
Overview of the Intel®
Xeon and Xeon Phi technologies
Broadwell and Knights Landing

Fabio Affinito (SCAI - Cineca)

Intel® Xeon Processor Architecture

Intel® Xeon® Processor E5-2600 v4 Product Family - TICK

Typically, Increases in Transistor Density Enables New Capabilities, Higher
Performance Levels, and Greater Energy Efficiency

Haswell

BROADWELL

Sandy
Bridge

Ivy Bridge

Nehalem

Westmere

32nm 22nm 14nm45nm

Nehalem
Microarchitecture

Sandy Bridge
Microarchitecture

Haswell
Microarchitecture

TICK

TOCK

3

Features Xeon E5-2600 v3 (Haswell-EP) Xeon E5-2600 v4 (Broadwell-EP)

Cores Per Socket Up to 18 Up to 22

Threads Per Socket Up to 36 threads Up to 44 threads

Last-level Cache (LLC) Up to 45 MB Up to 55 MB

QPI Speed (GT/s) 2x QPI 1.1 channels 6.4, 8.0, 9.6 GT/s

PCIe* Lanes / Speed(GT/s) 40 / 10 / PCIe* 3.0 (2.5, 5, 8 GT/s)

Memory Population 4 channels of up to 3 RDIMMs or 3
LRDIMMs + 3DS LRDIMM†

Memory RAS
ECC, Patrol Scrubbing, Demand

Scrubbing, Sparing, Mirroring,
Lockstep Mode, x4/x8 SDDC

+ DDR4 Write CRC

Max Memory Speed Up to 2133 Up to 2400

TDP (W) 160 (Workstation only), 145, 135, 120, 105, 90, 85, 65, 55

◊ Requires BIOS and firmware update; ^ not available broadly on E5-2600 v3; † Depends on market availability

Intel® Xeon® Processor
E5-2600 v4

Core Core

Core Core

Core Core

Shared Cache

QPI

QPI

2x Intel® QPI
1.1

4 Channels DDR4

40 Lanes PCIe*
3.0

DMI2

DDR4

DDR4

DDR4

DDR4

4

Intel® Xeon® E5-2600 v4 Product Family Overview

New Features:
▪ Broadwell microarchitecture
▪ Built on 14nm process technology

▪ Socket compatible◊ replacement/ upgrade
on Grantley-EP platforms

New Performance Technologies:
▪ Optimized Intel® AVX Turbo mode
▪ Intel TSX instructions^

Other Enhancements:
▪ Virtualization speedup
▪ Orchestration control
▪ Security improvements

5

Intel® Xeon® Processor E5-2600 v4 Product Family MCC/LCC

Intel® Xeon® Processor E5-2600 v4 Product Family HCC

6

High core count (HCC) die
configuration
• Used by SKUs with 16 to 22

cores
• E5-2699 v4
• E5-2698 v4
• E5-2697 v4
• E5-2697A v4
• E5-2695 v4
• E5-2683 v4

• For each core
• 2.5M last level cache (LLC)
• Caching agent (CBO)

• For each ring
• Home agent (HA)
• Memory Controller with 2

DDR4 channels

What’s next …

7

• Broadwell (code name) E7 (4-socket server processor models)

• Skylake (code name) server (E5 and E7)
• Micro-architecture launched in client processors Sep. 2015

• Intel® AVX-512 (only for server)

• Expect a lot of additional, key changes

• FPGA and Xeon server integration

• NVM (non-volatile memory) - 3D XPoint™ Technology

Intel® Many Integrated Core Architecture
(Intel® MIC)

Intel® Xeon Phi™ Coprocessor

Non è possibile v isualizzare l'immagine.

22 nm process
Up to 61 Cores
Up to 16GB Memory

2013:
Intel® Xeon Phi™
Coprocessor x100
Product Family

“Knights Corner”

2016:
Second
Generation Intel®
Xeon Phi™

“Knights Landing”

14 nm
Processor &
Coprocessor
+60 cores
On Package, High-
Bandwidth Memory

Future Knights:
Upcoming Gen of
the Intel® MIC
Architecture

In planning
Continued roadmap
commitment

*Per Intel’s announced products or planning process for future
products

Intel® Xeon Phi™ Product Family
based on Intel® Many Integrated Core (MIC) Architecture

Knights Landing: Next-Generation Intel® Xeon Phi™

Mesh of Rings

▪ Every row and column is a (half) ring

▪ YX routing: Go in Y → Turn → Go in X

▪ Messages arbitrate at injection and on turn

Cache Coherent Interconnect

▪ MESIF protocol (F = Forward)

▪ Distributed directory to filter snoops

Three Cluster Modes

(1) All-to-All

(2) Quadrant

(3) Sub-NUMA Clustering (SNC)

KNL Mesh Interconnect

11

Address uniformly hashed across all
distributed directories

No affinity between Tile, Directory and
Memory

Lower performance mode, compared to
other modes. Mainly for fall-back

Typical Read L2 miss

1. L2 miss encountered

2. Send request to the distributed directory

3. Miss in the directory. Forward to memory

4. Memory sends the data to the requestor

Cluster Mode: All-to-All

12

Chip divided into four virtual Quadrants

Address hashed to a Directory in the same
quadrant as the Memory

Affinity between the Directory and Memory

Lower latency and higher BW than all-to-all.
Software transparent.

