Overview of the Intel[®] Xeon and Xeon Phi technologies Broadwell and Knights Landing

Fabio Affinito (SCAI - Cineca)

Intel[®] Xeon Processor Architecture

Intel® Xeon® Processor E5-2600 v4 Product Family - TICK

Intel® Xeon® E5-2600 v4 Product Family Overview

 New Features: Broadwell microarchitecture Built on 14nm process technology Socket compatible⁶ replacement/ upgrade on Grantley-EP platforms 		 New Performance Technologies: Optimized Intel[®] AVX Turbo mode Intel TSX instructions[^] 		Other Enhancements: Virtualization speedup Orchestration control Security improvements
Features	Xeon E5-2600 v3 (Haswell-EP)		Xeon E5-2600 v4 (Broadwell-EP)	4 Channels DDR4
Cores Per Socket	Up to 18		Up to 22	Intel® Yeon® Processor 2y Intel® OPI
Threads Per Socket	Up to 36 threads		Up to 44 threads	DDR4 E5-2600 v4 1.1
Last-level Cache (LLC)	Up to 45 MB		Up to 55 MB	QPI
QPI Speed (GT/s)	2x C	QPI 1.1 channe	els 6.4, 8.0, 9.6 GT/s	DDR4 Core Core
PCIe* Lanes / Speed(GT/s)	40 / 10 / PCle* 3.0 (2.5, 5, 8 GT/s)			
Memory Population	4 channels of up to 3 LRDIMM	RDIMMs or 3 s	+ 3DS LRDIMM [†]	DDR4 QPI
Memory RAS	ECC, Patrol Scrubbi Scrubbing, Sparing Lockstep Mode, x4	ng, Demand J, Mirroring, 4/x8 SDDC	+ DDR4 Write CRC	DDR4 Shared Cache
Max Memory Speed	Up to 2133		Up to 2400	3.0 DMI2
TDP (W)	160 (Workstation only), 145, 135, 120, 105, 90, 85, 65, 55			

Intel[®] Xeon[®] Processor E5-2600 v4 Product Family MCC/LCC

Intel[®] Xeon[®] Processor E5-2600 v4 Product Family HCC

उर्ग्य उर्ग्य उर्ग्य उर्ग्य QPI Link QPI Link ×16 ×16 ×8 ×4 (0 10) ----PSQPI PEPCI High core count (HCC) die 10 401C configuration • Used by SKUs with 16 to 22 cores E5-2699 v4 LLC LLC · · · ••• ¢ Core Con Con • E5-2698 v4 • E5-2697 v4 c LLC ••• •••• Cone Core Cone E5-2697A v4 • E5-2695 v4 Coute LLC LLC ----C ----c -Core Core Core • E5-2683 v4 -• For each core LLC ----•••• -----•... • • • • Core Core Core • 2.5M last level cache (LLC) Casta B. LLC LLC c.... LLC ·... ·... Core • Caching agent (CBO) Core Core • For each ring LLC Casta LLC Couto Casta LLC LLC ·... C Core C: C matur C Core Core • Home agent (HA) • Memory Controller with 2 DDR4 channels Home Agent Home Agent DDP DDP DDP DDP Lie m Ctir Lie m Ctir

What's next ...

- Broadwell (code name) E7 (4-socket server processor models)
- Skylake (code name) server (E5 and E7)
 - Micro-architecture launched in client processors Sep. 2015
 - Intel[®] AVX-512 (only for server)
 - Expect a lot of additional, key changes
- FPGA and Xeon server integration
- NVM (non-volatile memory) 3D XPoint[™] Technology

Intel[®] Many Integrated Core Architecture (Intel[®] MIC) Intel[®] Xeon Phi[™] Coprocessor

Intel[®] Xeon Phi[™] Product Family

based on Intel[®] Many Integrated Core (MIC) Architecture

*Per Intel's announced products or planning process for future products

Knights Landing: Next-Generation Intel® Xeon Phi™

KNL Mesh Interconnect

Mesh of Rings

- Every row and column is a (half) ring
- YX routing: Go in $Y \rightarrow Turn \rightarrow Go$ in X
- Messages arbitrate at injection and on turn

Cache Coherent Interconnect

- MESIF protocol (F = Forward)
- Distributed directory to filter snoops

Three Cluster Modes

- (1) All-to-All
- (2) Quadrant
- (3) Sub-NUMA Clustering (SNC)

Address uniformly hashed across all distributed directories

No affinity between Tile, Directory and Memory

Lower performance mode, compared to other modes. Mainly for fall-back

Typical Read L2 miss

- 1. L2 miss encountered
- 2. Send request to the distributed directory
- 3. Miss in the directory. Forward to memory
- 4. Memory sends the data to the requestor

Chip divided into four virtual Quadrants

Address hashed to a Directory in the same quadrant as the Memory

Affinity between the Directory and Memory

Lower latency and higher BW than all-to-all. Software transparent.

