
MPI Virtual Topologies

Andrew Emerson, Massimiliano Guarrasi, Giusy Muscianisi, Luca Ferraro
– (a.emerson, m.guarrasi)@cineca.it

SuperComputing Applications and Innovation Department

Outline

• Virtual topology: definition

• MPI supported topologies:

– Cartesian

• How to create

• Cartesian mapping function

• Cartesian partitioning

– Graph

2

Virtual Topology

• Topology:

– extra, optional attribute that can be given to an intra-

communicator; topologies cannot be added to inter-

communicators.

– can provide a convenient naming mechanism for the processes

of a group (within a communicator), and additionally, may

assist the runtime system in mapping the processes onto

hardware.

• A process group in MPI is a collection of n processes:

– each process in the group is assigned a rank between 0 and n-1.

– in many parallel applications a linear ranking of processes does

not adequately reflect the logical communication pattern of

the processes (which is usually determined by the underlying

problem geometry and the numerical algorithm used).

3

Virtual Topology

• Virtual topology:

– logical process arrangement in topological patterns such as 2D

or 3D grid; more generally, the logical process arrangement is

described by a graph.

• Virtual process topology .vs. topology of the underlying,

physical hardware:

– virtual topology can be exploited by the system in the

assignment of processes to physical processors, if this helps to

improve the communication performance on a given machine.

– the description of the virtual topology depends only on the

application, and is machine-independent.

4

Virtual Topology – Examples

4

5

26

17

0

3

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

RING 2D-GRID WITH

PERIODIC

BOUNDARY

CONDITIONS 5

MPI Supported Topologies

• Cartesian

• Graph

• Distributed graph

Note: Topology information is associated with

communicators

6

Cartesian Topology

A grid of processes is easily described with a cartesian topology:

– each process can be identified by cartesian coordinates

– periodicity can be selected for each direction

– communications are performed along grid dimensions only

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

7

Example: 2D Domain decomposition

P0

(0,0)

P1

(0,1)

P2

(0,2)

P3

(0,3)

P4

(1,0)

P5

(1,1)

P6

(1,2)

P7

(1,3)

P8

(2,0)

P9

(2,1)

P10

(2,2)

P11

(2,3)

DATA
P0 P1 P2 P3

P4 P5 P6 P7

P8 P9
P1

0

P1

1

8

Cartesian Constructor

• Returns a handle to a new communicator to which the Cartesian topology
information is attached.

• Reorder:
• false: the rank of each process in the new group is identical to its reank in the old group.

• True: the processes may be reordered, possibly so as to choose a good embedding of the
virtual topology onto physical machine.

• If cart has less processes than starting communicator, left over processes have
MPI_COMM_NULL as return

MPI_CART_CREATE(comm_old, ndims, dims, periods, reorder,

comm_cart)

IN comm_old: input communicator (handle)

IN ndims: number of dimensions of Cartesian grid (integer)

IN dims: integer array of size ndims specifying the number of

processes in each dimension

IN periods: logical array of size ndims specifying whether the

grid is periodic (true) or not (false) in each dimension

IN reorder: ranking may be reordered (true) or not (false)

OUT comm_cart: communicator with new Cartesian topology (handle)

9

How to create a Cartesian Topology

#include <mpi.h>

int main(int argc, char *argv[])

{

MPI_Comm cart_comm;

int dim[] = {4, 3};

int period[] = {1, 0};

int reorder = 0;

MPI_Init(&argc, &argv);

MPI_Cart_create(MPI_COMM_WORLD, 2, dim, period, reorder,

&cart_comm);

...