1. L2 miss, 2. Directory access, 3. Memory access,
4. Data return

Cluster Mode: Quadrant

13

Each Quadrant (Cluster) exposed as
a separate NUMA domain to OS

Looks analogous to 4-Socket Xeon

Affinity between Tile, Directory and
Memory

Local communication. Lowest latency
of all modes

Software needs to be NUMA-aware
to get benefit

Cluster Mode: Sub-NUMA Clustering (SNC)

14

1. L2 miss, 2. Directory access, 3. Memory access, 4. Data return

15

KNL Core and VPU
Out-of-order core w/ 4 SMT threads
VPU tightly integrated with core pipeline
2-wide decode/rename/retire
2x 64B load & 1 64B store port for D$
L1 prefetcher and L2 prefetcher
Fast unaligned and cache-line split support
Fast gather/scatter support

Large impact: Intel® AVX-512 instruction set
– Slightly different from future Intel® Xeon™ architecture AVX-512 extensions
– Includes SSE, AVX, AVX-2
– Apps built for HSW and earlier can run on KNL (few exceptions like TSX)
– Incompatible with 1st Generation Intel® Xeon™ Phi (KNC)

Medium impact: New, on-chip high bandwidth memory (MCDRAM) creates
heterogeneous (NUMA) memory access
– can be used transparently too however

Minor impact: Differences in floating point execution / rounding
due to FMA and new HW-accelerated transcendental
functions - like exp()

16

Software Adaption for KNL – Key New Features

AVX-512 - Greatly increased Register File

XMM0-15
16- bytes

YMM0-15
32 bytes

ZMM0-31
64 bytes

SSE
AVX2

AVX-512

0

15

31

Vector Registers IA32
(32bit)

Intel64 (64bit)

SSE
(1999)

8 x 128bit 16 x 128bit

AVX and AVX-2
(2011 / 2013)

8 x 256bit 16 x 256bit

AVX-512
(2014 – KNL)

8 x 512bit 32 x 512bit

The Intel® AVX-512 Subsets [1]

❑ Comprehensive vector extension for HPC and enterprise
❑ All the key AVX-512 features: masking, broadcast…
❑ 32-bit and 64-bit integer and floating-point instructions
❑ Promotion of many AVX and AVX2 instructions to AVX-512
❑ Many new instructions added to accelerate HPC workloads

AVX-512 F: 512-bit Foundation instructions common between MIC and Xeon

❑ Allow vectorization of loops with possible address conflict
❑Will show up on Xeon

AVX-512 CD (Conflict Detection instructions)

❑ fast (28 bit) instructions for exponential and reciprocal and transcendentals (as well as RSQRT)
❑ New prefetch instructions: gather/scatter prefetches and PREFETCHWT1

AVX-512 extensions for exponential and prefetch operations

AVX-512 F

AVX-512CD

AVX-512ER

AVX-512PR

The Intel® AVX-512 Subsets [2]
❑ All of (packed) 32bit/64 bit operations AVX-512F doesn’t provide
❑ Close 64bit gaps like VPMULLQ : packed 64x64 ➔ 64
❑ Extend mask architecture to word and byte (to handle vectors)
❑ Packed/Scalar converts of signed/unsigned to SP/DP

AVX-512 Double and Quad word instructions

❑ Extent packed (vector) instructions to byte and word (16 and 8 bit) datatype
❑MMX/SSE2/AVX2 re-promoted to AVX512 semantics
❑ Mask operations extended to 32/64 bits to adapt to number of objects in 512bit
❑ Permute architecture extended to words (VPERMW, VPERMI2W, …)

AVX-512 Byte and Word instructions

❑ Vector length orthogonality
❑ Support for 128 and 256 bits instead of full 512 bit
❑ Not a new instruction set but an attribute of existing 512bit instructions

AVX-512 Vector Length extensions

AVX-512DQ

AVX-512BW

AVX-512VL

Other New Instructions

❑Set of instructions to implement checking a pointer against its bounds
❑Pointer Checker support in HW (today a SW only solution of e.g. Intel compilers)
❑Debug and security features

Intel® MPX – Intel Memory Protection Extension

❑ Intel® Software Guard Extensions enables applications to execute code and protect secrets from within their

