
pyDAAL installation

Requirements:
I Intel Math Kernel Library (MKL): for BLAS and LAPACK
I Integrated Performance Primitives (IPP) for data compression/decompression
I Threading Building Blocks (TBB) for multicore and many-core parallelism

Installation methods:

1. anaconda Intel channel (Linux)

2. Intel distribution (Windows, Linux, OS X)

3. build from source

16/32

pyDAAL installation

Requirements:
I Intel Math Kernel Library (MKL): for BLAS and LAPACK
I Integrated Performance Primitives (IPP) for data compression/decompression
I Threading Building Blocks (TBB) for multicore and many-core parallelism

Installation methods:

1. anaconda Intel channel (Linux)

2. Intel distribution (Windows, Linux, OS X)

3. build from source

16/32

SVM multiclass classification in 10 steps

import numpy as np

load digits dataset
from sklearn import datasets
digits = datasets.load_digits ()

define training set size
n_samples = len(digits.images)
n_training = int(0.9 * n_samples)

data = np.ascontiguousarray(digits.data , dtype=np.double)
labels = np.ascontiguousarray(digits.target.reshape(n_samples , 1),

dtype=np.double)

from daal.data_management import HomogenNumericTable

train_data = HomogenNumericTable(data[: n_training])
train_labels = HomogenNumericTable(labels [: n_training])

test_data = HomogenNumericTable(data[n_training :])

1. enjoy sklearn datasets import module
2. require a contiguous array
3. create instances of HomogenNumericTable

17/32

SVM multiclass classification in 10 steps

import numpy as np

load digits dataset
from sklearn import datasets
digits = datasets.load_digits ()

define training set size
n_samples = len(digits.images)
n_training = int(0.9 * n_samples)

data = np.ascontiguousarray(digits.data , dtype=np.double)
labels = np.ascontiguousarray(digits.target.reshape(n_samples , 1),

dtype=np.double)

from daal.data_management import HomogenNumericTable

train_data = HomogenNumericTable(data[: n_training])
train_labels = HomogenNumericTable(labels [: n_training])

test_data = HomogenNumericTable(data[n_training :])

1. enjoy sklearn datasets import module

2. require a contiguous array
3. create instances of HomogenNumericTable

17/32

SVM multiclass classification in 10 steps

import numpy as np

load digits dataset
from sklearn import datasets
digits = datasets.load_digits ()

define training set size
n_samples = len(digits.images)
n_training = int(0.9 * n_samples)

data = np.ascontiguousarray(digits.data , dtype=np.double)
labels = np.ascontiguousarray(digits.target.reshape(n_samples , 1),

dtype=np.double)

from daal.data_management import HomogenNumericTable

train_data = HomogenNumericTable(data[: n_training])
train_labels = HomogenNumericTable(labels [: n_training])

test_data = HomogenNumericTable(data[n_training :])

1. enjoy sklearn datasets import module
2. require a contiguous array

3. create instances of HomogenNumericTable

17/32

SVM multiclass classification in 10 steps

import numpy as np

load digits dataset
from sklearn import datasets
digits = datasets.load_digits ()

define training set size
n_samples = len(digits.images)
n_training = int(0.9 * n_samples)

data = np.ascontiguousarray(digits.data , dtype=np.double)
labels = np.ascontiguousarray(digits.target.reshape(n_samples , 1),

dtype=np.double)

from daal.data_management import HomogenNumericTable

train_data = HomogenNumericTable(data[: n_training])
train_labels = HomogenNumericTable(labels [: n_training])

test_data = HomogenNumericTable(data[n_training :])

1. enjoy sklearn datasets import module
2. require a contiguous array
3. create instances of HomogenNumericTable

17/32

training algorithm setup

from daal.algorithms.svm import training as svm_training
from daal.algorithms.svm import prediction as svm_prediction
from daal.algorithms.multi_class_classifier import training as

multiclass_training
from daal.algorithms.classifier import training as training_params

kernel = rbf.Batch_Float64DefaultDense ()
kernel.parameter.sigma = 0.001

Create two class svm classifier
training alg
twoclass_train_alg = svm_training.Batch_Float64DefaultDense ()
twoclass_train_alg.parameter.kernel = kernel
twoclass_train_alg.parameter.C = 1.0
prediction alg
twoclass_predict_alg = svm_prediction.Batch_Float64DefaultDense ()
twoclass_predict_alg.parameter.kernel = kernel

Create a multiclass classifier object (training)
train_alg = multiclass_training.Batch_Float64OneAgainstOne ()
train_alg.parameter.nClasses = 10
train_alg.parameter.training = twoclass_train_alg
train_alg.parameter.prediction = twoclass_predict_alg

4. define kernel and kernel parameters
5. create two class svm classifier
6. create multi class svm classifier (training)

