
Software engineering
for scientists
Paolo Ciancarini – paolo.ciancarini@unibo.it
Department of Informatics – University of Bologna

25th Summer School
on Parallel Computing

Bologna May 15 2017

Agenda

 Engineering software for science

 The software development lifecycle

 Sw development best practices in HPC

2

Making software for science

• The software is not the end goal in itself

• Performance is a key quality (HPC)

• Time limitations

• Target audience are expert

• Coders often from research domains

• Individual “ownership” of software
products common

3

4

Why a lecture on Software Engineering?

Although productivity and quality of software crafting for
HPC is on demand, not much interest from the “scientific”
user community in SwEng. Why?

 The goal is to publish results. Not productivity or quality.
(computational scientists vs. software engineers).

 In HPC increasing performance is a goal, other qualities are less
important

 Productivity is not really measured

 Quality of research products is not measured at all

Software Engineering for HPC

 SwEng deals with designing, implementing, and
modifying software so that it is faster to build, of
higher quality, more usable and maintainable

 In HPC we have all the problems of software
development, plus the specific problem that
developers have little knowledge of software
engineering best practices

 In this lecture we will deal with some of these
problems and suggest some solutions

5

Targets of sw engineering

 The quality of the software products

 The process by which quality products
are built

 Tools and practices to obtain quality
products

6

Software qualities

7

What is software quality?

 Software functional quality (internal) reflects how well it
complies with or conforms to a given specification, based
on some functional requirements

 Software structural quality (external) refers to non-
functional qualities, like performance or cost

 Software quality in use refers to how well it satisfies
actual users’ needs

IMPORTANT: Software qualities can be measured!

8

Do you agree?

 Scientists want to repeatedly tweak queries and analyses on
their data sets and get immediate feedback. As long as you can
clearly explain what you did to get the results published in a
scientific paper, you don't need to pursue the code any further

 As science becomes increasingly computational in nature, it will
become more important that scientific code does not end its
development cycle on publication of the paper.

 Data exploration drives primary scientific discovery, but in order
for future scientists to fully leverage the work of their
predecessors, robust, reproducible, and sustainable software
is needed to automate the parts we already know how to do

9D.Huang, Scientific coding and software engineering: what's the difference?, SSI, 2015

Software qualities: examples

 Robust software: able to cope with
errors during execution

 Reproducible software: version control

 Sustainable software: long lasting
software able to cope with changes

10

Reproducibility

 Tracking and recreating every step of your
work – including testing

 Git: an enabling tool – use version control for
everything
 Paper writing

 Grant writing

 Everyday research

 Advantages:
 A time machine view tracking every result

 Distributed backup

 Collaborate with collegues
11

Git
 Efficient distributed version control system

 Advanced branching mechanisms

 Many hosting services available online

 GitHub (github.com)
 Hosting service

 Developers community

 Web-based interface

 Access control

 Collaboration features (including wikis, etc.)

13

Git
flow

14hnvie.com/posts/a-successful-git-branching-model/

Reproducibility of experiments based on sw

 Software publications coming of age

 Example: SoftwareX (Elsevier)

 Your software should be be available,
credited, versioned, licensed, citable

15
www.elsevier.com/authors/author-services/research-elements/software-articles/original-software-publications

Example: a study about how software
is mentioned in scientific papers

 Paper: Howison & Bullard, Software in the scientific literature:
Problems with seeing, finding, and using software mentioned in
the biology literature, JAIST 67:9, 2016

 Random sample of 90 biology articles

 Software is formally cited only 40% of times

 Software is frequently inaccessible (15%–29% of packages in
any form; between 90% and 98% of specific versions; only
between 24-40% provide source code).

 Cites to publications are poor at providing version information,
whereas informal mentions are poor at providing crediting
information.

16

Software development: typical problems

 Unacceptable software performance

 Software hard to maintain or extend

 Inaccurate understanding of user needs

 Inability to deal with changing needs
(requirements)

 Late discovery of serious flaws

 poor software quality

17

Beware of software aging!
Software can age

 Ill-conceived design or
modifications

 Functional operation degrades
over time

 It becomes unsustainable,
unusable

 Lack of proper maintenance

 Infrastructure (os, libraries,
language platform) evolves

 Some software types more
susceptible

Poor practices for sw development

 Under-evaluation of development risks

 Overwhelming complexity

 Ambiguous communication

 Insufficient testing

 Insufficient requirements management

 Inconsistencies among requirements,
designs, implementations, and tests

 Fragile software architecture

19

Best practices of software development

 Develop iteratively

 Control changes

 Manage requirements

 Verify quality

 Use components

 Model software architecture visually

20

30 21

Develop Iteratively

Control
Changes

Use
Component

Architectures

Manage
Requirements

Model
Visually

Verify
Quality

Best practices of software development

Know these!

