
Advanced MPI

Andrew Emerson (a.emerson@cineca.it)

Agenda

1. One sided Communications (MPI-2)
2. Dynamic processes (MPI-2)
3. Profiling MPI and tracing
4. MPI-I/O
5. MPI-3

11/12/2015 Advanced MPI 2

One sided communications

• In two-sided (point-to-point) communications there
can be a delay if the sender has to wait to send the
data because the receiver is not ready.

• The MPI-2 standard added Remote Memory Access
(RMA), also called one-sided communication, to
decouple data transfer from system synchronisation.

• In RMA only one process carries out the data transfer.
The MPI_Get and MPI_Put calls are non-blocking and
don’t require intervention of the remote process.

• MPI-3 further extended RMA to improve functionality
and performance.

11/12/2015 Advanced MPI 3

One sided communications

• Advantages of RMA:

– With only one process taking part performance
should be greater (no implicit synchronization, all
data movement routines are non-blocking)

– Some programs are more easily written with RMA

11/12/2015 Advanced MPI 4

Using one sided
communications

1. Define an area of memory to be used for the
RMA (“window”).

2. Specify the data to be moved and where to
move them.

3. Specify a way to know when the data are
available.

11/12/2015 Advanced MPI 5

create shared
buffer (window)

synchronize

get data from
target

synchronize

put data into
target

synchronize

free window
object

Using one sided
communications

MPI_Win win;

MPI_Win_create(sharedbuffer, NUM_ELEMENT, sizeof(int), MPI_INFO_NULL,

MPI_COMM_WORLD, &win);

.....

MPI_Win_fence(0, win);

if (id != 0)

 MPI_Get(&localbuffer[0], NUM_ELEMENT, MPI_INT, id-1, 0, NUM_ELEMENT, MPI_INT,

win);

else

 MPI_Get(&localbuffer[0], NUM_ELEMENT, MPI_INT, num_procs-1, 0, NUM_ELEMENT,

MPI_INT, win);

MPI_Win_fence(0, win);

if (id < num_procs-1)

 MPI_Put(&localbuffer[0], NUM_ELEMENT, MPI_INT, id+1, 0, NUM_ELEMENT, MPI_INT,

win);

 else

 MPI_Put(&localbuffer[0], NUM_ELEMENT, MPI_INT, 0, 0, NUM_ELEMENT, MPI_INT,

win);

MPI_Win_fence(0, win);

MPI_Win_free(&win);

MPI_Finalize();

11/12/2015 Advanced MPI 6

target rank

Dynamic processes in MPI

• Normally MPI tasks are fixed (e.g.
by mpirun) at the start of execution.

• But can be useful to add or create
tasks “on the fly”:
– Master – slave type codes, or on

heterogenous architectures (normal
nodes + accelerators).

– client-server or peer-to-peer

• Handling faults failures

11/12/2015 Advanced MPI 7

MPI_COMM_SPAWN

11/12/2015 Advanced MPI 8

• MPI-2 provides “spawn functionality”

– MPI_COMM_SPAWN

• starts a new set of processes with the same command
lines (SPMD model)

– MPI_COMM_SPAWN_MULTIPLE

• starts a new set of processes with potentially different
command lines (i.e. different executables and
arguments = MPMD)

Spawn semantics

• Group of parents collectively call spawn

– Launches a new set of child processes

– Child processes become an MPI job

– An intercommunicator is created between parents
and children.

• Parents and children can then use MPI
functions to communicate.

11/12/2015 Advanced MPI 9

MPI_Comm_Spawn example

11/12/2015 Advanced MPI 10

#define NUM_SPAWNS 2

int main(int argc, char* argv[])

{

 int np=NUM_SPAWNS;

 MPI_Comm parentcomm, intercomm;

 int errcodes[NUM_SPAWNS];

 MPI_Init(&argc, &argv);

 MPI_Comm_get_parent(&parentcomm);

 if (parentcomm == MPI_COMM_NULL)

 {

 // Create 2 more processes- example must be called spawn_example.exe for this to work

 MPI_Comm_spawn("./spawnexample", MPI_ARGV_NULL, np, MPI_INFO_NULL, 0, MPI_COMM_WORLD,

&intercomm, errcodes);

 printf("I'm the parent.\n");

 }

 else

 {

 printf("I'm the spawned.\n");

 }

 MPI_Finalize();

 return 0;

}

MPI_COMM_SPAWN

• Not all MPI implementations support MPI spawning (e.g. IBM
BG/Q).