18/32

training algorithm setup

from daal.algorithms.svm import training as svm_training
from daal.algorithms.svm import prediction as svm_prediction
from daal.algorithms.multi_class_classifier import training as

multiclass_training
from daal.algorithms.classifier import training as training_params

kernel = rbf.Batch_Float64DefaultDense ()
kernel.parameter.sigma = 0.001

Create two class svm classifier
training alg
twoclass_train_alg = svm_training.Batch_Float64DefaultDense ()
twoclass_train_alg.parameter.kernel = kernel
twoclass_train_alg.parameter.C = 1.0
prediction alg
twoclass_predict_alg = svm_prediction.Batch_Float64DefaultDense ()
twoclass_predict_alg.parameter.kernel = kernel

Create a multiclass classifier object (training)
train_alg = multiclass_training.Batch_Float64OneAgainstOne ()
train_alg.parameter.nClasses = 10
train_alg.parameter.training = twoclass_train_alg
train_alg.parameter.prediction = twoclass_predict_alg

4. define kernel and kernel parameters

5. create two class svm classifier
6. create multi class svm classifier (training)

18/32

training algorithm setup

from daal.algorithms.svm import training as svm_training
from daal.algorithms.svm import prediction as svm_prediction
from daal.algorithms.multi_class_classifier import training as

multiclass_training
from daal.algorithms.classifier import training as training_params

kernel = rbf.Batch_Float64DefaultDense ()
kernel.parameter.sigma = 0.001

Create two class svm classifier
training alg
twoclass_train_alg = svm_training.Batch_Float64DefaultDense ()
twoclass_train_alg.parameter.kernel = kernel
twoclass_train_alg.parameter.C = 1.0
prediction alg
twoclass_predict_alg = svm_prediction.Batch_Float64DefaultDense ()
twoclass_predict_alg.parameter.kernel = kernel

Create a multiclass classifier object (training)
train_alg = multiclass_training.Batch_Float64OneAgainstOne ()
train_alg.parameter.nClasses = 10
train_alg.parameter.training = twoclass_train_alg
train_alg.parameter.prediction = twoclass_predict_alg

4. define kernel and kernel parameters
5. create two class svm classifier

6. create multi class svm classifier (training)

18/32

training algorithm setup

from daal.algorithms.svm import training as svm_training
from daal.algorithms.svm import prediction as svm_prediction
from daal.algorithms.multi_class_classifier import training as

multiclass_training
from daal.algorithms.classifier import training as training_params

kernel = rbf.Batch_Float64DefaultDense ()
kernel.parameter.sigma = 0.001

Create two class svm classifier
training alg
twoclass_train_alg = svm_training.Batch_Float64DefaultDense ()
twoclass_train_alg.parameter.kernel = kernel
twoclass_train_alg.parameter.C = 1.0
prediction alg
twoclass_predict_alg = svm_prediction.Batch_Float64DefaultDense ()
twoclass_predict_alg.parameter.kernel = kernel

Create a multiclass classifier object (training)
train_alg = multiclass_training.Batch_Float64OneAgainstOne ()
train_alg.parameter.nClasses = 10
train_alg.parameter.training = twoclass_train_alg
train_alg.parameter.prediction = twoclass_predict_alg

4. define kernel and kernel parameters
5. create two class svm classifier
6. create multi class svm classifier (training)

18/32

training phase

Pass training data and labels
train_alg.input.set(training_params.data , train_data)
train_alg.input.set(training_params.labels , train_labels)

training
model = train_alg.compute ().get(training_params.model)

7. set input data and labels

8. start training and get model

19/32

training phase

Pass training data and labels
train_alg.input.set(training_params.data , train_data)
train_alg.input.set(training_params.labels , train_labels)

training
model = train_alg.compute ().get(training_params.model)

7. set input data and labels

8. start training and get model

19/32

training phase

Pass training data and labels
train_alg.input.set(training_params.data , train_data)
train_alg.input.set(training_params.labels , train_labels)

training
model = train_alg.compute ().get(training_params.model)

7. set input data and labels

8. start training and get model

19/32

prediction algorithm setup

from daal.algorithms.multi_class_classifier import prediction as
multiclass_prediction

from daal.algorithms.classifier import prediction as
prediction_params

Create a multiclass classifier object (prediction)
predict_alg = multiclass_prediction.

Batch_Float64DefaultDenseOneAgainstOne ()
predict_alg.parameter.nClasses = 10
predict_alg.parameter.training = twoclass_train_alg
predict_alg.parameter.prediction = twoclass_predict_alg

9. create multi class svm classifier (prediction)

20/32

prediction algorithm setup

from daal.algorithms.multi_class_classifier import prediction as
multiclass_prediction

from daal.algorithms.classifier import prediction as
prediction_params

Create a multiclass classifier object (prediction)
predict_alg = multiclass_prediction.

