
Introduction to Parallel
Programming

Giovanni Erbacci - g.erbacci@cineca.it
Fabio Affinito – f.affinito@cineca.it

CINECA - Supercomputing, Applications & Innovation Department

Outline

Parallel programming
Shared memory paradigm
Distributed memory paradigm
Processes and Threads
Local or Global Addressing
SPMD Philosophy
Models of parallelism

Data parallelism
Control parallelism

Load balancing
Critical sections and Mutual exclusion
Deadlock

Parallel computers

P

M

P

M
P

M

P

M

P

M

P

M

N

Distribuited Memory System

Shared Memory System

M
P P

PP

NetworkM
P P

PP
Node 1

Node 5Node 6

Node 4

Node 2 Node 3

Distributed Memory system with more cores
sharing the memory of the single node

A parallel computer is a system consisting of a collection of processors able to
communicate and cooperate to solve large computational problems quickly.

Parallel Programming

Parallel programming is a programming technique that involves the use of
multiple processors working together on a single problem

The global problem is split in different sub-problems, each of which is
performed by a different processor in parallel.

Parallel Program
program composed from different tasks that communicate with each other to
achieve an overall computational target.

To realize and execute a parallel program is requires:

- A programming language that allows to formally describe non-
sequential algorithms

- A non-sequential computer able to perform any number of tasks
simultaneously.

Parallel Programming paradigms

A programming model is a collection of program abstractions that provides a
simplified and transparent vision of the hardware and software system in its
entirety.

Communication in a parallel computer is possible according to these patterns:
- Shared memory: by accessing shared variables
- Message-passing: exchanging messages

These patterns identify two parallel programming paradigms:
- Shared memory or global environment paradigm

where processes interact exclusively working on common resources

- Message passing or local environment paradigm
where there are no shared resources, processes handle only local
information and the only way to interact is by exchange of messages
(message passing)

Shared Memory Paradigm

Processes communicate by accessing shared variables and shared
data structures.

Shared memory system

Basic shared memory primitives:

– Read from a shared variable

– Write on a shared variable

Interconnection
System …Processors Memory

Modules

…

Message Passing Paradigm

Tasks communicate by exchanging messages

Basic message passing Primitives:

–Send (parameter list)

–Receive (parameter list)

A B

What is a Process

Algorithm
identify the sequence of logical steps that must be followed to solve a given
problem.

Program
implementation of the algorithm, by means of a suitable formalism

(programming language) so that it can be executed on a specific computer.

Sequential process
sequence of events (execution of operations) which gives place the computer
when operates under the control of a particular program.
Abstract entity which identifies the activity of the computer on the program
execution.

Process

A process is created by the operating system, and requires a
fair amount of "overhead".

Processes contain information about program resources and
program execution state, including:

- Process ID, process group ID, user ID, and group ID
- Environment
- Working directory.
- Program instructions
- Registers
- Stack
- Heap
- File descriptors
- Signal actions
- Shared libraries
- Inter-process communication tools

(such as message queues, pipes, semaphores, or shared memory).

Thread

A thread is defined as an independent stream of instructions that can be
scheduled to run as such by the operating system.

Threads
- exist within the process and use the process resources
- are able to be scheduled by the operating system
- run as independent entities
- they duplicate only the bare essential resources that enable them to exist

as executable code.

This independent flow of control is accomplished because a thread maintains
its own:

- Stack pointer
- Registers
- Scheduling properties (such as policy or priority)
- Set of pending and blocked signals
- Thread specific data.

Thread /1

Threads may share the process resources with other threads that act equally
Independently

Reading and writing to the same memory locations is possible, and
therefore requires explicit synchronization by the programmer.

Thread die if the parent process dies

Thread Iis "lightweight" because most of the overhead has already been
accomplished through the creation of its process.

Multi-threading

Available in almost all main
processor families.

Specific hardware support on
some processors

However, care must be taken in
using automatic multi-threading:
can, in some case, slow down
applications.