Enters Software Engineering

“Software engineering is the discipline concerned
with all aspects of software production from the
early stages of system specification to maintaining
the system after it has gone into use”

[Sommerville 2007]

22

Software Engineering

“The establishment and use of sound
engineering principles in order to obtain
economically software that is reliable and works
efficiently on real machines.” [Naur & Randell,
1968]

23

Software Engineering

 A definition and some issues
 “developing quality software on time and within

budget”

 Trade-off between a system perfectly
engineered and the available resources
 SwEng has to deal with real-world issues

 State of the art
 Community decides on “best practices” + life-long

education

24

What is Software Engineering?

A naive view:

Problem Specification Final Program

But ...
 Where did the problem specification come from?

 How do you know the problem specification corresponds to and
satisfies the user’s needs?

 How did you decide how to structure your program?

 How do you know the program actually meets the specification?

 How do you know your program will always work correctly?

 What do you do if the users’ needs change?

 How do you divide tasks up if you have more than a one person in
the developing team?

 How do you reuse exisiting software for solving similar problems?

coding

25

What is Software Engineering?

“multi-person construction of multi-version software”

— Parnas

 Software is complex and difficult to build

 Team-work
 Scale issue (“program well” is not enough) +

communication issues: Conway’s law

 Successful software systems must evolve or
perish
 Changes to the software is the norm, not the exception

26

Conway’s Law

 The law: Organizations that design software
systems are constrained to produce designs
that are copies of the communication
structures of these organizations

 Example: "If you have four groups working on
a compiler, you'll get a 4-pass compiler”

 Several studies found significant differences
in modularity when software is outsourced,
consistent with a view that distributed teams
tend to develop more modular products

27

Challenges

 Technical
 All parts of the cycle can be under research

 Needs change throughout the lifecycle as
knowledge grows

 Verification complicated by floating point
representation

 Sociological
 Real world is messy, so is the software

 Need for interdisciplinary interactions

 Competing priorities and incentives

 Limited resources

 Perception of overhead without benefit 28

What is Software Engineering?

“software engineering is different from other
engineering disciplines”

— Sommerville

 It is not constrained by physical laws
 limit = human knowledge

 It is constrained by social forces
 Balancing stakeholders needs
 Consensus on functional and especially

non-functional requirements

29

Development
process

Requirements

Tools

Sw quality

Project
management

Software
design

Testing

Coding

Configuration
management

Evolution

Software
Engineering

IPR &
licensing

Topics of the discipline

 Product and process standards for software
 Project management for software systems
 Software development models: planned vs agile
 Requirement analysis
 Software design by visual modeling
 Measuring, verifying, and ensuring software quality
 Software evolution and maintenance
 Typical tools used by software engineers:

 Version control, configuration management

Some international standards on sw

 ISO/IEC 6592:2000, Guidelines for the documentation of
computer-based application systems

 ISO/IEC 9126:1991, Product quality characteristics

 ISO 9127:1988, User documentation and cover information for
consumer software packages

 ISO/IEC TR 9294:1990, Management of software
documentation

 ISO/IEC 12119:1994, Software packages: Quality requirements
and testing

 ISO/IEC TR 12182:1998, Categorization of software

 ISO/IEC 12207:1995, Software life cycle processes

 ISO/IEC 14143-1:1998, Functional size measurement

32

Roadmap

 Engineering software for science

 The software development lifecycle

 Sw development best practices in HPC

33

Software: the product of a process

 Many kinds of software products
 many kinds of development processes

 “Study the process to improve the product”

 A software development process can be
described according to some specific “model”

 Examples of process models: waterfall, iterative,
agile, explorative,…

 These models differ mainly in the roles and
activities that the stakeholders cover

34

Stakeholders

Typical stakeholders in a sw process
 Users
 Decisors
 Designers
 Management
 Technicians
 Funding people
 …

Each stakeholder has a specific viewpoint on
the product and its development process

35

Just a joke?