Batch_Float64DefaultDenseOneAgainstOne ()
predict_alg.parameter.nClasses = 10
predict_alg.parameter.training = twoclass_train_alg
predict_alg.parameter.prediction = twoclass_predict_alg

9. create multi class svm classifier (prediction)

20/32

prediction phase

Pass a model and input data
predict_alg.input.setModel(prediction_params.model , model)
predict_alg.input.setTable(prediction_params.data , test_data)

Compute and return prediction results
results = predict_alg.compute ().get(prediction_params.prediction)

10. set input model and data

11. start prediction and get labels

21/32

prediction phase

Pass a model and input data
predict_alg.input.setModel(prediction_params.model , model)
predict_alg.input.setTable(prediction_params.data , test_data)

Compute and return prediction results
results = predict_alg.compute ().get(prediction_params.prediction)

10. set input model and data

11. start prediction and get labels

21/32

prediction phase

Pass a model and input data
predict_alg.input.setModel(prediction_params.model , model)
predict_alg.input.setTable(prediction_params.data , test_data)

Compute and return prediction results
results = predict_alg.compute ().get(prediction_params.prediction)

10. set input model and data

11. start prediction and get labels

21/32

Benchmark results

I Test description: 1797 samples total (90% training set, 10% test set), 64 features per
sample

I Platform description: Intel Core i5-6300U CPU @ 2.40GHz

sklearn pyDAAL speedup
training time [s] 0.161 0.018 8.9
test time [s] 0.017 0.004 4.3

22/32

Advantages and disadvantages

DAAL in general:

3 very simple installation/setup

3 wide range of algorithms (both for machine l. and for deep l.)

3 good support through dedicated intel forum (even for non paid versions)

3 DAAL C++ can be called from R and Matlab (see how-to forum posts)

7 documentation is sometimes not exhaustive

7 examples cover very simple application cases

as a Python user:

3 comes with Intel Python framework

3 faster alternative to scikit
7 Python interface still in development phase

I not all neural network layers parameters are accessible/modifiable

23/32

Advantages and disadvantages

DAAL in general:

3 very simple installation/setup

3 wide range of algorithms (both for machine l. and for deep l.)

3 good support through dedicated intel forum (even for non paid versions)

3 DAAL C++ can be called from R and Matlab (see how-to forum posts)

7 documentation is sometimes not exhaustive

7 examples cover very simple application cases

as a Python user:

3 comes with Intel Python framework

3 faster alternative to scikit
7 Python interface still in development phase

I not all neural network layers parameters are accessible/modifiable

23/32

Advantages and disadvantages

DAAL in general:

3 very simple installation/setup

3 wide range of algorithms (both for machine l. and for deep l.)

3 good support through dedicated intel forum (even for non paid versions)

3 DAAL C++ can be called from R and Matlab (see how-to forum posts)

7 documentation is sometimes not exhaustive

7 examples cover very simple application cases

as a Python user:

3 comes with Intel Python framework

3 faster alternative to scikit
7 Python interface still in development phase

I not all neural network layers parameters are accessible/modifiable

23/32

Advantages and disadvantages

DAAL in general:

3 very simple installation/setup

3 wide range of algorithms (both for machine l. and for deep l.)

3 good support through dedicated intel forum (even for non paid versions)

3 DAAL C++ can be called from R and Matlab (see how-to forum posts)

7 documentation is sometimes not exhaustive

7 examples cover very simple application cases

as a Python user:

3 comes with Intel Python framework

3 faster alternative to scikit
7 Python interface still in development phase

I not all neural network layers parameters are accessible/modifiable

23/32

Advantages and disadvantages

DAAL in general:

3 very simple installation/setup

3 wide range of algorithms (both for machine l. and for deep l.)

3 good support through dedicated intel forum (even for non paid versions)

3 DAAL C++ can be called from R and Matlab (see how-to forum posts)

7 documentation is sometimes not exhaustive

7 examples cover very simple application cases

as a Python user:

3 comes with Intel Python framework

3 faster alternative to scikit
7 Python interface still in development phase

I not all neural network layers parameters are accessible/modifiable

23/32

Advantages and disadvantages

DAAL in general:

3 very simple installation/setup

3 wide range of algorithms (both for machine l. and for deep l.)

3 good support through dedicated intel forum (even for non paid versions)

3 DAAL C++ can be called from R and Matlab (see how-to forum posts)

7 documentation is sometimes not exhaustive

7 examples cover very simple application cases

as a Python user:

3 comes with Intel Python framework

3 faster alternative to scikit
7 Python interface still in development phase

I not all neural network layers parameters are accessible/modifiable

23/32

Advantages and disadvantages

DAAL in general:

3 very simple installation/setup

3 wide range of algorithms (both for machine l. and for deep l.)

