
Introduction to MPI+OpenMP
hybrid programming

Fabio Affinito– f.affinito@cineca.it
SuperComputing Applications and Innovation Department

Architectural trend

Architectural trend

Architectural trend

• In a nutshell:

– memory per core decreases
– memory bandwidth per core decreases
– number of cores per socket increases
– single core clock frequency decreases

• Programming model should follow the new kind of architectures available
on the market: what is the most suitable model for this kind of machines?

Programming models

• Distributed parallel computers rely on MPI
– strong
– consolidated
– standard
– enforce the scalability (depending on the algorithm) up to a very large

number of tasks
• but... is it enough when memory is such small amount on each node?

Example: Bluegene/Q has 16GB per node and 16 cores. Can you imagine
to put there more than 16MPI (tasks), i.e. less than 1GB per core?

Programming models

• On the other side, OpenMP is a standard for all the shared memory
systems

• OpenMP is robust, clear and sufficiently easy to implement but
– depending on the implementation, typically the scaling on the number of

threads is much less effective than the scaling on number of MPI tasks

• Putting together MPI with OpenMP could permit to exploit the features of
the new architectures, mixing these paradigms

Hybrid model: MPI+OpenMP

• In a single node you can exploit a shared memory parallelism using
OpenMP

• Across the nodes you can use MPI to scale up

Example: on a Bluegene/Q machine you can put 1 MPI task on each node
and 16 OpenMP threads. If the scalability on threads is good enough, you
can use all the node memory.

MPI vs OpenMP

 Pure MPI Pro:
High scalability
High portability
No false sharing
Scalability out-of-node

 Pure MPI Con:
Hard to develop and debug.
Explicit communications
Coarse granularity
Hard to ensure load balancing

MPI vs OpenMP

 Pure MPI Pro:
High scalability
High portability
No false sharing
Scalability out-of-node

 Pure MPI Con:
Hard to develop and debug.
Explicit communications
Coarse granularity
Hard to ensure load balancing

Pure OpenMP Pro:
Easy to deploy (often)
Low latency
Implicit communications
Coarse and fine granularity
Dynamic Load balancing

Pure OpenMP Con:
Only on shared memory machines
Intranode scalability
Possible data placement problem
Undefined thread ordering

MPI+OpenMP

• Conceptually simple and elegant

• Suitable for multicore/multinodes architectures

• Two-level hierarchical parallelism

• In principle, you can alleviate problems related to the scalability of MPI,
reducing the number of tasks and network flooding

Increasing granularity

• OpenMP introduces fine granularity parallelism

• Loop-based parallelism

• Task construct (OpenMP 3.0): powerful and flexible

• Load balancing can be dynamic or scheduled

• All the work is in charge to the compiler

• No explicit data movement

Two level parallelism

• Using a hybrid approach means to balance the hierarchy between MPI tasks and
thread.

• MPI in most cases (but not always) occupy the upper level respect to OpenMP
– usually you assign n threads per MPI task, not m MPI tasks per thread

• The choice about the number of threads per MPI task strongly depends on the kind
of application, algorithm or kernel. (this number can change inside the application)

• There's no a golden rule. More often this decision is taken a-posteriori after
benchmarks on a given machine/architecture

Saving MPI tasks

• Using a hybrid approach MPI+OpenMP can lower the number of MPI tasks
used by the application.

• Memory footprint can be alleviated by a reduction of replicated data on MPI
level

• Speed-up limited due algorithmic issues can be solved (because you're
reducing the amount of communication)

Reality is bitter

• In real practise, mixing MPI and OpenMP, sometimes, can make your code
slower

– If you exceed with the number of OpenMP threads you can encounter
problems with locking of resources

– Sometimes threads can stay in a idle state (spin) for a long time

– Problems with cache coherency and false sharing

– Difficulties in the management of variables scope

Cache coherency and false sharing

• It is a side effects of the cache-line granularity of cache coherence implemented in shared
memory systems.

