
Overview of the vectorization techniques.
Getting ready for AVX-512

Fabio Affinito (SCAI - Cineca)

The need for SIMD vectorization
Is the Intel® Xeon PhiTM coprocessor right for me?

Single thread (ST) performance is limited in today’s
CPUs
– Clock frequency constraints
– Difficult to discover “near” Instruction

level parallelism (ILP) by hardware

More transistors dedicated to exploit “distant”
parallelism
– Task level parallelism (TLP)

• Improves Multi Thread
performance (MT)

– Data level parallelism (DLP)
• Improves Single Thread

performance (ST)
• Enabled by using SIMD vectors

2“Is the Intel® Xeon PhiTM coprocessor right for me?”, by Eric Gardner - https://software.intel.com/en-us/articles/is-the-intel-xeon-phi-coprocessor-
right-for-me

Enable Thread Level
Parallelism (TLP)

with threads

Enable Data Level
Parallism (DLP)

with SIMD vectors

Benefit from
more available

bandwidth

How to enable SIMD vectorization?
Enabling parallelism with Intel® Parallel Studio XE 2015 tool suite

3

Compiler,
libraries, and
parallel
programming
models

Source code
+
annotations
(OpenMP,
MPI,
compiler
directives)

Single programming model for all your code
– Based on standards: OpenMP/MPI, C/C++/Fortran
– Programmers/tools responsibility to expose DLP/TLP parallelism

Exposing TLP/DLP in your application will benefit today and future Intel® Xeon® processors
and Intel® Xeon PhiTM coprocessors

– Including SIMD vectorization on future Intel® AVX-512 products

Single Instruction Multiple Data (SIMD)
Technique for exploiting DLP on a single thread

– Operate on more than one element at a time
– Might decrease instruction counts significantly

Elements are stored on SIMD registers or vectors
Code needs to be vectorized

– Vectorization usually on inner loops
– Main and remainder loops are generated

4

for (int i = 0; i < N; i++)
c[i] = a[i] + b[i];

for (int i = 0; i < N; i += 4)
c[i:4] = a[i:4] + b[i:4];

a[i:4]

b[i:4]

c[i:4]

Scalar loop

SIMD loop (4 elements)

AVX-512

AVX2

Advanced Vector eXtensions (AVX)

Streaming SIMD Extensions
(SSE*)

Past, present, and future of Intel SIMD types

5

MultiMedia eXtensions
(MMX) Foundation instructions (FI)

Exponential & Reciprocal Instructions (ERI)

Conflict Detection Instructions (CDI)

Prefetch Instructions (PFI)

Byte & Word Instructions (BWI)

Double-/Quad-word Instructions (DQI)

Vector Length Extensions (VLE)

Initial Many Core Instructions (IMCI)
Current Intel® Xeon PhiTM coprocessors (Knights Corner)

Current Intel® Xeon® processors

Future Intel® Xeon
PhiTM coprocessors
(including Knights Landing)

Future Intel® Xeon®
processors

64-bit SIMD
128-bit SIMD

256-bit SIMD

512-bit SIMD

512-bit SIMD

For more information about Intel® AVX-512 instructions, check out James Reinders’ initial and updated post for this
topic.

Intel® AVX2/IMCI/AVX-512 differences
Intel® Initial Many Core Instructions

IMCI
Intel® Advanced Vector Extensions 2

AVX2
Intel® Advanced Vector Extensions

512

AVX-512
Introduction 2012 2013 2015

Products Knights Corner Haswell, Broadwell Knights Landing, future Intel® Xeon® and
Xeon® PhiTM products

Register file
SP/DP/int32/int64 data types

32 x 512-bit SIMD registers
8 x 16-bit mask registers

SP/DP/int32/int64 data types
16 x 256-bit SIMD registers

No mask registers (instr. blending)

SP/DP/int32/int64 data types
32 x 512-bit SIMD registers

8 x (up to) 64-bit mask

ISA features

Not compatible with AVX*/SSE*
No unaligned data support

Embedded broadcast/cvt/swizzle
MVEX encoding

Fully compatible with AVX/SSE*
Unaligned data support (penalty)

VEX encoding

Fully compatible with AVX*/SSE*
Unaligned data support (penalty)
Embedded broadcast/rounding