3 good support through dedicated intel forum (even for non paid versions)

3 DAAL C++ can be called from R and Matlab (see how-to forum posts)

7 documentation is sometimes not exhaustive

7 examples cover very simple application cases

as a Python user:

3 comes with Intel Python framework

3 faster alternative to scikit
7 Python interface still in development phase

I not all neural network layers parameters are accessible/modifiable

23/32

Advantages and disadvantages

DAAL in general:

3 very simple installation/setup

3 wide range of algorithms (both for machine l. and for deep l.)

3 good support through dedicated intel forum (even for non paid versions)

3 DAAL C++ can be called from R and Matlab (see how-to forum posts)

7 documentation is sometimes not exhaustive

7 examples cover very simple application cases

as a Python user:

3 comes with Intel Python framework

3 faster alternative to scikit
7 Python interface still in development phase

I not all neural network layers parameters are accessible/modifiable

23/32

Advantages and disadvantages

DAAL in general:

3 very simple installation/setup

3 wide range of algorithms (both for machine l. and for deep l.)

3 good support through dedicated intel forum (even for non paid versions)

3 DAAL C++ can be called from R and Matlab (see how-to forum posts)

7 documentation is sometimes not exhaustive

7 examples cover very simple application cases

as a Python user:

3 comes with Intel Python framework

3 faster alternative to scikit

7 Python interface still in development phase
I not all neural network layers parameters are accessible/modifiable

23/32

Advantages and disadvantages

DAAL in general:

3 very simple installation/setup

3 wide range of algorithms (both for machine l. and for deep l.)

3 good support through dedicated intel forum (even for non paid versions)

3 DAAL C++ can be called from R and Matlab (see how-to forum posts)

7 documentation is sometimes not exhaustive

7 examples cover very simple application cases

as a Python user:

3 comes with Intel Python framework

3 faster alternative to scikit
7 Python interface still in development phase

I not all neural network layers parameters are accessible/modifiable

23/32

NVIDIA Deep Learning Software

Tools and libraries for designing and deploying GPU-accelerated deep learning applications.

I Deep Learning Neural Network library (cuDNN) forward and backward convolution,
pooling, normalization, activation layers;

I TensorRT optimize, validate and deploy trained neural network for inference to
hyperscale data centers, embedded, or automotive product platforms;

I DeepStream SDK uses TensorRT to deliver fast INT8 precision inference for real-time
video content analysis, supports also FP16 and FP32 precisions;

I Linear Algebra (cuBLAS and cuBLAS-XT) accelerated BLAS subroutines for single
and multi-GPU acceleration;

I Sparse Linear Algebra (cuSPARSE) supports dense, COO, CSR, CSC, ELL/HYB and
Blocked CSR sparse matrix formats, Level 1,2,3 routines, sparse triangular solver, sparse
tridiagonal solver;

I Multi-GPU Communications (NCCL, pronounced ”Nickel”) optimized primitives for
collective multi-GPU communication;

24/32

NVIDIA Deep Learning Software

Tools and libraries for designing and deploying GPU-accelerated deep learning applications.
I Deep Learning Neural Network library (cuDNN) forward and backward convolution,

pooling, normalization, activation layers;

I TensorRT optimize, validate and deploy trained neural network for inference to
hyperscale data centers, embedded, or automotive product platforms;

I DeepStream SDK uses TensorRT to deliver fast INT8 precision inference for real-time
video content analysis, supports also FP16 and FP32 precisions;

I Linear Algebra (cuBLAS and cuBLAS-XT) accelerated BLAS subroutines for single
and multi-GPU acceleration;

I Sparse Linear Algebra (cuSPARSE) supports dense, COO, CSR, CSC, ELL/HYB and
Blocked CSR sparse matrix formats, Level 1,2,3 routines, sparse triangular solver, sparse
tridiagonal solver;

I Multi-GPU Communications (NCCL, pronounced ”Nickel”) optimized primitives for
collective multi-GPU communication;

24/32

NVIDIA Deep Learning Software

Tools and libraries for designing and deploying GPU-accelerated deep learning applications.
I Deep Learning Neural Network library (cuDNN) forward and backward convolution,

pooling, normalization, activation layers;
I TensorRT optimize, validate and deploy trained neural network for inference to

hyperscale data centers, embedded, or automotive product platforms;

I DeepStream SDK uses TensorRT to deliver fast INT8 precision inference for real-time
video content analysis, supports also FP16 and FP32 precisions;

I Linear Algebra (cuBLAS and cuBLAS-XT) accelerated BLAS subroutines for single
and multi-GPU acceleration;