The software development process
 Software process: set of roles,

activities, and artifacts necessary to
create a software product

 Example roles: stakeholder, designer,
developer, tester, maintainer, ecc.

 Example artifacts: source code,
libraries, comments, test suites, etc.

37

Activities

 Each organization differs in the products it
builds and the way it develops them; however,
most development processes include:
 Specification
 Design
 Verification and validation
 Evolution

 The development activities must be modeled
to be managed and supported by automatic
tools

38

Software development activities
Requirements
Collection

Establish customer’s needs

Analysis Model and specify the requirements (“what”)

Design Model and specify a solution (“how”)

Implementation Construct a solution in software

Testing Validate the software against its requirements

Deployment Making a software available for use

Maintenance Repair defects and adapt the sw to new requirements

NB: these are ongoing activities, not sequential phases!

39

Traditional approach

Sw development is a sequence including the following phases:

 Requirements Analysis

 Design

 Coding

 Testing: first check the units, then the system

The entire development process goes through these phases linearly:
first all the requirements are defined, then the design is completed, and
finally the code is written and tested.

The key assumptions are that when design begins, requirements no longer
change. When coding starts, the design ceases to change. etc.

NB: This “traditional” approach is sometimes called "waterfall development”

40

Models for the software process

A model for the sofware development
process is a method to describe the roles,
the tasks, and the documents to be
developed

 Waterfall (planned, linear)

 Spiral (planned, iterative)

 Agile (unplanned, test driven)

41

Waterfall characteristics
 One way communicatons

 Delays confirmation of
critical risk resolution

 Measures progress by
assessing work-products
that are poor predictors of
time-to-completion

 Delays and aggregates
integration and testing

 Precludes early
deployment

 Frequently results in major
unplanned iterations

Code and unit test

Design

Subsystem integration

System test

Waterfall Process

Requirements
analysis

42

The classical software lifecycle

The classical
software lifecycle

models the software
development as a

step-by-step
“waterfall” between

the various
development phases

The waterfall model is flawed for many reasons:
• Requirements must be frozen too early in the life-cycle

• User requirements are validated too late
• Risks in costructing wrongly the software are high

Design

Implementation

Testing

Maintenance

Analysis

Requirements
Collection

43

Problems with the waterfall lifecycle

1. “Real projects rarely follow the sequential flow that the
waterfall model proposes. Iteration always occurs and creates
problems in the application of the paradigm”

2. “It is often difficult for the customer to state all requirements
explicitly. The classic life cycle requires this and has difficulty
accommodating the natural uncertainty that exists at the
beginning of many projects.”

3. “The customer must have patience. A working version of the
program(s) will not be available until late in the project
timespan. A major blunder, if undetected until the working
program is reviewed, can be disastrous.”

— Pressman, SE, p. 26

44

Iterative development

In practice, development is always iterative,
and most activities can progress in parallel

Requirements
Collection

Testing

Design

Analysis
Validation through prototyping

Testing based on requirements

Testing throughout implementation

Maintenance through iteration

Design through refactoring

If the waterfall
model is pure

fiction, why is it
still the dominant

software process?

Implementation

45

Iterative development

 Plan to iterate your analysis, design and
implementation
 You will not get it right the first time, so

integrate, validate and test as frequently as
possible

 During software development, more than one
iteration of the software development cycle
may be in progress at the same time

 This process may be described as an
'evolutionary acquisition' or 'incremental build'
approach

46

Incremental development

Plan to incrementally develop (i.e.,
prototype) the system
 If possible, always have a running version

of the system, even if most functionality is
yet to be implemented

 Integrate new functionality as soon as
possible

 Validate incremental versions against user
requirements.

47

The spiral lifecycle

evolving system

initial requirements

first prototype

alpha demo

go, no-go decisioncompletion Non è possibile v isualizzare l'immagine.