EVEX encoding

Instruction
features

Fused multiply-and-add (FMA)
Partial gather/scatter

Transcendental support

Fused multiply-and-add (FMA)
Full gather

Fused multiply-and-add (FMA)
Full gather/scatter

Transcendental support (ERI only)
Conflict detection instructions
PFI/BWI/DQI/VLE (if applies)

6Intel® AVX-512 is a major step in unifying the instruction set of Intel® MIC and Intel® Xeon® architecture

Vectorization on Intel® compilers

Auto
Vectorization

•Compiler knobs

Guided
Vectorization

•Compiler hints/pragmas
•Array notation

Low level
Vectorization

•C/C++ vector classes
•Intrinsics/Assembly

7

Easy of use

Fine control

Auto vectorization
Relies on the compiler for vectorization

– No source code changes
– Enabled with -vec compiler knob (default in -O2 and -O3 modes)

Compiler smart enough to apply loop transformations
– It will allow to vectorize more loops

8

Option Description

-OO Disables all optimizations.

-O1 Enables optimizations for speed which are know to not cause code size increase.

-O2/-O
(default)

Enables intra-file interprocedural optimizations for speed, including:
• Vectorization
• Loop unrolling

-O3 Performs O2 optimizations and enables more aggressive loop transformations such as:
• Loop fusion
• Block unroll-and-jam
• Collapsing IF statements
This option is recommended for applications that have loops that heavily use floating-point calculations and process
large data sets. However, it might incur in slower code, numerical stability issues, and compilation time increase.

Option Description
-mmic Builds an application that runs natively on Intel® MIC Architecture.

-xfeature
-xHost

Tells the compiler which processor features it may target, referring to which instruction sets and
optimizations it may generate (not available for Intel® Xeon PhiTM architecture). Values for feature are:

• COMMON-AVX512 (includes AVX512 FI and CDI instructions)
• MIC-AVX512 (includes AVX512 FI, CDI, PFI, and ERI instructions)
• CORE-AVX512 (includes AVX512 FI, CDI, BWI, DQI, and VLE instructions)
• CORE-AVX2

• CORE-AVX-I (including RDRND instruction)
• AVX
• SSE4.2, SSE4.1

• ATOM_SSE4.2, ATOM_SSSE3 (including MOVBE instruction)
• SSSE3, SSE3, SSE2

When using -xHost, the compiler will generate instructions for the highest instruction set available on
the compilation host processor.

-axfeature Tells the compiler to generate multiple, feature-specific auto-dispatch code paths for Intel® processors if
there is a performance benefit. Values for feature are the same described for -xfeature option.
Multiple features/paths possible, e.g.: -axSSE2,AVX. It also generates a baseline code path for the
default case.

Vectorization: target architecture options
On which architecture do we want to run our program?

9

Auto vectorization: not all loops will vectorize
Data dependencies between iterations

– Proven Read-after-Write data (i.e., loop carried) dependencies
– Assumed data dependencies

• Aggressive optimizations (e.g., IPO) might help
Vectorization won’t be efficient

– Compiler estimates how better the vectorized version will be
– Affected by data alignment, data layout, etc.

Unsupported loop structure
– While-loop, for-loop with unknown number of iterations
– Complex loops, unsupported data types, etc.
– (Some) function calls within loop bodies

• Not the case for SVML functions

10

for (int i = 0; i < N; i++)
a[i] = a[i-1] + b[i];

RaW dependency

for (int i = 0; i < N; i++)
a[c[i]] = b[d[i]];

Inefficient vectorization

for (int i = 0; i < N; i++)
a[i] = foo(b[i]);

Function call within loop body

Auto vectorization on Intel® compilers

11

Polyhedron benchmark suite
Intel® Xeon PhiTM 7120A, 61 cores x 4 threads

Intel® Fortran Compiler 15.0.1.14 [-O3 -fp-model fast=2 -align array64byte -ipo -mmic]

Validating vectorization success
Generate compiler report about optimizations

-qopt-report[=n] Generate report (level [1..5], default 2)
-qopt-report-file=<fname> Optimization report file (stderr, stdout also valid)
-qopt-report-phase=<phase> Info about opt. phase:

12

LOOP BEGIN at gas_dyn2.f90(193,11) inlined into gas_dyn2.f90(4326,31)
remark #15300: LOOP WAS VECTORIZED
remark #15448: unmasked aligned unit stride loads: 1
remark #15450: unmasked unaligned unit stride loads: 1
remark #15475: --- begin vector loop cost summary ---
remark #15476: scalar loop cost: 53
remark #15477: vector loop cost: 14.870
remark #15478: estimated potential speedup: 2.520
remark #15479: lightweight vector operations: 19
remark #15481: heavy-overhead vector operations: 1
remark #15488: --- end vector loop cost summary ---
remark #25456: Number of Array Refs Scalar Replaced In Loop: 1
remark #25015: Estimate of max trip count of loop=4

LOOP END

LOOP BEGIN at gas_dyn2.f90(2346,15)
remark #15344: loop was not vectorized: vector dependence prevents vectorization
remark #15346: vector dependence: assumed OUTPUT dependence between IOLD line 376 and IOLD line 354
remark #25015: Estimate of max trip count of loop=3000001

LOOP END

Vectorized loop

Non-vectorized loop

loop Loop nest optimizations
par Auto-parallelization
vec Vectorization
openmp OpenMP
offload Offload
ipo Interprocedural optimizations
pgo Profile Guided optimizations
cg Code generation optimizations
tcollect Trace analyzer (MPI) collection
all All optimizations (default)

Guided vectorization: disambiguation hints
Get rid of assumed vector dependencies

Assume function arguments won’t be aliased
– C/C++: Compile with -fargument-noalias

C99 “restrict” keyword for pointers
– Compile with -restrict otherwise

Ignore assumed vector dependencies (compiler directive)
– C/C++: #pragma ivdep
– Fortran: !dir$ ivdep

13

void v_add(float *c, float *a, float *b)
{
#pragma ivdep

for (int i = 0; i < N; i++)
c[i] = a[i] + b[i];

}

void v_add(float *restrict c,
float *restrict a,
float *restrict b)

{
for (int i = 0; i < N; i++)

c[i] = a[i] + b[i];
}

Some Intel® compiler directives
Directive Description
distribute, distribute_point Instructs the compiler to prefer loop distribution at the location indicated.

inline Instructs the compiler to inline the calls in question.

ivdep Instructs the compiler to ignore assumed vector dependencies.

loop_count Indicates the loop count is likely to be an integer.

optimization_level Enables control of optimization for a specific function.

parallel/noparallel Facilitates auto-parallelization of an immediately following loop; using
keyword always forces the compiler to auto-parallelize; noparallel pragma
prevents auto-parallelization.

[no]unroll Instructs the compiler the number of times to unroll/not to unroll a loop

[no]unroll_and_jam Prevents or instructs the compiler to partially unroll higher loops and jam the
resulting loops back together.

unused Describes variables that are unused (warnings not generated).

[no]vector Specifies whether the loop should be vectorised. In case of forcing
vectorization that should be according to the given clauses.

14

Guided vectorization: #pragma simd

Force loop vectorization ignoring all dependencies
– Additional clauses for specify reductions, etc.

15

void v_add(float *c, float *a, float *b)
{
#pragma simd

for (int i = 0; i < N; i++)
c[i] = a[i] + b[i];

}

__declspec(vector)
void v_add(float c, float a, float b)
{

c = a + b;
}

…
for (int i = 0; i < N; i++)

v_add(C[i], A[i], B[i]);

SIMD loop SIMD function

Guided vectorization: #pragma simd

Also supported in OpenMP
– Almost same functionality/syntax

• Use #pragma omp simd [clauses] for SIMD loops
• Use #pragma omp declare simd [clauses] for SIMD functions

– See OpenMP 4.0 specification for more information

16

Explicit vectorization with array notation
Express high-level vector parallel array operations

– Valid notation in Fortran since Fortran 90
– Supported in C/C++ by Intel® compiler (CilkTM Plus) and GCC 4.9

• Enabled by default on Intel® compiler, use -fcilkplus option on GCC
– No additional modifications to source code
– Most arithmetic and logic operations already overloaded
– Also built-in reducers for array sections