I Sparse Linear Algebra (cuSPARSE) supports dense, COO, CSR, CSC, ELL/HYB and
Blocked CSR sparse matrix formats, Level 1,2,3 routines, sparse triangular solver, sparse
tridiagonal solver;

I Multi-GPU Communications (NCCL, pronounced ”Nickel”) optimized primitives for
collective multi-GPU communication;

24/32

NVIDIA Deep Learning Software

Tools and libraries for designing and deploying GPU-accelerated deep learning applications.
I Deep Learning Neural Network library (cuDNN) forward and backward convolution,

pooling, normalization, activation layers;
I TensorRT optimize, validate and deploy trained neural network for inference to

hyperscale data centers, embedded, or automotive product platforms;
I DeepStream SDK uses TensorRT to deliver fast INT8 precision inference for real-time

video content analysis, supports also FP16 and FP32 precisions;

I Linear Algebra (cuBLAS and cuBLAS-XT) accelerated BLAS subroutines for single
and multi-GPU acceleration;

I Sparse Linear Algebra (cuSPARSE) supports dense, COO, CSR, CSC, ELL/HYB and
Blocked CSR sparse matrix formats, Level 1,2,3 routines, sparse triangular solver, sparse
tridiagonal solver;

I Multi-GPU Communications (NCCL, pronounced ”Nickel”) optimized primitives for
collective multi-GPU communication;

24/32

NVIDIA Deep Learning Software

Tools and libraries for designing and deploying GPU-accelerated deep learning applications.
I Deep Learning Neural Network library (cuDNN) forward and backward convolution,

pooling, normalization, activation layers;
I TensorRT optimize, validate and deploy trained neural network for inference to

hyperscale data centers, embedded, or automotive product platforms;
I DeepStream SDK uses TensorRT to deliver fast INT8 precision inference for real-time

video content analysis, supports also FP16 and FP32 precisions;
I Linear Algebra (cuBLAS and cuBLAS-XT) accelerated BLAS subroutines for single

and multi-GPU acceleration;

I Sparse Linear Algebra (cuSPARSE) supports dense, COO, CSR, CSC, ELL/HYB and
Blocked CSR sparse matrix formats, Level 1,2,3 routines, sparse triangular solver, sparse
tridiagonal solver;

I Multi-GPU Communications (NCCL, pronounced ”Nickel”) optimized primitives for
collective multi-GPU communication;

24/32

NVIDIA Deep Learning Software

Tools and libraries for designing and deploying GPU-accelerated deep learning applications.
I Deep Learning Neural Network library (cuDNN) forward and backward convolution,

pooling, normalization, activation layers;
I TensorRT optimize, validate and deploy trained neural network for inference to

hyperscale data centers, embedded, or automotive product platforms;
I DeepStream SDK uses TensorRT to deliver fast INT8 precision inference for real-time

video content analysis, supports also FP16 and FP32 precisions;
I Linear Algebra (cuBLAS and cuBLAS-XT) accelerated BLAS subroutines for single

and multi-GPU acceleration;
I Sparse Linear Algebra (cuSPARSE) supports dense, COO, CSR, CSC, ELL/HYB and

Blocked CSR sparse matrix formats, Level 1,2,3 routines, sparse triangular solver, sparse
tridiagonal solver;

I Multi-GPU Communications (NCCL, pronounced ”Nickel”) optimized primitives for
collective multi-GPU communication;

24/32

NVIDIA Deep Learning Software

Tools and libraries for designing and deploying GPU-accelerated deep learning applications.
I Deep Learning Neural Network library (cuDNN) forward and backward convolution,

pooling, normalization, activation layers;
I TensorRT optimize, validate and deploy trained neural network for inference to

hyperscale data centers, embedded, or automotive product platforms;
I DeepStream SDK uses TensorRT to deliver fast INT8 precision inference for real-time

video content analysis, supports also FP16 and FP32 precisions;
I Linear Algebra (cuBLAS and cuBLAS-XT) accelerated BLAS subroutines for single

and multi-GPU acceleration;
I Sparse Linear Algebra (cuSPARSE) supports dense, COO, CSR, CSC, ELL/HYB and

Blocked CSR sparse matrix formats, Level 1,2,3 routines, sparse triangular solver, sparse
tridiagonal solver;

I Multi-GPU Communications (NCCL, pronounced ”Nickel”) optimized primitives for
collective multi-GPU communication;

24/32

NVIDIA based frameworks

25/32

TensorFlow

I Google Brain’s second generation machine learning system

I computations are expressed as stateful dataflow graphs
I automatic differentiation capabilities
I optimization algorithms: gradient and proximal gradient based
I code portability (CPUs, GPUs, on desktop, server, or mobile computing platforms)
I Python interface is the preferred one (Java and C++also exist)
I installation through: virtualenv, pip, Docker, Anaconda, from sources