• The cache coherency implementation keep track of the status of cache lines by appending
state bits to indicate whether data on cache line is still valid or outdated.

• Once the cache line is modified, cache coherence notifies other caches holding a copy of the
same line that its line is invalid.

• If data from that line is needed, a new updated copy must to be fetched.

False sharing

#pragma omp parallel for
shared(a) schedule(static,1)
for (int i=0; i<n; i++)
 a[i] = i;

Let's start

• The most simple recipe is:
– start from a serial code and make it a MPI-parallel code
– implement for each of the MPI task a OpenMP-based parallelization

• Nothing prevents to implement a MPI parallelization inside a OpenMP
parallel region
– in this case, you should take care of the thread-safety

• To start, we will assume that only the master thread is allowed to
communicate with others MPI tasks

A simple hybrid code

 call MPI_INIT (ierr)
 call MPI_COMM_RANK (…)
 call MPI_COMM_SIZE (…)
 … some computation and MPI communication
 call OMP_SET_NUM_THREADS(4)
 !$OMP PARALLEL
 !$OMP DO
 do i=1,n
 … computation
 enddo
 !$OMP END DO
 !$OMP END PARALLEL
 … some computation and MPI communication
 call MPI_FINALIZE (ierr)

Master-only approach

Advantages:
• Simplest hybrid parallelization (easy to understand and to manage)
• No message passing inside a SMP node

Disadvantages:
• All other threads are sleeping during MPI communications
• Thread-safe MPI is required

MPI_Init_thread support

• MPI_INIT_THREAD (required, provided, ierr)
– IN: required, desired level of thread support (integer).
– OUT: provided, provided level (integer).

provided may be less than required.

• Four levels are supported:
– MPI_THREAD_SINGLE: Only one thread will runs. Equals to MPI_INIT.
– MPI_THREAD_FUNNELED: processes may be multithreaded, but only the main thread

can make MPI calls (MPI calls are delegated to main thread)
– MPI_THREAD_SERIALIZED: processes could be multithreaded. More than one thread can

make MPI calls, but only one at a time.
– MPI_THREAD_MULTIPLE: multiple threads can make MPI calls, with no restrictions.

MPI_Init_thread

• The various implementations differs in levels of thread-safety
• If your application allow multiple threads to make MPI calls simultaneously,

whitout MPI_THREAD_MULTIPLE, is not thread-safe
• Using OpenMPI, you have to use –enable-mpi-threads at configure time to activate

all levels.
• Higher level corresponds higher thread-safety. Use the required safety needs.

MPI_THREAD_SINGLE

• It is fully equivalent to the master-only approach

!$OMP PARALLEL DO
 do i=1,10000
 a(i)=b(i)+f*d(i)
 enddo
!$OMP END PARALLEL DO
 call MPI_Xxx(...)
!$OMP PARALLEL DO
 do i=1,10000
 x(i)=a(i)+f*b(i)
 enddo
!$OMP END PARALLEL DO

#pragma omp parallel for
 for (i=0; i<10000; i++)
 { a[i]=b[i]+f*d[i];
 }
/* end omp parallel for */
 MPI_Xxx(...);
#pragma omp parallel for
 for (i=0; i<10000; i++)
 { x[i]=a[i]+f*b[i];
 }
/* end omp parallel for */

MPI_THREAD_FUNNELED

• It adds the possibility to make MPI calls inside a parallel region, but only
the master thread is allowed to do so

MPI_THREAD_FUNNELED

• MPI function calls can be: outside a parallel region or in a parallel region,
enclosed in “omp master” clause

• There's no synchronization at the end of a “omp master” region, so a
barrier is needed before and after to ensure that data buffers are available
before/after the MPI communication

!$OMP BARRIER
!$OMP MASTER
 call MPI_Xxx(...)
!$OMP END MASTER
!$OMP BARRIER

#pragma omp barrier
#pragma omp master
 MPI_Xxx(...);
#pragma omp barrier

MPI_THREAD_SERIALIZED

• MPI calls are mad concurrently by two or more different threads. All the
MPI communications are serialized.