Toward a parallel algorithm

/* Bubble sort for integers */
#define SWAP(a,b) { int t; t=a; a=b; b=t; }

void SORT(int a[], int n)
/* Pre-condition: a contains n items to be sorted */

{
int i, j;
/* Make n passes through the array */
for(i=0;i<n;i++)

{
/* From the first element to the end of the unsorted section */
for(j=1;j<(n-i);j++)

{
/* If adjacent items are out of order, swap them */
if(a[j-1]>a[j]) SWAP(a[j-1],a[j]);
}

}
}

Input: a sequence of n numbers <a1, a2, a3, … an>

Output: a permutation <a’1, a’2, a’3, … a’n> of the elements

such that a’1 a’2,  a’3 … a’n

Bubble Sort

Sort of n numbers

Idea: - Split the array to sort into two array of n / 2 elements each,
- Order the two array separately
- Merge the two ordered arrays to reconstruct the whole array

SORT(a[0 : n/2-1])

SORT(a[n/2 : n-1])

MERGE(a[0 : n/2-1], a[n/2 : n-1])

Sort on k Processors

P0 P1 P2 …….. Pk-1

Step 0

Step 2

Step 1

Step log2K

Problem

Read the data to sort

SORT(a[0 : n/2-1])

SORT(a[n/2 : n-1])

MERGE(a[0 : n/2-1], a[n/2 : n-1])

Print the ordered array

Parallel programming requires to address problems that do not occur with
sequential programming.
We need to decide:

· what are the parts of the code which form the parallel sections
· when to start the execution of different parallel sections
· when to end the execution of parallel sections
· when and how to make the communication between the parallel entities
. when make the synchronization between the parallel entities

Then we need the right tools to implement all this

Local or Global addressing

With the shared memory paradigm we rely on the global memory addressing

With the distributed memory paradigm we rely only on local memories and
so we can only handle a local address space.

Example: Compute the sum of the elements of
array A[n, n]

s = i j aij

Global Addressing

Array A[n, n] is
allocated in the
shared memory.

All the processors
involved in the
computation can
reference any
element of A.

P0

P3

P2

P1

A

s3

s2

s1

s0

S

Memory

A(i,j) i = 1, n, j = 1,m

Temp = A(857,760) + A(321, 251)

Local Addressing

Each processor can
reference only his own
local memory.

A slice of A[n, n] is
allocate in each local
memory

P0

P3

P2

P1

s1

s0

A(i,j) i = 1, n/k, j = 1,m

s3

s2

??S

Temp = A(857,760) + A(321, 251) 

 Temp = A(107,760)P3 + A(71, 251) P1

(N = 1000, 4 proc)

Master Slave and SPMD philosophy

Master / Slave
A single process (the master) controls the work done by other processes (slaves, workers).
These can run the same program or different programs

Single Program Multiple Data
Each process runs the same copy of the program
The execution flow of each process varies as a function of the local environment (data,
number of process, etc..)
We can emulate the master / slave philosophy

C
main (int argc, char **argv)
{

if (process is to become a controller process)
{

Controller (/* Arguments /*);
}
else
{

Worker (/* Arguments /*);
}

}

Fortran
PROGRAM
IF (process is to become a controller process)
THEN

CALL Controller (/* Arguments /*)
ELSE

CALL Worker (/* Arguments /*)
ENDIF
END

Implementing Parallel
Programming Paradigms

- Shared Memory Paradigm (OpenMP)
- Message Passing Paradigm (MPI)

Sequential procedural languages (Fortran 90,C,C++) + API (Compiler Directives)
It tends to favor an implicit parallelism

- Parallelism is not visible to the programmer
- Compiler responsible for parallelism
- Easy to do
- Small improvements in performance

Sequential procedural languages (Fortran 90, C, C++) + API (Library routines)
Explicit Parallelism

- Parallelism is visible to the programmer
- Difficult to do (right)
- Large improvements in performance

Partitioned Global Address
Space (PGAS) models

• PGAS programming models provide a global memory address space allowing ,for
example arrays, to be shared across different nodes in a system (like an OpenMP
model on a distributed set of nodes).

• Often built with MPI but the APIs are at a higher level, thus programmers do not
need to include explicitly commands for message passing, etc. Simplifies parallel
programming, particularly for large packages.

• Implementation examples include UPC (Unified Parallel C), Global Arrays and Co-
array Fortran.

• Despite “locality awareness” (each node knows which portion of the array is
assigned to it) tend to provide lower performances than full MPI implementations.
Although a long history, still not widely used.

me = ga_nodeid() ! rank of the process
nprocs = ga_nnodes() ! total # of processes

dims = nprocs*nelem
chunk(1) = nelem
ld = nelem

call nga_create(MT_INT, ndim, dims, ‘array A’, chunk, g_a)
call nga_duplicate(g_a, g_b, ‘array B’)

Models of parallelism
Data Parallelism (domain decomposition)

Data structures partitioned (data parallelism)

- Each process execute the same work on a sub-set of the data structure
- Data placement is critical
- More scalable than functional parallelism

Problem for the boundary management
Load balancing (in some cases)

Models of parallelism / 1

Control Parallelism (Functional Parallelism)

- the different functions are distributed

Partitioning by task:

each process executes a different

"function": Identify the functions, and

then the data requirements

Load balancing

Functional or data Parallelism

Functional or Data Parallelism?