Planning =determination
of objectives, alternatives
and constraints

Risk Analysis =Analysis of
alternatives and identification/
resolution of risks

Customer Evaluation =
Assessment of the
results of engineering

Engineering =
Development of the
next level product

Risk = something that
will delay project or
increase its cost

48

Risk Reduction

TimeTime

R
is

k
R

is
k

Waterfall Risk

Iterative Risk

Risk: waterfall vs iterative

49

First development step: requirements

 The first step in any development
process consists in understanding the
needs of someone asking for a software

 The needs should be stated explicitly in
“requirements”, which are statements
requiring some function or property to
the final software system

50

The requirements pyramid
Some user has some need

Needs are answered by “features” that
some system must have

Each feature corresponds to a need and
is a collection of requirements

Features and requirements can be
aggregated in “scenarios”: after the code
is built, testing it in the scenario will prove
that its features satisfy the user’s needs

www.ibm.com/developerworks/rational/library/04/r-3217
51

Beware your requirements
• Most errors are introduced during requirements

analysis and design

• The later an error is detected, the more expensive
it is to address

• 1 hour to fix in the design

• 10 hours to fix in the code

• 100 hours to fix after it’s gone live…

time

n
u

m
b

e
r

/ c
o

s
t

Requirements collection

User requirements are often expressed informally:

 They are grouped in features

 They are put in context in usage scenarios

Even if requirements are documented in written form,
they may be incomplete, ambiguous, or incorrect

53

Changing requirements

Requirements will change!
 inadequately captured or expressed in the first place

 user and business needs may change during the
project

Validation is needed throughout the software
lifecycle, not only when the “final system” is
delivered!
 build constant feedback into your project plan

 plan for change

 early prototyping [e.g., UI] can help clarify
requirements

54

Design

Design is the process of specifying how the
specified system behaviour will be realized
from software components. The results are
architecture and detailed design documents.
Object-oriented design delivers models that describe:
 how system operations are implemented by

interacting objects
 how classes refer to one another and how they are

related by inheritance
 attributes and operations associated to classes

Design is an iterative process,
proceeding in parallel with

implementation!
55

Implementation and testing

Implementation is the activity of
constructing a software solution to the
customer’s requirements.

Testing is the process of verifying that the
solution meets the requirements.

 The result of implementation and testing is
a fully documented and verified solution.

56

Invite others to read your code

• Rigorous inspections can remove 60-90% of
errors before first test is run

• Fagan (1975) “Design and Code Inspections to Reduce Errors
in Program Development"

• The first review and hour matter most
• Cohen (2006) “Best Kept Secrets of Peer Code Review”

• Develop code in small, readable, reviewable
chunks

58

Requirements and tests

User
requirements

Test reqs

Scenarios and
test cases

Test script

Errors tend to socialize
• About 80% of the defects come from 20%

of the modules, while about half the
modules are error free
• Boehm and Basili (2001)

• When you identify more errors than
expected in some program module, keep
looking!

60

Types of testing

Acceptance testing (by the user)

Performance testing

System testing

Integration testing

Unit testing

Testing before designing

 What is software testing? an investigation
conducted to provide information about the
quality of some software product

 In planned process models testing happens
after the coding, and checks if the code
satisfies the requirements

 What happens if we define the tests before
the code they have to investigate?

61

Agile development processes

 There are many agile development methods;
most minimize risk by developing software in
short amounts of time

 The requirements are initially grouped in
stories and scenarios

 Then the tests for each scenario are agreed
with the user, before any code is written

 Each code is tested against its scenario tests,
and integrated after it passes its unit tests

62

Working Software
Delivered

Requirements
Prioritised Requirements &
Features “Backlog”Requirements

Requirements
Requirements

Requirements

Prioritised
Iteration
Scope

Daily Scrum Meeting:
15 minutes
Each teams member answers 3 questions:
1) What did I do since last meeting?
2) What obstacles are in my way?
3) What will I do before next meeting?

Team-Level
Planning Every 24hrs

Every Iteration
4-6 weeks

Applying Agile:
Continuous integration; continuously monitored progress

SCRUM

63

From Version Control
to Continuous Integration

 When a new version is ready, a number of
quality control activities can be executed
 Testing
 Analysis
 …

 Why not executing them regularly?
 Or after every commit?

Legacy code

 Code without tests is bad code.

 It does not matter how well written it is;
it does not matter how pretty or
structured or well-encapsulated it is.

 With tests, we can change the behavior
of our code quickly and verifiably.

 Without them, we really don't know if
our code is getting better or worse.

