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Virtual Topology

• Topology:

– extra, optional attribute that can be given to an intra-

communicator; topologies cannot be added to inter-

communicators.

– can provide a convenient naming mechanism for the processes 

of a group (within a communicator), and additionally, may 

assist the runtime system in mapping the processes onto 

hardware.

• A process group in MPI is a collection of n processes:

– each process in the group is assigned a rank between 0 and n-1. 

– in many parallel applications a linear ranking of processes does 

not adequately reflect the logical communication pattern of 

the processes (which is usually determined by the underlying 

problem geometry and the numerical algorithm used). 
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Virtual Topology

• Virtual topology: 

– logical process arrangement in topological patterns such as 2D 

or 3D grid; more generally, the logical process arrangement is 

described by a graph.

• Virtual process topology  .vs. topology of the underlying, 

physical hardware: 

– virtual topology can be exploited by the system in the 

assignment of processes to physical processors, if this helps to 

improve the communication performance on a given machine. 

– the description of the virtual topology depends only on the 

application, and is machine-independent. 
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Virtual Topology – Examples
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MPI Supported Topologies

• Cartesian

• Graph

• Distributed graph

Note: Topology information is associated with

communicators
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Cartesian Topology

A grid of processes is easily described with a cartesian topology:

– each process can be identified by cartesian coordinates

– periodicity can be selected for each direction

– communications are performed along grid dimensions only
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Example: 2D Domain decomposition
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Cartesian Constructor

• Returns a handle to a new communicator to which the Cartesian topology
information is attached.

• Reorder: 
• false: the rank of each process in the new group is identical to its reank in the old group.

• True: the processes may be reordered, possibly so as to choose a good embedding of the 
virtual topology onto physical machine. 

• If cart has less processes than starting communicator, left over processes have
MPI_COMM_NULL as return

MPI_CART_CREATE(comm_old, ndims, dims, periods, reorder, 

comm_cart)

IN comm_old: input communicator (handle)

IN ndims: number of dimensions of Cartesian grid (integer)

IN dims: integer array of size ndims specifying the number of 

processes in each dimension

IN periods: logical array of size ndims specifying whether the 

grid is periodic (true) or not (false) in each dimension

IN reorder: ranking may be reordered (true) or not (false)

OUT comm_cart: communicator with new Cartesian topology (handle)
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How to create a Cartesian Topology

#include <mpi.h>

int main(int argc, char *argv[]) 

{

MPI_Comm cart_comm;  

int dim[] = {4, 3};

int period[] = {1, 0};

int reorder = 0;

MPI_Init(&argc, &argv);

MPI_Cart_create(MPI_COMM_WORLD, 2, dim, period, reorder, 

&cart_comm);

...

}
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Cartesian Topology Utilities

• MPI_Dims_Create:

– compute optimal balanced distribution of processes per coordinate direction

with respect to:

• a given dimensionality

• the number of processes in a group

• optional constraints

• MPI_Cart_coords:

– given a rank, returns process's coordinates

• MPI_Cart_rank: 

– given process's coordinates, returns the rank

• MPI_Cart_shift:

– get source and destination rank ids in SendRecv operations
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Binding of MPI_Dims_create

• Help user to select a balanced distribution of processes per 
coordinate direction, depending on the number of processes in the 
group to be balanced and optional constraints that can be specified
by the user

• if dims[i] is set to a positive number, the routine will not modify
the number of nodes in that i dimension

• negative value of dims[i] are erroneous

MPI_DIMS_CREATE(nnodes, ndims, dims)

IN nnodes: number of nodes in a grid (integer)

IN ndims: number of Cartesian dimensions (integer)

IN/OUT dims: integer array of size ndims specifying the number of

nodes in each dimension
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IN / OUT of “dims”

dims before call Function call dims on return

(0, 0)

(0, 0)

(0, 3, 0)

(0, 3, 0)

MPI_DIMS_CREATE(6, 2, dims)

MPI_DIMS_CREATE(7, 2, dims)

MPI_DIMS_CREATE(6, 3, dims)

MPI_DIMS_CREATE(7, 2, dims)

(3, 2)

(7, 1)

(2, 3, 1)

erroneous call

MPI_DIMS_CREATE(nnodes, ndims, dims)

IN nnodes: number of nodes in a grid (integer)

IN ndims: number of Cartesian dimensions (integer)

IN/OUT dims: integer array of size ndims specifying the number of

nodes in each dimension
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Using MPI_Dims_create

MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

int dim[3];

dim[0] = 0; // let MPI arrange

dim[1] = 0; // let MPI arrange

dim[2] = 3; // I want exactly 3 planes

MPI_Dims_create(nprocs, 3, dim);

if (dim[0]*dim[1]*dim[2] < nprocs) {

fprintf(stderr, "WARNING: some processes are not in use!\n"

}

int period[] = {1, 1, 0};

int reorder = 0;

MPI_Cart_create(MPI_COMM_WORLD, 3, dim, period, reorder, &cube_comm);

...
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Coordinate -> Rank: MPI_Cart_rank

• translation of the logical process coordinates to process ranks as

they are used by the point-to-point routines

• if dimension i is periodic, when i-th coordinate is out of range, 

it is shifted back to the interval 0<coords(i)<dims(i) 

automatically

• out-of-range coordinates are erroneous for non-periodic dimensions

MPI_CART_RANK(comm, coords, rank)

IN comm: communicator with Cartesian structure 

IN coords: integer array (of size ndims) specifying the Cartesian 

coordinates of a process

OUT rank: rank of specified process
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Mapping: old and new ranks

// buffer to collect MPI_COMM_WORLD rank ids in new cartesian rank sorting

int *world_ranks = (int *) malloc (nprocs, sizeof(int));

int oldrank;