• The MPI implementation may require particular runtime options.
• Remember that if working in a batch environment you should

allocate resources to cover the spawned processes as well.
– MPI_UNIVERSE_SIZE is often used to set the total number of processes

available (i.e. including spawned processes)

• Not commonly used in HPC environments. May be used in
heterogenous (i.e. with accelerators), although OpenMP task
creation is more likely.

11/12/2015 Advanced MPI 11

Debugging and profiling MPI
with PMPI

• MPI implementations also provide a profiling interface
called PMPI.

• In PMPI each standard MPI function (MPI_) has an
equivalent function with prefix PMPI_ (e.g. PMPI_Send,
PMI_RECV, etc).

• With PMPI it is possible to customize normal MPI
commands to provide extra information useful for profiling
or debugging.

• Not necessary to modify source code since the customized
MPI commands can be linked as a separate library during
debugging. For production the extra library is not linked
and the standard MPI behaviour is used.

11/12/2015 12 Advanced MPI

PMPI Examples

// profiling example

static int send_count=0;

int MPI_Send(void*start,int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

{

send_count++;

return PMPI_Send(start, count, datatype, dest, tag, comm);

}

! Unsafe uses of MPI_Send

! MPI_Send can be implemented as MPI_Ssend (synchronous send)

subroutine MPI_Send(start, count, datatype, dest,

 tag, comm, ierr)

 integer start(*), count, datatype, dest, tag, comm

 call PMPI_Ssend(start, count, datatype,

 dest, tag, comm, ierr)

end

Profiling

Debugging

Advanced MPI

MPI-3

• MPI 3.0 was approved in 2012. MPI 3.1 was
approved in 2015.

• Features include
– Non-blocking collectives

– Neighbourhood collectives

– New one sided communications

– Fortran 2008 bindings

– plus enhancements for many other features of
MPI-2.

11/12/2015 Advanced MPI 14

New collective calls in MPI-3

• Collective calls (MPI_Bcast, MPI_Reduce, etc) are
very often performance bottlenecks in MPI
codes. For Exascale, with potentially millions of
process, their impact could be serious.

• MPI-3 has introduced several enhancements to
minimise performance loss due to collectives.
These include:

1. Non-blocking collectives

2. Neighbourhood collectives.

11/12/2015 Advanced MPI 15

Non-blocking collectives

• Work in the same way to the usual blocking
collectives, except that they return almost
immediately after being called, i.e. a task does
not wait for other tasks to make the call.

• Naming convention just like non-blocking
point-to-point calls: MPI_Iallreduce,
MPI_Ibarrier, MPI_Ibcast ..

• Used with MPI_Test or MPI_Wait to increase
overlap of calculation and computation.

11/12/2015 Advanced MPI 16

Neighbourhood collectives

• A special type of collective call for sparse communication
patterns, i.e where communications occur between a few
processes in a communicator.

• In a neighbourhood call each process makes the call but
communication only occurs between nearest neighbours.

• Example:
MPI_Neighbor_allgather(void* sendbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf, int
recvcount, MPI_Datatype recvtype, MPI_Comm comm)

This sends the same data element to all neighbor processes
and receives a distinct data element from each of the
neighbors.

11/12/2015 Advanced MPI 17

MPI -4 ?

• Under discussion but resiliency and fault
tolerance likely to be important.

• Current MPI implementations kill all other
processes if one process fails.

• Future implementations may allow the
program to continue in case of failure of one
or more processes.

• In exascale, with millions of processes, this
could be important,

11/12/2015 Advanced MPI 18