26/32

TensorFlow

I Google Brain’s second generation machine learning system
I computations are expressed as stateful dataflow graphs

I automatic differentiation capabilities
I optimization algorithms: gradient and proximal gradient based
I code portability (CPUs, GPUs, on desktop, server, or mobile computing platforms)
I Python interface is the preferred one (Java and C++also exist)
I installation through: virtualenv, pip, Docker, Anaconda, from sources

26/32

TensorFlow

I Google Brain’s second generation machine learning system
I computations are expressed as stateful dataflow graphs
I automatic differentiation capabilities

I optimization algorithms: gradient and proximal gradient based
I code portability (CPUs, GPUs, on desktop, server, or mobile computing platforms)
I Python interface is the preferred one (Java and C++also exist)
I installation through: virtualenv, pip, Docker, Anaconda, from sources

26/32

TensorFlow

I Google Brain’s second generation machine learning system
I computations are expressed as stateful dataflow graphs
I automatic differentiation capabilities
I optimization algorithms: gradient and proximal gradient based

I code portability (CPUs, GPUs, on desktop, server, or mobile computing platforms)
I Python interface is the preferred one (Java and C++also exist)
I installation through: virtualenv, pip, Docker, Anaconda, from sources

26/32

TensorFlow

I Google Brain’s second generation machine learning system
I computations are expressed as stateful dataflow graphs
I automatic differentiation capabilities
I optimization algorithms: gradient and proximal gradient based
I code portability (CPUs, GPUs, on desktop, server, or mobile computing platforms)

I Python interface is the preferred one (Java and C++also exist)
I installation through: virtualenv, pip, Docker, Anaconda, from sources

26/32

TensorFlow

I Google Brain’s second generation machine learning system
I computations are expressed as stateful dataflow graphs
I automatic differentiation capabilities
I optimization algorithms: gradient and proximal gradient based
I code portability (CPUs, GPUs, on desktop, server, or mobile computing platforms)
I Python interface is the preferred one (Java and C++also exist)

I installation through: virtualenv, pip, Docker, Anaconda, from sources

26/32

TensorFlow

I Google Brain’s second generation machine learning system
I computations are expressed as stateful dataflow graphs
I automatic differentiation capabilities
I optimization algorithms: gradient and proximal gradient based
I code portability (CPUs, GPUs, on desktop, server, or mobile computing platforms)
I Python interface is the preferred one (Java and C++also exist)
I installation through: virtualenv, pip, Docker, Anaconda, from sources

26/32

Linear regression (I)

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

Set up the data with a noisy linear relationship between X and Y.
num_examples = 50
X = np.array([np.linspace(-2, 4, num_examples), np.linspace(-6, 6,

num_examples)])
X += np.random.randn(2, num_examples)
x, y = X
x_with_bias = np.array ([(1., a) for a in x]).astype(np.float32)

losses = []
training_steps = 50
learning_rate = 0.002

−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5
−8

−6

−4

−2

0

2

4

6

8

1. generate noisy input data

2. set slack variables and fix algorithm parameters

27/32

Linear regression (I)

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

Set up the data with a noisy linear relationship between X and Y.
num_examples = 50
X = np.array([np.linspace(-2, 4, num_examples), np.linspace(-6, 6,

num_examples)])
X += np.random.randn(2, num_examples)
x, y = X
x_with_bias = np.array ([(1., a) for a in x]).astype(np.float32)

losses = []
training_steps = 50
learning_rate = 0.002

−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5
−8

−6

−4

−2

0

2

4

6

8

1. generate noisy input data

2. set slack variables and fix algorithm parameters

27/32

Linear regression (I)

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

Set up the data with a noisy linear relationship between X and Y.
num_examples = 50
X = np.array([np.linspace(-2, 4, num_examples), np.linspace(-6, 6,

num_examples)])
X += np.random.randn(2, num_examples)
x, y = X
x_with_bias = np.array ([(1., a) for a in x]).astype(np.float32)

losses = []
training_steps = 50
learning_rate = 0.002

−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5
−8

−6

−4

−2

0

2

4

6

8

1. generate noisy input data

2. set slack variables and fix algorithm parameters

27/32

Linear regression (II)

Start of graph description
Set up all the tensors , variables , and operations.
A = tf.constant(x_with_bias)
target = tf.constant(np.transpose ([y]).astype(np.float32))
weights = tf.Variable(tf.random_normal ([2, 1], 0, 0.1))

yhat = tf.matmul(A, weights)
yerror = tf.sub(yhat , target)
loss = tf.nn.l2_loss(yerror)

update_weights =
tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)

sess = tf.Session ()
sess.run(tf.global_variables_initializer ())
for _ in range(training_steps):