}

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

10

Cartesian Topology Utilities

• MPI_Dims_Create:

– compute optimal balanced distribution of processes per coordinate direction

with respect to:

• a given dimensionality

• the number of processes in a group

• optional constraints

• MPI_Cart_coords:

– given a rank, returns process's coordinates

• MPI_Cart_rank:

– given process's coordinates, returns the rank

• MPI_Cart_shift:

– get source and destination rank ids in SendRecv operations

11

Binding of MPI_Dims_create

• Help user to select a balanced distribution of processes per
coordinate direction, depending on the number of processes in the
group to be balanced and optional constraints that can be specified
by the user

• if dims[i] is set to a positive number, the routine will not modify
the number of nodes in that i dimension

• negative value of dims[i] are erroneous

MPI_DIMS_CREATE(nnodes, ndims, dims)

IN nnodes: number of nodes in a grid (integer)

IN ndims: number of Cartesian dimensions (integer)

IN/OUT dims: integer array of size ndims specifying the number of

nodes in each dimension

12

IN / OUT of “dims”

dims before call Function call dims on return

(0, 0)

(0, 0)

(0, 3, 0)

(0, 3, 0)

MPI_DIMS_CREATE(6, 2, dims)

MPI_DIMS_CREATE(7, 2, dims)

MPI_DIMS_CREATE(6, 3, dims)

MPI_DIMS_CREATE(7, 2, dims)

(3, 2)

(7, 1)

(2, 3, 1)

erroneous call

MPI_DIMS_CREATE(nnodes, ndims, dims)

IN nnodes: number of nodes in a grid (integer)

IN ndims: number of Cartesian dimensions (integer)

IN/OUT dims: integer array of size ndims specifying the number of

nodes in each dimension

13

Using MPI_Dims_create

MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

int dim[3];

dim[0] = 0; // let MPI arrange

dim[1] = 0; // let MPI arrange

dim[2] = 3; // I want exactly 3 planes

MPI_Dims_create(nprocs, 3, dim);

if (dim[0]*dim[1]*dim[2] < nprocs) {

fprintf(stderr, "WARNING: some processes are not in use!\n"

}

int period[] = {1, 1, 0};

int reorder = 0;

MPI_Cart_create(MPI_COMM_WORLD, 3, dim, period, reorder, &cube_comm);

...

14

Coordinate -> Rank: MPI_Cart_rank

• translation of the logical process coordinates to process ranks as

they are used by the point-to-point routines

• if dimension i is periodic, when i-th coordinate is out of range,

it is shifted back to the interval 0<coords(i)<dims(i)

automatically

• out-of-range coordinates are erroneous for non-periodic dimensions

MPI_CART_RANK(comm, coords, rank)

IN comm: communicator with Cartesian structure

IN coords: integer array (of size ndims) specifying the Cartesian

coordinates of a process

OUT rank: rank of specified process

15

Mapping: old and new ranks

// buffer to collect MPI_COMM_WORLD rank ids in new cartesian rank sorting

int *world_ranks = (int *) malloc (nprocs, sizeof(int));

int oldrank;

MPI_Comm_rank(MPI_COMM_WORLD, &oldrank);

MPI_Cart_create(MPI_COMM_WORLD, 2, dim, period, 1, &cart_comm);

// indexing dorting is now performed on rank id of comm_cart communicator

MPI_Gather(&oldrank, 1, MPI_INT, world_ranks, 1, MPI_INT, 0, comm_cart);

if (oldrank == 0) {

for (int i=0; i<dim[0]; i++) {

for (int j=0; j<dim[1]; j++) {

int new_rank;

int coords[2]; coords[0]=i; coords[1]=j;

MPI_Cart_rank(cart_comm, coords, &new_rank);

printf("([%d, %d]) ", new_rank, world_ranks[new_rank]);

}; printf("\n");

}

}

16

Rank -> Coordinate: MPI_Cart_coords

• For each MPI process in Cartesian communicator, the

coordinate whitin the cartesian topology are returned

MPI_CART_COORDS(comm, rank, maxdim, coords)

IN comm: communicator with Cartesian structure

IN rank: rank of a process within group of comm

IN maxdims: length of vector coords in the calling program

OUT coords: integer array (of size ndims) containing the

Cartesain coordinates of specified process

17

Usage of MPI_Cart_coords

. . .

ndim = (int*)calloc(dim,sizeof(int));

ndim[0] = row; ndim[1] = col;

period = (int*)calloc(dim,sizeof(int));

period[0] = period[1] = 0;

reorder = 0;

// 2D grid creation

MPI_Cart_Create(MPI_COMM_WORLD,dim,ndim,period,reorder, &comm_grid);

MPI_Comm_rank(comm_grid,&menum_grid);

// Coordinate of each mpi rank within the cartesian communicator

MPI_Cart_coords(comm_grid,menum,dim,coordinate);

printf(“Procs %d coordinates in 2D grid (%d,%d)

\n”,menum,*coordinate,*(coordinate+1));

. . .