L2 miss, 2. Directory access, 3. Memory access,
 Data return

Cluster Mode: Sub-NUMA Clustering (SNC)

CINECA

Each Quadrant (Cluster) exposed as a separate NUMA domain to OS

Looks analogous to 4-Socket Xeon

Affinity between Tile, Directory and Memory

Local communication. Lowest latency of all modes

Software needs to be NUMA-aware to get benefit

2 Directory access, 3. Memory access, 4. Data return SuperComputing Applications and Innovation SuperComputing Applications and Innovation

KNL Core and VPU

Out-of-order core w/ 4 SMT threads VPU tightly integrated with core pipeline 2-wide decode/rename/retire 2x 64B load & 1 64B store port for D\$ L1 prefetcher and L2 prefetcher Fast unaligned and cache-line split support Fast gather/scatter support

Software Adaption for KNL – Key New Features

Large impact: Intel[®] AVX-512 instruction set

- Slightly different from future Intel[®] Xeon[™] architecture AVX-512 extensions
- Includes SSE, AVX, AVX-2
- Apps built for HSW and earlier can run on KNL (few exceptions like TSX)
- Incompatible with 1st Generation Intel[®] Xeon[™] Phi (KNC)

Medium impact: New, on-chip high bandwidth memory (MCDRAM) creates heterogeneous (NUMA) memory access

- can be used transparently too however

Minor impact: Differences in floating point execution / rounding due to FMA and new HW-accelerated transcendental functions - like exp()

AVX-512 - Greatly increased Register File

The Intel [®] AVX-512 Subsets [2]				
AVX-512DQ All of (packed) 52DI/04 DILOPERATIONS AVA-512F doesn't provide Close 64bit gaps like VPMULLQ : packed 64x64 → 64 Extend mask architecture to word and byte (to handle vectors) Packed/Scalar converts of signed/unsigned to SP/DP				
AVX-512 Byte and Word instructions				
 AVX-512BW Ex., particular (reference on a second condition of a second condition of				
AVX-512VL				
 Support for 128 and 256 bits instead of full 512 bit Not a new instruction set but an attribute of existing 512bit instructions 				
SuperComputing Applications and Innovation				

Other New Instructions

Intel® MPX – Intel Memory Protection Extension	
Set or instructions to implement checking a pointer against its bounds	
□Pointer Checker support in HW (today a SW only solution of e.g. Intel compilers)	
Debug and security features	
Micro OCA - Intere Soliware Guard Extensions	
SGX	
Intel® Software Guard Extensions enables applications to execute code and protect	secrets from
Single Instruction - Flush a cache line	
CLFLUSHOPT	
D needed for future memory technologies	
Save and restore extended processor state	
xSAVE{S,C}	
CINECA SuperComputing Applications and Innovation	
SuperComputing Applications and Innovation	

Intel[®] Compiler Processor Switches

Switch	Description
-xmic-avx512	KNL only; already in 14.0
-xcore-avx512	Future XEON only, already in 15.0.1
-xcommon-avx512	AVX-512 subset common to both, already in 15.0.2
-m, -march, /arch	Not yet !
-ax <avx512></avx512>	Same as for "-x <avx512>"</avx512>
-mmic	No – not for KNL

MCDRAM: Cache vs Flat Mode

High Bandwidth On-Chip Memory API

- API is open-sourced (BSD licenses)
 - <u>https://github.com/memkind</u>
 - Uses jemalloc API underneath
 - <u>http://www.canonware.com/jemalloc/</u>
 - <u>https://www.facebook.com/notes/facebook-engineering/scalable-memory-allocation-using-jemalloc/480222803919</u>

Malloc replacement:

```
#include <memkind.h>
    hbw_check_available()
    hbw_malloc, _calloc, _realloc,... (memkind_t kind, ...)
    hbw_free()
    hbw_posix_memalign()
    hbw_get_size(), _psize()
    ld ... -ljemalloc -lnuma -lmemkind -lpthread
    SignerComputing Applications and Innovation
EverComputing Applications and Innovation
```

25

HBW API for Fortran, C++

Fortran:

!DIR\$ ATTRIBUTES FASTMEM :: data_object1, data_object2

- All Fortran data types supported
- Global, local, stack or heap; scalar, array, ...
- Support in compiler 15.0 update 1 and later versions

C++:

standard allocator replacement for e.g. STL like #include <hbwmalloc.h>

std::vector<int, hbwmalloc::hbw_allocator>

Porting codes on Knights Landing

Trends that are here to stay

Data parallelism

- Lots of threads, spent on MPI ranks or OpenMP/TBB/pthreads
- Improving support for both peak tput and modest/single thread

Bigger, better, faster memory

- High capacity, high bandwidth, low latency DRAM
- Effective caching and paging
- Increasing support for irregular memory refs, modest tuning

ISA innovation

• Increasing support for vectorization, new usages

Evolution or revolution?

Incremental changes, significant gains

Parallelization – consistent strategy

- MPI vs. OpenMP already needed to tune and tweak
- Less thread-level parallelism required
- Vectorization more opportunity, more profitable

Enable new features with memory tuning

- Access MCDRAM with special allocation
- Blocking for MCDRAM vs. just cache

Compatibility

KNL specific enabling

- Recompilation, with –xMIC-AVX512
- Threading: more MPI ranks, 1 thread/core
- Vectorization: increased efficiency
- MCDRAM and memory tuning: tile, 1GB pages

What is needed?

• Building

Change compiler switches in make files

• Coding

Parallelization: vectorization, offload

Memory management: MCDRAM enumeration and memory allocation

• Tuning

Potentially fewer threads: more cores but less need for SMT More memory more MPI ranks

Take aways

Keep doing what you were doing for KNC and Xeon

Some goodness comes for free with a recompile

With some extra enabling, use new MCDRAM feature

Acknowledgements

Most of the material (slides, figures, etc) showed here is courtesy of Intel

In particular, thanks for providing material and support to: Georg Zitzlsberger, Heinrich Bockhorst, Han Benedict and CJ Newburn