65

Build and test

1

• Provide automated build process
• Far easier & quicker to validate changes
• e.g. Make, Ant, Maven

2

• Provide automated regression test suite - TDD
• Do changes break anything?
• JUnit, CPPUnit, xUnit, fUnit, …

3
• Join together: automated build & test

• A ‘fail-fast’ environment

4

• Infrastructure support
• Nightly builds – run build & test overnight, send reports
• Continuous integration - run build & test when codebase changes

anytime releasable code!

Example: a Continuous Integration Policy

 A time (say 5pm) for delivery of system components is
agreed

 A new version of a system is built from these
components by compiling and linking them

 The new version is tested using pre-defined tests
 See the second part of the lecture for information about testing

and analysis

 Faults that are discovered during testing time are
documented and returned to the system developers

Requirements,
models

and code

Tests

Iteration 1

Test Suite 1

Iteration 2

Test Suite 2

Iteration 4

Test Suite 4

Iteration 3

Test Suite 3

Test each iteration

68

Iterativity of design, Implementation and testing

Design, implementation and testing are iterative activities
 The implementation does not “implement the

design”, but rather the design document documents
the implementation!

 System tests reflect the requirements specification
 Testing and implementation go hand-in-hand

 Ideally, test case specification precedes design and
implementation

69

Maintenance

Maintenance is the process of changing a system after
it has been deployed.

 Corrective maintenance: identifying and repairing
defects

 Adaptive maintenance: adapting the existing solution
to new platforms

 Perfective maintenance: implementing new
requirements

 Preventive maintenance: repairing a software
product before it breaks

In a spiral lifecycle, everything after the
delivery and deployment of the first prototype
can be considered “maintenance”!

70

Maintenance activities

“Maintenance” entails:

 configuration and version management

 reengineering (redesigning and
refactoring)

 updating all analysis, design and user
documentation

Repeatable, automated
tests enable evolution

and refactoring

71

Maintenance costs

“Maintenance”
typically accounts for

70% of software costs!

Means: most
project costs

concern continued
development after

deployment

– Lientz 1979

72

Roadmap

 Engineering software for science

 The software development lifecycle

 Sw development best practices in HPC

73

Eroic programming

 Spending huge amounts of (coding) effort by talented
people to overcome shortcomings in software
process, management, architecture configuration or
any other shortfalls in the execution of a development
project in order to complete it

 Heroic Programming is often the only course of
action left when poor planning, insufficient funds, and
impractical schedules leave a project stranded and
unlikely to complete successfully

74

Best practices for scientific computing

 Write programs for people, not computers

 Use a tool to automate workflows

 Make incremental changes, use a version control
system

 Try to reuse code instead of rewriting it

 Plan for finding mistakes

 Optimize software only after it works correctly

 Document design and purpose (not mechanics)

 Collaborate (eg. by pair programming or by using an
issue tracking tool)

75Wilson et al., Best Practices for Scientific Computing, PLOS Biology 2014

76

Sw development in HPC

 Waterfall is not used in HPC

 Near the application level (tools - libraries)

 Standard is test-driven development

 Tight development loop: requirements, development and
documentation, evaluation, test, deploy.

 Orientation towards minimized maintenance

 Thorough testing: unit, functional, system, integration, at scale
(time dedication)

 Instrument codes at the application level are tested too for
development and acceptance.

 End-to-end testing using codes.

Risks when developing HPC sw

 Risks in sw development cycle

 Risks in the development environment

 Risks in the programming environment

See: Kendall, A Proposed Taxonomy for Software Development Risks for High-
Performance Computing (HPC) Scientific/Engineering Applications, SEI 2007

77

Examples

 Typical risk in the development cycle:
misunderstanding requirements

 Typical risk in the development
environment: too many manual activities

 Typical risk in the programming
environment: underestimating
dependencies

78

HPC stakeholders attributes

79

V.Basili et al., Understanding the High-Performance-
Computing Community: A Software Engineer’s

Perspective, IEEE Software, 2008

A process for HPC [Lugato 2010]

80

Community codes

 Popularizing the code alone does not build a community:
different users want different capabilities

 Enabling contributions from users and providing support for
them

 Including policy provisions for balancing the IP protection with
open source needs

 Relaxed distribution policies – giving collective ownership to
groups of users so they can modify the code and share among
themselves as long as they have the license

 More inclusivity => greater success in community building

 An investment in robust and extensible infrastructure, and a
strong culture of user support is a pre-requisite

81

Community codes

 Open source with a governance structure in place

 Trust building among teams

 Commitment to transparent communications

 Strong commitment to user support

 Either an interdisciplinary team, or a group of people
comfortable with science and code development

 Attention to software engineering and documentation

 Understanding the benefit of sharing as opposed to being
secretive about the code

82

flash.uchicago.edu/cc2012/

Measuring software

 How can we measure the impact of a scientific
software package over time?