Repeatedly run the operations , updating variables
sess.run(update_weights)
losses.append(sess.run(loss))

3. define tensorflow constants and variables

4. define nodes

5. start evaluation

28/32

Linear regression (II)

Start of graph description
Set up all the tensors , variables , and operations.
A = tf.constant(x_with_bias)
target = tf.constant(np.transpose ([y]).astype(np.float32))
weights = tf.Variable(tf.random_normal ([2, 1], 0, 0.1))

yhat = tf.matmul(A, weights)
yerror = tf.sub(yhat , target)
loss = tf.nn.l2_loss(yerror)

update_weights =
tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)

sess = tf.Session ()
sess.run(tf.global_variables_initializer ())
for _ in range(training_steps):

Repeatedly run the operations , updating variables
sess.run(update_weights)
losses.append(sess.run(loss))

3. define tensorflow constants and variables

4. define nodes

5. start evaluation

28/32

Linear regression (II)

Start of graph description
Set up all the tensors , variables , and operations.
A = tf.constant(x_with_bias)
target = tf.constant(np.transpose ([y]).astype(np.float32))
weights = tf.Variable(tf.random_normal ([2, 1], 0, 0.1))

yhat = tf.matmul(A, weights)
yerror = tf.sub(yhat , target)
loss = tf.nn.l2_loss(yerror)

update_weights =
tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)

sess = tf.Session ()
sess.run(tf.global_variables_initializer ())
for _ in range(training_steps):

Repeatedly run the operations , updating variables
sess.run(update_weights)
losses.append(sess.run(loss))

3. define tensorflow constants and variables

4. define nodes

5. start evaluation

28/32

Linear regression (II)

Start of graph description
Set up all the tensors , variables , and operations.
A = tf.constant(x_with_bias)
target = tf.constant(np.transpose ([y]).astype(np.float32))
weights = tf.Variable(tf.random_normal ([2, 1], 0, 0.1))

yhat = tf.matmul(A, weights)
yerror = tf.sub(yhat , target)
loss = tf.nn.l2_loss(yerror)

update_weights =
tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)

sess = tf.Session ()
sess.run(tf.global_variables_initializer ())
for _ in range(training_steps):

Repeatedly run the operations , updating variables
sess.run(update_weights)
losses.append(sess.run(loss))

3. define tensorflow constants and variables

4. define nodes

5. start evaluation

28/32

Linear regression (III)

Training is done , get the final values
betas = sess.run(weights)
yhat = sess.run(yhat)

−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5
−8

−6

−4

−2

0

2

4

6

8

0 10 20 30 40 50
Training steps

120

140

160

180

200

Lo
ss

29/32

Linear regression (III)

Training is done , get the final values
betas = sess.run(weights)
yhat = sess.run(yhat)

−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5
−8

−6

−4

−2

0

2

4

6

8

0 10 20 30 40 50
Training steps

120

140

160

180

200

Lo
ss

29/32

Benchmark results

I MNIST dataset of handwritten digits:
I training set: 60k samples, 784 features per sample (MNIST)
I test set: 10k samples, 784 features per sample (MNIST)

I Convolutional NN: two conv. layers, two fully conn. layers (plus reg.) ≈ 3m variables

input image
(28× 28)

convolutional layer
with non-linearities
plus subsampling

(14× 14× 32)

convolutional layer
with non-linearities
plus subsampling

(7× 7× 64)

fully connected layer

(1024)

fully connected layer

output probabilities
(10)

1

30/32

Benchmark results

I MNIST dataset of handwritten digits:
I training set: 60k samples, 784 features per sample (MNIST)
I test set: 10k samples, 784 features per sample (MNIST)

I Convolutional NN: two conv. layers, two fully conn. layers (plus reg.) ≈ 3m variables

input image
(28× 28)

convolutional layer
with non-linearities
plus subsampling

(14× 14× 32)

convolutional layer
with non-linearities
plus subsampling

(7× 7× 64)

fully connected layer

(1024)

fully connected layer

output probabilities
(10)

1

30/32

Benchmark results (II)

Optimization method:
I stochastic gradient descent (batch size: 50 examples)
I fixed learning rate
I 2000 iterations

Platforms:
I (1) Intel Core i5-6300U CPU @2.4GHz
I (2) 2 x Intel Xeon 2630 v3 @2.4GHz
I (3) Nvidia Tesla K40

PL (1) PL (2) PL (3)
training time [s] 3307.2 866.1 191.8
test time [s] 11.9 1.7 1.2

Same code achieves 3.8x when running in 1 GALILEO node
and 17.2x on a single GPU (training phase).