Vectorization becomes explicit
– C/C++ syntax: array-expression[lower-bound:length[:stride]]

17

__declspec(vector)
void v_add(float c, float a, float b)
{

c = a + b;
}

…
v_add(C[:], A[:], B[:]);

SIMD function invoked with array notation

a[:] // All elements
a[2:6] // Elements 2 to 7
a[:][5] // Column 5
a[0:3:2] // Elements 0,2,4

Samples

Improving vectorization: data layout
Vectorization more efficient with unit strides

– Non-unit strides will generate gather/scatter
– Unit strides also better for data locality
– Compiler might refuse to vectorize

AoS vs SoA
– Layout your data as Structure of Arrays (SoA)

Traverse matrices in the right direction
– C/C++: a[i][:], Fortran: a(:,i)
– Loop interchange might help

• Usually the compiler is smart enough to
apply it

• Check compiler optimization report

18

// Structure of Arrays (SoA)
struct coordinate {

float x[N], y[N], z[N];
} crd;

…
for (int i = 0; i < N; i++)

… = … f(crd.x[i], crd.y[i], crd.z[i]);

// Array of Structures (AoS)
struct coordinate {

float x, y, z;
} crd[N];

…
for (int i = 0; i < N; i++)

… = … f(crd[i].x, crd[i],y, crd[i].z);

x0 x1 … x(n-1) y0 y1 … y(n-1) z0 z1 … z(n-1)

x0 y0 z0 x1 y1 z1 … x(n-1) y(n-1) z(n-1)

Consecutive elements in memory

Array of Structures vs Structure of Arrays

Consecutive elements in memory

Improving vectorization: data alignment
Unaligned accesses might cause significant performance degradation

– Two instructions on current Intel® Xeon PhiTM coprocessor
– Might cause “false sharing” problems

• Consumer/producer thread on the same cache line
Alignment is generally unknown at compile time

– Every vector access is potentially an unaligned access
• Vector access size = cache line size (64-byte)

– Compiler might “peel” a few loop iterations
• In general, only one array can be aligned, though

When possible, we have to
– Align our data
– Tell the compiler data is aligned

• Might not be always the case

19

Improving vectorization: data alignment

20

How to… Language Syntax Semantics

…align
data

C/C++ void* _mm_malloc(int size, int n)
Allocate memory on heap aligned to n
byte boundary.C/C++ int posix_memalign

(void **p, size_t n, size_t size)

C/C++ __declspec(align(n)) array

Alignment for variable declarations.

Fortran (not in
common
section)

!dir$ attributes align:n::array

Fortran
(compiler
option)

-alignnbyte

…tell the
compiler
about it

C/C++ #pragma vector aligned Vectorize assuming all array data
accessed are aligned (may cause fault
otherwise).Fortran !dir$ vector aligned

C/C++ __assume_aligned(array, n) Compiler may assume array is aligned
to n byte boundary.Fortran !dir$ assume_aligned array:n

Vectorization with multi-version loops

21

LOOP BEGIN at gas_dyn2.f90(2330,26)
<Peeled>

remark #15389: vectorization support: reference AMAC1U has unaligned access
remark #15381: vectorization support: unaligned access used inside loop body
remark #15301: PEEL LOOP WAS VECTORIZED

LOOP END
LOOP BEGIN at gas_dyn2.f90(2330,26)

remark #25084: Preprocess Loopnests: Moving Out Store
remark #15388: vectorization support: reference AMAC1U has aligned access
remark #15399: vectorization support: unroll factor set to 2
remark #15300: LOOP WAS VECTORIZED
remark #15475: --- begin vector loop cost summary ---
remark #15476: scalar loop cost: 8
remark #15477: vector loop cost: 0.620
remark #15478: estimated potential speedup: 15.890
remark #15479: lightweight vector operations: 5
remark #15488: --- end vector loop cost summary ---
remark #25018: Total number of lines prefetched=4
remark #25019: Number of spatial prefetches=4, dist=8
remark #25021: Number of initial-value prefetches=6