}
18

Circular Shift: a 1D Cartesian Topology

Circular shift is another typical MPI communication pattern:

• each process communicates only with its neighbours

along one direction

• periodic boundary conditions can be set for letting first

and last processes partecipate in the communication

such a pattern is nothing more than a 1D cartesian grid

topology with optional periodicity

0 1 7

4

5

26

17

0

3

19

Sendrecv with Cartesian Topologies:
MPI_Cart_shift

• Depending on the periodicity of the Cartesian group in the specied coordinate

direction, MPI_CART_SHIFT provides the identiers for a circular or an end-o shift.

• In the case of an end-o shift, the value MPI_PROC_NULL may be returned

in rank_source or rank_dest, indicating that the source or the destination for the

shift is out of range.

• provides the calling process the ranks of source and destination processes for an

MPI_SENDRECV with respect to a specified coordinate direction and step size of the

shift

MPI_CART_SHIFT(comm, direction, disp, rank_source, rank_dest)

IN comm: communicator with Cartesian structure

IN direction: coordinate dimension of shift

IN disp: displacement (>0: upwards shift; <0: downwards shift

OUT rank_source: rank of source process

OUT rank_dest: rank of destination process

20

Sendrecv with 1D Cartesian Topologies

...

int dim[1],period[1];

dim[0] = nprocs;

period[0] = 1;

MPI_Comm ring_comm;

MPI_Cart_create(MPI_COMM_WORLD, 1, dim, period, 0, &ring_comm);

int source, dest;

MPI_Cart_shift(ring_comm, 0, 1, &source, &dest);

MPI_Sendrecv(right_bounday, n, MPI_INT, dest, rtag,

left_boundary, n, MPI_INT, source, ltag,

ring_comm, &status);

...

21

Sendrecv with 2D Cartesian Topologies

...

int dim[] = {4, 3};

int period[] = {1, 0};

MPI_Comm grid_comm;

MPI_Cart_create(MPI_COMM_WORLD, 2,

dim, period, 0, &grid_comm);

int source, dest;

for (int dimension = 0; dimension < 2; dimension++) {

for (int versus = -1; versus < 2; versus+=2;) {

MPI_Cart_shift(ring_comm, dimension, versus, &source, &dest);

MPI_Sendrecv(buffer, n, MPI_INT, source, stag,

buffer, n, MPI_INT, dest, dtag,

grid_comm, &status);

}

}

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

22

Partitioning of Cartesian Structures

• It is often useful to partition a cartesian communicator into

subgroups that form lower dimensional cartesian subgrids

– new communicators are derived

– lower dimensional communicators cannot communicate among

them

• unless inter-communicator are used

23

Binding of MPI_Cart_sub

int dim[] = {2, 3, 4};

int remain_dims[] = {1, 0, 1}; // 3 comm with 2x4 processes 2D
grid

...
int remain_dims[] = {0, 0, 1}; // 6 comm with 4 processes 1D

topology

MPI_CART_SUB(comm, remain_dims, newcomm)

IN comm: communicator with Cartesian structure

IN remain_dims: the i-th entry of remain_dims specifies whether

the i-th dimension is kept in the subgrid (true) or is

dropped (false) (logical vector)

OUT newcomm: communicator containing the subgrid that includes

the calling process

24

News from MPI-3.x

MPI-3.0 introduces more functionalities for topologies:

• neighbor collective communications

– enables optimizations in the MPI library because the

communication pattern is known statically

– the implementation can compute optimized message schedules

during creation of the topology

MPI_NEIGHBOR_ALL(GATHER[V] | TOALL[V])

• non-blocking collective communications:

• semantic similar to non-blocking point-to-point

MPI_INEIGHBOR_ALL(GATHER[V] | TOALL[V])

25

QUESTIONS ???

26