Partition by task (functional parallelism)
o each process performs a different "function"
o identify functions, then data requirements
o commonly programmed with message-passing

Partition by data (data parallelism)
o each process does the same work on a unique piece of data
o data placement is critical
o more scalable than functional parallelism

Boundary management
Data Parallelism

Load Balancing

t

P1
P0 P2

t

P1 P2
P0 P4

P3

Load balancing /1

t

P0 P1 P2 P3 P4 P5 P6 P7

t

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

P15

- Single Program Multiple Data

- A copy of the code is executed by each
process

- The execution flow is different depending from
the context (process id, local data, etc)

MPI Execution Model

OpenMP Execution Model

- A single thread starts execute sequentially

- When a parallel region is reached, several
slave threads are forked to run in parallel

- At the end of the parallel region, all the slave
threads die

- Only the master thread continues the
sequential execution

Notes on Shared Memory model:
Access to Shared variables

More process can read (load) concurrently the
same memory location without any problems.

This operation is well-defined conceptually
each process makes a copy of the contents of
the memory location and stores it in its own
register.

Problems can occur when there is a
concurrent access in writing (store)
that is when multiple processes
simultaneously write to the same memory
location.

P 1 P 2

X := X + 1

Two processes P1 and P2 share a
variable x that both must increment

W
ha

t
is

 t
h

e
fin

a
l

va
lu

e
of

 x
?

P1 loads x in a Register(P1)

P2 loads x in a Register(P2)

P1 increments the value loaded

P2 increments the value loaded

P1 stores the new value

P2 stores the new value

The programmer, the
programming language and
the architecture should
provide tools to solve the
conflicts

Notes on Shared Memory model: non
determinism

Non-determinism is caused by race conditions.
A race condition occurs when two different concurrent tasks access the same
memory location, at least one of them in writing.
There is not a guaranteed execution order between the accesses.
The access must be mutually exclusive
The problem of non-determinism can be solved by synchronizing the use of
shared data.

The portions of a parallel program that require synchronization to avoid non-
determinism are called critical sections. These sections must be executed in a
mutual exclusive way

Notes on Shared Memory model: Locks

In shared-memory programming specific constructs are needed to guarantee
the execution of critical sections in a mutually exclusive way.

i.e lock (), or higher level constructs, with hardware support

Thread 1:
LOCK (X)

X = X + 1
UNLOCK (X)

Thread 2:
LOCK (X)

X = X + 2
UNLOCK (X)

Notes on message passing model:
Deadlock

Situation in which one or more processes remain indefinitely blocked because do
not happen the necessary conditions for their continuation

A group of processes are in deadlock when all the processes of the group are
waiting for an event (acquisition or release of resources) that can be caused only
by one of the waiting processes.

Process P0 Process P1

receive (x1, P1)

…….

send (x2, P1)

receive (x2, P0)

…….

……..

send(x1,P0)

Performance assessment:
scalable algorithms
• Generally the choice of algorithm is what has the biggest impact on parallel

scalability
• An efficient and scalable algorithm typically has the following characteristics:

– The work can be separated into numerous tasks that proceed almost totally
independently of one another

– Communication between the tasks is infrequent or unnecessary
– Lots of computation takes place before messaging or I/O occurs
– There is little or no need for tasks to communicate globally
– There are good reasons to initiate as many tasks as possible
– Tasks retain all the above properties as their numbers grow

What is scalability?

• Ideal is to get N times more work done on N processors
• Strong scaling: compute a fixed-size problem N times faster
• Speedup S = T1 / TN ;

– linear speedup occurs when S = N –
– Can’t achieve it due to Amdahl’s Law (no speedup for serial parts)

• Weak scaling: compute a problem N times bigger in the same amount of time
– Speedup depends on the amount of serial work remaining constant or

increasing slowly as the size of the problem grows
– Assumes amount of communication among processors also remains constant or

grows slowly

Amdahl’s limitations

• For large N, the parallel speedup doesn’t asymptote to N, but to a constant 1/a,
where a is the serial fraction of the work

• The graph below compares perfect speedup (green) with maximum speedup of code
that is 99.9%, 99% and 90% parallelizable

Parallelization: Goals and decisions

Goals (ideals): Ensure the speed-up and scalability:
· Assign each process a unique amount of work
· Assign each process the data required for the job to do
· Minimize the replication of data and computation
· Minimize the communication between processes
· Balance the work load

Keep in mind that:
- For a problem there are several parallel solutions
- The best parallel solution not always comes from the best scalar solution