MPI_Comm_rank(MPI_COMM_WORLD, &oldrank);

MPI_Cart_create(MPI_COMM_WORLD, 2, dim, period, 1, &cart_comm);

// indexing dorting is now performed on rank id of comm_cart communicator

MPI_Gather(&oldrank, 1, MPI_INT, world_ranks, 1, MPI_INT, 0, comm_cart);

if (oldrank == 0) {

for (int i=0; i<dim[0]; i++) {

for (int j=0; j<dim[1]; j++) {

int new_rank;

int coords[2]; coords[0]=i; coords[1]=j;

MPI_Cart_rank(cart_comm, coords, &new_rank);

printf("([%d, %d]) ", new_rank, world_ranks[new_rank]);

}; printf("\n");

}

}
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Rank -> Coordinate: MPI_Cart_coords

• For each MPI process in Cartesian communicator, the 

coordinate whitin the cartesian topology are returned

MPI_CART_COORDS(comm, rank, maxdim, coords)

IN comm: communicator with Cartesian structure 

IN rank: rank of a process within group of comm

IN maxdims: length of vector coords in the calling program 

OUT coords: integer array (of size ndims) containing the 

Cartesain coordinates of specified process 
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Usage of MPI_Cart_coords

. . .

ndim = (int*)calloc(dim,sizeof(int));

ndim[0] = row; ndim[1] = col;

period = (int*)calloc(dim,sizeof(int));

period[0] = period[1] = 0;

reorder = 0;

// 2D grid creation

MPI_Cart_Create(MPI_COMM_WORLD,dim,ndim,period,reorder, &comm_grid);

MPI_Comm_rank(comm_grid,&menum_grid);

// Coordinate of each mpi rank within the cartesian communicator

MPI_Cart_coords(comm_grid,menum,dim,coordinate);

printf(“Procs %d coordinates in 2D grid (%d,%d) 

\n”,menum,*coordinate,*(coordinate+1));

. . . 

}
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Circular Shift: a 1D Cartesian Topology

Circular shift is another typical MPI communication pattern:

• each process communicates only with its neighbours

along one direction

• periodic boundary conditions can be set for letting first 

and last processes partecipate in the communication

such a pattern is nothing more than a 1D cartesian grid

topology with optional periodicity
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Sendrecv with Cartesian Topologies: 
MPI_Cart_shift

• Depending on the periodicity of the Cartesian group in the specied coordinate 

direction, MPI_CART_SHIFT provides the identiers for a circular or an end-o shift. 

• In the case of an end-o shift, the value MPI_PROC_NULL may be returned 

in rank_source or rank_dest, indicating that the source or the destination for the 

shift is out of range.

• provides the calling process the ranks of source and destination processes for an

MPI_SENDRECV with respect to a specified coordinate direction and step size of the 

shift

MPI_CART_SHIFT(comm, direction, disp, rank_source, rank_dest)

IN comm: communicator with Cartesian structure 

IN direction: coordinate dimension of shift

IN disp: displacement (>0: upwards shift; <0: downwards shift

OUT rank_source: rank of source process

OUT rank_dest: rank of destination process
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Sendrecv with 1D Cartesian Topologies

...

int dim[1],period[1];

dim[0] = nprocs;

period[0] = 1;

MPI_Comm ring_comm;

MPI_Cart_create(MPI_COMM_WORLD, 1, dim, period, 0, &ring_comm);

int source, dest;

MPI_Cart_shift(ring_comm, 0, 1, &source, &dest);

MPI_Sendrecv(right_bounday, n, MPI_INT, dest, rtag,

left_boundary, n, MPI_INT, source, ltag,

ring_comm, &status);

...
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Sendrecv with 2D Cartesian Topologies

...

int dim[] = {4, 3};

int period[] = {1, 0};

MPI_Comm grid_comm;

MPI_Cart_create(MPI_COMM_WORLD, 2, 

dim, period, 0, &grid_comm);

int source, dest;

for (int dimension = 0; dimension < 2; dimension++) {

for (int versus = -1; versus < 2; versus+=2;) {

MPI_Cart_shift(ring_comm, dimension, versus, &source, &dest);

MPI_Sendrecv(buffer, n, MPI_INT, source, stag,

buffer, n, MPI_INT, dest, dtag,

grid_comm, &status);

}

}
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Partitioning of Cartesian Structures

• It is often useful to partition a cartesian communicator into

subgroups that form lower dimensional cartesian subgrids

– new communicators are derived

– lower dimensional communicators cannot communicate among

them

• unless inter-communicator are used
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Binding of MPI_Cart_sub

int dim[] = {2, 3, 4};

int remain_dims[] = {1, 0, 1}; // 3 comm with 2x4 processes 2D 
grid

...
int remain_dims[] = {0, 0, 1}; // 6 comm with 4 processes 1D 

topology

MPI_CART_SUB(comm, remain_dims, newcomm)

IN comm: communicator with Cartesian structure 

IN remain_dims: the i-th entry of remain_dims specifies whether 

the i-th dimension is kept in the subgrid (true) or is 

dropped (false) (logical vector)

OUT newcomm: communicator containing the subgrid that includes 

the calling process
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News from MPI-3.x

MPI-3.0 introduces more functionalities for topologies:

• neighbor collective communications

– enables optimizations in the MPI library because the 

communication pattern is known statically 

– the implementation can compute optimized message schedules 

during creation of the topology

MPI_NEIGHBOR_ALL(GATHER[V] |  TOALL[V])

• non-blocking collective communications:

• semantic similar to non-blocking point-to-point

MPI_INEIGHBOR_ALL(GATHER[V] | TOALL[V])
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QUESTIONS ???
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