MPI_THREAD_SERIALIZED

• MPI calls can be outside parallel regions, or inside, but enclosed in a “omp
single” region (it enforces the serialization)

• Again, a barrier should ensure data consistency

!$OMP BARRIER
!$OMP SINGLE
 call MPI_Xxx(...)
!$OMP END SINGLE

#pragma omp barrier
#pragma omp single
 MPI_Xxx(...);

MPI_THREAD_MULTIPLE

• It is the most flexible mode, but also the most complicate one
• Any thread is allowed to perform MPI communications, without any

restrictions.

Comparison to pure MPI

Funneled/serialized
• All threads but the master are sleeping during MPI communications
• Only one threads may not be able to lead up to max inter-node bandwith

Pure MPI
• Each CPU can lead up max inter-node bandwidth

Hints: overlap as much as possible communications and computations

Overlap communications and
computations

• In order to overlap communications with computations, you require at least
the MPI_THREAD_FUNNELED mode

• While the master thread is exchanging data, the other threads performs
computation

• It is difficult to separate code that can run before or after the data
exchanged are available

 !$OMP PARALLEL
 if (thread_id==0) then
 call MPI_xxx(…)
 else
 do some computation
 endif
 !$OMP END PARALLEL

MPI collective hybridization

• MPI collectives are highly optimized
• Several point-to-point communication

in one operations
• They can hide from the programmer a

huge volume of transfer (MPI_Alltoall
generates almost 1 million point-to-
point messages using 1024 cores)

• There is no non-blocking (no longer the
case in MPI 3.0)

MPI collective hybridization

•Better scalability by a reduction of
both the number of MPI
messages and the number of
process. Tipically:

• for all-to-all communications, the
number of transfers decrease by a
factor #threads^2

• the length of messages increases
by a factor #threads

•Allow to overlap communication
and computation.

MPI collective hybridization

Restrictions:
•In MPI_THREAD_MULTIPLE mode is
forbidden at any given time two
threads each do a collective call on the
same communicator
(MPI_COMM_WORLD)

•2 threads calling each a MPI_Allreduce
may produce wrong results

•Use different communicators for each
collective call

•Do collective calls only on 1 thread per
process (MPI_THREAD_SERIALIZED
mode should be fine)

Multithreaded libraries

• Introduction of OpenMP into existing MPI codes includes OpenMP drawbacks
(synchronization, overhead, quality of compiler and runtime…)

• A good choice (whenever possible) is to include into the MPI code a
multithreaded, optimized library suitable for the application.

• BLAS, LAPACK, MKL (Intel), FFTW are well known multithreaded libraries available
in the HPC ecosystem.

• MPI_THREAD_FUNNELED (almost) must be supported.

Multithreaded FFT (QE)

Only the master thread can
do MPI communications
(Pseudo QE code)

Only the master thread can
do MPI communications
(Pseudo QE code)

Multithreaded FFT (QE)

Funneled: master
thread do MPI
communications
within parallel region
(Pseudo QE code)

Funneled: master
thread do MPI
communications
within parallel region
(Pseudo QE code)

Conclusions

Applications that can benefit from hybrid approach:
• Codes having limited MPI scalability (through the use of MPI_Alltoall for example).
• Codes requiring dynamic load balancing
• Codes limited by memory size and having many replicated data between MPI

processes or having data structures that depends on the number of processes.
• Inefficient MPI implementation library for intra-node communication.
• Codes working on problems of fine-grained parallelism or on a mixture of fine and

coarse-grain parallelism.
• Codes limited by the scalability of their algorithms.

Conclusions

• Hybrid programming is complex and requires high level of expertise.
• Both MPI and OpenMP performances are needed (Amdhal’s law apply separately

to the two approaches).
• Savings in performances are not guaranteed (extra additional costs).

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 50
	Diapositiva 51

