPGA (?)

Take home message

● Accelerators’ architecture is evolving quickly
– Eg. AMD heavily targeting GPGPU for scientific computation lately.

● Portability is recommended for today and for tomorrow
– Code maintenance

– Code evolution

● Open standards (eg. OpenACC, OpenMP) must be considered.
– Code not bound to a specific company’s will/fate.

– Community effort for standardization, evolution and support.

● Choose a reasonable compromise between readability, maintainability and
performance.

Take home message

● Use libraries
● Separate computation intensive part from the

main code: separate independent
components. (Eg. Hamiltonian construction & solution)

● Think of data distribution/locality
● Facilitate overlap of communication and

computation

Take home message

	Slide 1
	Slide 2
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95