LOOP END
LOOP BEGIN at gas_dyn2.f90(2330,26)
<Remainder>

remark #15388: vectorization support: reference AMAC1U has aligned access
remark #15388: vectorization support: reference AMAC1U has aligned access
remark #15301: REMAINDER LOOP WAS VECTORIZED

LOOP END

Peel loop
Alignment purposes
Might be vectorized

Remainder loop
Remainder iterations
Might be vectorized

Main loop
Vectorized
Unrolled by x2 or
x4

Other considerations
Loop tiling/blocking to improve data locality

– Square tiles so elements can be reused

Use streaming loads/stores to save bandwidth
● #pragma vector [non]temporal(list)
● -qopt-streaming-stores=[always|never|auto]
● -qopt-streaming-cache-evict[=n] (Intel® MIC only)

Tune software prefetcher
● -qopt-prefetch[=n]
● -qprefetch-distance=n1[,n2] (Intel® MIC only)
● #pragma [no]prefetch [clauses] (Intel® MIC only)

22

Low level (explicit) vectorization
A.k.a “ninja programming”

Vectorization relies on the
programmer with some
help from the compiler

Might be convenient for low
level performance
tuning of critical
hotspots

Not portable among
different SIMD
architectures

23

SIMD C++ class Intrinsics Assembly
#include <fvec.h>

F32vec4 a,b,c;
a = b + c;

#include <xmmintrin.h>

__m128 a,b,c;
a = _mm_add_ps(b,c);

__m128 a,b,c;
__asm {

movaps xmm0,b
movaps xmm1,c
addps xmm0,xmm1
movaps a, xmm0

}

How to get ready for Intel® AVX-512?
BKM: Start optimizing your application today for current generation

of Intel® Xeon® processors and Intel® XeonTM Phi coprocessors
Tune your AVX-512 kernels on non-existing silicon

– Compile with latest compiler toolchains
• Intel® compiler (v15.0): -xCOMMON-AVX512, -xMIC-AVX512, -xCORE-AVX512
• GNU compiler (v4.9): -mavx512f, -mavx512cd, -mavx512er, -mavx512pf

– Run Intel® Software Development emulator (SDE)
• Emulate (future) Intel® Architecture Instruction Set Extensions (e.g. Intel® MPX, …)
• Tools available for detailed analysis

– Instruction type histogram
– Pointer/misalignment checker

• Also possible to debug the application while emulated

24

Summary
Programmers are mostly responsible of exposing DLP (SIMD) parallelism
Intel® compilers provide sophisticated/flexible support for vectorization

– Auto, guided (assisted), and low-level (explicit) vectorization
– Based on OpenMP standards and specific directives
– Easily portable across different Intel® SIMD architectures

Fine-tuning of generated code is key to achieve the best performance
– Check whether code is actually vectorized
– Data layout, alignment, remainder loops, etc.

Get ready for Intel® AVX-512 by optimizing your application today on current generation of Intel® Xeon®
processors and Intel® XeonTM Phi coprocessors

25

Online resources
Intel® Xeon PhiTM

– Developer portal Programming guides, tools, trainings, case studies, etc.

– Solutions catalog Existing Intel® Xeon PhiTM solutions for known codes

Intel® software development tools, performance tuning, etc.

– Documentation library All available documentation about Intel software

– Learning lab Learning material with Intel® Parallel Studio XE

– Performance Resources about performance tuning on Intel hardware

– Forums Public discussions about Intel SIMD, threading,
ISAs, etc.

Other resources (white papers, benchmarks, case studies, etc.)

– Go parallel BKMs for Intel multi- and many-core architectures

– Colfax research Publications and material on parallel programming

– Bayncore labs Research and development activities (WIP)
26

Recommended books

27

Intel® Xeon PhiTM coprocessor
high-performance programming,

by Jim Jeffers and James
Reinders, Morgan Kaufmann,

2013
Optimizing HPC applications
with Intel® cluster tools, by
Alexander Supalov et al, Apress,
2014

High performance parallelism pearls: multi-
core and many-core approaches, by James
Reinders and Jim Jeffers, Morgan Kaufmann,
2014

Parallel programming with Intel® Parallel Studio XE, by
Stephen Blair-Chappell and Andrew Stokes, Wrox press,
2012

The software optimization
handbook, by Aart Bik, Intel® press,

2004