Intel® SGX – Intel® Software Guard Extensions

❑ needed for future memory technologies

Single Instruction – Flush a cache line

MPX

SGX

CLFLUSHOPT

Save and restore extended processor state
XSAVE{S,C}

AVX-512 – KNL and future XEON

– KNL and future Xeon architecture
share a large set of instructions

• but sets are not identical
– Subsets are represented by

individual feature flags (CPUID)

2nd Generation
Xeon Phi (KNL)

SSE*

AVX

AVX2*

AVX-512F

Future Xeon
(Skylake Server)

SSE*

AVX

AVX2

AVX-512F

SNB

SSE*

AVX

HSW

SSE*

AVX

AVX2

NH
M

SSE*

AVX-512CD AVX-512CD

AVX-512ER

AVX-512PR AVX-512BW

AVX-512DQ

AVX-512VL

MPX,SGX, …

C
om

m
o

n
In

st
ru

ct
io

n
S

et

22

Intel® Compiler Processor Switches
Switch Description
-xmic-avx512 KNL only; already in 14.0
-xcore-avx512 Future XEON only, already in 15.0.1

-xcommon-avx512 AVX-512 subset common to both, already in
15.0.2

-m, -march, /arch Not yet !
-ax<…-avx512> Same as for “-x<…-avx512>”
-mmic No – not for KNL

23

KNL Memory Modes
– Mode selected at boot
– MCDRAM-Cache covers all DDR

DDR

MCDRAM

DDR

MCDRAM

Flat Models

P
hy

si
ca

l A
dd

re
ss Hybrid Model

DDRMCDRAM

MCDRAM

DDRMCDRAM

Cache Model

24

MCDRAM: Cache vs Flat Mode

DDR
Only

MCDRAM
as Cache

MCDRAM
Only

Flat DDR +
MCDRAM

Hybrid

Software
Effort

Performance

No software changes required
Change allocations for
bandwidth-critical data.

Not peak
performance.

Best performance.

DDR
Only

MCDRAM
as Cache

Hybrid

Not peak
performance.

Recommended

Limited
memory
capacity

Optimal HW
utilization +

opportunity for
new algorithms

• API is open-sourced (BSD licenses)
• https://github.com/memkind
• Uses jemalloc API underneath

• http://www.canonware.com/jemalloc/
• https://www.facebook.com/notes/facebook-engineering/scalable-memory-allocation-using-

jemalloc/480222803919
Malloc replacement:

25

High Bandwidth On-Chip Memory API

#include <memkind.h>

hbw_check_available()
hbw_malloc, _calloc, _realloc,… (memkind_t kind, …)
hbw_free()
hbw_posix_memalign()
hbw_get_size(), _psize()

ld … -ljemalloc –lnuma –lmemkind –lpthread

Fortran:
!DIR$ ATTRIBUTES FASTMEM :: data_object1, data_object2

• All Fortran data types supported
• Global, local, stack or heap; scalar, array, …
• Support in compiler 15.0 update 1 and later versions

C++:
standard allocator replacement for e.g. STL like

#include <hbwmalloc.h>
std::vector<int, hbwmalloc::hbw_allocator>

26

HBW API for Fortran, C++

Porting codes on Knights Landing

Trends that are here to stay
Data parallelism
• Lots of threads, spent on MPI ranks or OpenMP/TBB/pthreads
• Improving support for both peak tput and modest/single thread

Bigger, better, faster memory
• High capacity, high bandwidth, low latency DRAM
• Effective caching and paging
• Increasing support for irregular memory refs, modest tuning

ISA innovation
• Increasing support for vectorization, new usages

Evolution or revolution?
Incremental changes, significant gains

Parallelization – consistent strategy
• MPI vs. OpenMP – already needed to tune and tweak
• Less thread-level parallelism required
• Vectorization – more opportunity, more profitable

Enable new features with memory tuning
• Access MCDRAM with special allocation
• Blocking for MCDRAM vs. just cache

Compatibility

KNL specific enabling

● Recompilation, with –xMIC-AVX512

● Threading: more MPI ranks, 1 thread/core

● Vectorization: increased efficiency

● MCDRAM and memory tuning: tile, 1GB pages

What is needed?

● Building
Change compiler switches in make files
● Coding

Parallelization: vectorization, offload
Memory management: MCDRAM enumeration and memory allocation
● Tuning

Potentially fewer threads: more cores but less need for SMT
More memory more MPI ranks

Take aways

Keep doing what you were doing for KNC and Xeon

Some goodness comes for free with a recompile

With some extra enabling, use new MCDRAM feature

Acknowledgements

Most of the material (slides, figures, etc) showed here is
courtesy of Intel

In particular, thanks for providing material and support to:
Georg Zitzlsberger, Heinrich Bockhorst, Han Benedict and

CJ Newburn