31/32

Benchmark results (II)

Optimization method:
I stochastic gradient descent (batch size: 50 examples)
I fixed learning rate
I 2000 iterations

Platforms:
I (1) Intel Core i5-6300U CPU @2.4GHz
I (2) 2 x Intel Xeon 2630 v3 @2.4GHz
I (3) Nvidia Tesla K40

PL (1) PL (2) PL (3)
training time [s] 3307.2 866.1 191.8
test time [s] 11.9 1.7 1.2

Same code achieves 3.8x when running in 1 GALILEO node
and 17.2x on a single GPU (training phase).

31/32

Benchmark results (II)

Optimization method:
I stochastic gradient descent (batch size: 50 examples)
I fixed learning rate
I 2000 iterations

Platforms:
I (1) Intel Core i5-6300U CPU @2.4GHz
I (2) 2 x Intel Xeon 2630 v3 @2.4GHz
I (3) Nvidia Tesla K40

PL (1) PL (2) PL (3)
training time [s] 3307.2 866.1 191.8
test time [s] 11.9 1.7 1.2

Same code achieves 3.8x when running in 1 GALILEO node
and 17.2x on a single GPU (training phase).

31/32

Benchmark results (II)

Optimization method:
I stochastic gradient descent (batch size: 50 examples)
I fixed learning rate
I 2000 iterations

Platforms:
I (1) Intel Core i5-6300U CPU @2.4GHz
I (2) 2 x Intel Xeon 2630 v3 @2.4GHz
I (3) Nvidia Tesla K40

PL (1) PL (2) PL (3)
training time [s] 3307.2 866.1 191.8
test time [s] 11.9 1.7 1.2

Same code achieves 3.8x when running in 1 GALILEO node
and 17.2x on a single GPU (training phase).

31/32

Advantages and disadvantages

TensorFlow in general:

3 very simple installation/setup

3 plenty of tutorials, exhaustive documentation

3 tools for exporting (partially) trained graphs (see MetaGraph)

3 debugger, graph flow visualization

as a Python user:

3 “Python API is the most complete and the easiest to use”

3 numpy interoperability

7 lower level than pyDAAL (?)

32/32

Advantages and disadvantages

TensorFlow in general:

3 very simple installation/setup

3 plenty of tutorials, exhaustive documentation

3 tools for exporting (partially) trained graphs (see MetaGraph)

3 debugger, graph flow visualization

as a Python user:

3 “Python API is the most complete and the easiest to use”

3 numpy interoperability

7 lower level than pyDAAL (?)

32/32

Advantages and disadvantages

TensorFlow in general:

3 very simple installation/setup

3 plenty of tutorials, exhaustive documentation

3 tools for exporting (partially) trained graphs (see MetaGraph)

3 debugger, graph flow visualization

as a Python user:

3 “Python API is the most complete and the easiest to use”

3 numpy interoperability

7 lower level than pyDAAL (?)

32/32

Advantages and disadvantages

TensorFlow in general:

3 very simple installation/setup

3 plenty of tutorials, exhaustive documentation

3 tools for exporting (partially) trained graphs (see MetaGraph)

3 debugger, graph flow visualization

as a Python user:

3 “Python API is the most complete and the easiest to use”

3 numpy interoperability

7 lower level than pyDAAL (?)

32/32

Advantages and disadvantages

TensorFlow in general:

3 very simple installation/setup

3 plenty of tutorials, exhaustive documentation

3 tools for exporting (partially) trained graphs (see MetaGraph)

3 debugger, graph flow visualization

as a Python user:

3 “Python API is the most complete and the easiest to use”

3 numpy interoperability

7 lower level than pyDAAL (?)

32/32

Advantages and disadvantages

TensorFlow in general:

3 very simple installation/setup

3 plenty of tutorials, exhaustive documentation

3 tools for exporting (partially) trained graphs (see MetaGraph)

3 debugger, graph flow visualization

as a Python user:

3 “Python API is the most complete and the easiest to use”

3 numpy interoperability

7 lower level than pyDAAL (?)

32/32

Advantages and disadvantages

TensorFlow in general:

3 very simple installation/setup

3 plenty of tutorials, exhaustive documentation

3 tools for exporting (partially) trained graphs (see MetaGraph)

3 debugger, graph flow visualization

as a Python user:

3 “Python API is the most complete and the easiest to use”

3 numpy interoperability

7 lower level than pyDAAL (?)

32/32

Advantages and disadvantages

TensorFlow in general:

3 very simple installation/setup

3 plenty of tutorials, exhaustive documentation

3 tools for exporting (partially) trained graphs (see MetaGraph)

3 debugger, graph flow visualization

as a Python user:

3 “Python API is the most complete and the easiest to use”

3 numpy interoperability

7 lower level than pyDAAL (?)

32/32