 When a system has no price, no purchase contracts
and no buyers or sellers it can be difficult to judge its
impact on the world

 We should try to measure its usage, quality,
reusability, and sustainability in order to
understand how much it should be rewarded

83

www.software.ac.uk/blog/2017-05-09-software-metrics-why-and-how

Measuring the use

 Depsy depsy.org
 www.nature.com/news/the-unsung-heroes-of-scientific-software-1.19100

 Depsy counts the uses of your software
stored under github

84

Deployment

 Virtual Machines
 Easy: Software pre-installed, ready to run
 Not enough in itself – documentation!

 Release software
 Prioritise & select requirements -> Develop -> Test ->

Commit changes to repository -> Test -> Release
 Documentation (minimum: quick start guide)

 Licencing
 Specify rights for using, modifying and redistributing

Configuration management

 Run your own CM system, if you have the resources
 Generally easy to set up
 Full control, but be sure to back it up!

 Some public solutions can offer most of these for free
 SourceForge, GoogleCode, GitHub, Codeplex, Launchpad,

Assembla, Savannah, …
 BitBucket for private code base (under 5 users)
 See (for hosting code and related tools)

http://software.ac.uk/resources/guides/choosing-repository-
your-software-project

 See (for hosted continuous integration)
http://www.software.ac.uk/blog/2012-08-09-hosted-
continuous-integration-delivering-infrastructure

“If you’re not using version control, whatever else you might be doing with a
computer, it’s not science” – Greg Wilson, Software Carpentry

Version control

 Version management allows you to control and
monitor changes to files
 What changes were made?

 Revert to previous versions

 When were changes made ?

 What code was present in release 2.7?

 Earliest tools were around 1972 (SCCS)

 Older tools – RCS, CVS, Microsoft Source Safe,
PVCS Version Manager, etc…

 Current tools – Subversion, Mercurial, Git,
Bazaar

88

89

90

Version control concepts

 checkout – get a local copy of the files
 I have no files yet, how do I get them?

 add – add a new file into the repository
 I created a new file and want to check it in

 commit – send locally modified files to the
repository
 I made changes, how do I send them to the group?

 update – update all files with latest changes
 Other people made changes, how do I get them?

 tag / branch – label a “release”
 I want to “turn in” a set of files

Conclusions

Software engineering deals with
 the way in which software is made (process),

 the languages to model and implement
software,

 the tools that are used, and

 the quality of the result (testing and measures)

92

Self test questions

 How does Software Engineering differ from
programming?

 Why is the “waterfall” model unrealistic?

 What is the difference between analysis and design?

 Why plan to iterate? Why develop incrementally?

 Why is programming only a small part of the cost of a
“real” software project?

93

Reference: papers

 V.Basili et al., Understanding the High-Performance- Computing
Community: A Software Engineer’s Perspective, IEEE Software, 2008

 G. Wilson et al., Best Practices for Scientific Computing. PLoS Biol
12(1), 2014

 Kendall et al., A Proposed Taxonomy for Software Development Risks
for High-Performance Computing (HPC) Scientific/Engineering
Applications, TN-039 CMU, 2007

 D.Lugato et al., Model-driven engineering for HPC applications, Proc.
Modeling Simulation and Optimization Focus on Applications, Acta
Press (2010): 303-308.

94

References: books

 Pressman, Software engineering a practictioner
approach, 8th ed., McGrawHill, 2014

 The Computer Society, Guide to the Software
Engineering Body of Knowledge, 2013
www.computer.org/portal/web/swebok

95

Useful references

 software.ac.uk Software Sustainability Institute

 software.ac.uk/resources/case-studies

 software-carpentry.org Software carpentry
 www.software.ac.uk/blog/2016-09-26-scientific-coding-and-software-engineering-whats-difference

 Proc. 2016 Int. Workshop on Sw Engineering for HPC in Science

 www.journals.elsevier.com/softwarex/

 ccpforge.cse.rl.ac.uk/gf/

96

Questions?

http://xkcd.com/844/

