
Debugging

Andrew Emerson, Paride Dagna and others

SCAI, Cineca

22/05/2017 1
Intro to HPC programming: tools and

techniques

Contents

• Introduction

• Before using the debugger

– checking tools

– compiler options

• Preparing for the debugger

• Debugging a serial program with gdb

• Parallel Program debugging with gdb, PMPI and Totalview

22/05/2017 2Intro to HPC programming: tools and techniques

What is a bug ?

Sometimes called an “undocumented feature” but usually when
something goes wrong..

22/05/2017 Intro to HPC programming: tools and techniques 3

As soon as we started programming, we found to our surprise that it wasn’t as
easy to get programs right as we had thought. Debugging had to be
discovered. I can remember the exact instant when I realized that a large part
of my life from then on was going to be spent in finding mistakes in my own
programs.!

Maurice Wilkes discovers debugging, 1949.

Notable software errors..

• Nasa Mars Climate Orbiter (1998, $125M)

– Lost due to imperial <-> metric conversion

• Ariane 5 Flight 501 ($500M satellite)

– Aborted due to non updated software (16bit variable for 64bit number).

• Heathrow Terminal 5

– Bug in baggage handling control software. “Unexpected passenger
behaviour” (i.e. retrieving something from a bag) brought down system.

• Mariner 1 spacecraft

– Missing “-” caused craft to go of course and engineers aborted mission.

• “Smart ship” USS Yorktown was immobilised for 3 hours due to divide-by-zero.

• Amazon once had a book on sale about flies that cost $23,698,655.93.

– Competing software agents raised the price to ca. $23M before someone
noticed.

22/05/2017 Intro to HPC programming: tools and techniques 4

Taken from “10 of the most costly software errors in history, https://raygun.com/blog/10-costly-
software-errors-history” ,Wikipedia and http://www.michaeleisen.org/blog/?p=358

https://raygun.com/blog/10-costly-software-errors-history

Avoiding bugs

• Don’t write them in the first place but good software practices help:

– Structured or oriented programming techniques, minimising global
variables, etc

– Revisioning systems such as svn or git to keep track of changes and
revert to working versions if things go wrong

– Integrated Development Environments (IDEs) have many integrated
features for writing programs.

– HPC and parallel programming sometimes to leads to “performing
code” instead of “safe code” so extra care is needed

22/05/2017 Intro to HPC programming: tools and techniques 5

Test

Locate
errors

Correct
errors

For large programs it is
worth developing mini-
apps, smaller versions
containing the main
functionality

Practical debugging

• One of the most widely used methods to find out the reason of a
strange behaviour in a program is the insertion of “printf” or
“write” statements in the supposed critical area.

• However this kind of approach has a lot of limits and requires
frequent code recompiling and becomes hard to implement for
complex programs, above all if parallel. Moreover sometimes the
error may not be obvious or hidden.

• Debuggers and other programs are very powerful tools able to
provide, in a targeted manner, a high number of information
facilitating the work of the programmer in research and in the
solution of instability in the application.

• For example, with simple debugging commands you can have your
program run to a certain line and then pause. You can then see
what value any variable has at that point in the code.

22/05/2017 6Intro to HPC programming: tools and techniques

Debugging process

The debugging process can be divided into four main steps:

1. Start your program.

2. Make your program stop on specified conditions.

3. Examine what has happened, when your program has
stopped.

4. Change things in your program, or its compilation, so you
can experiment with correcting the effects of one bug and
go on to learn about another.

22/05/2017 7Intro to HPC programming: tools and techniques

Before starting the debugger

• Before starting the debugger, check your compiler documentation to see
what compile or run-time checks are available.

• Some compiler options to try

– switch down the optimisation level (e.g. from –O3). High or
“aggressive” optimisations can cause code changes and introduce
bugs.

– turn on compiler options such as –C or –check-bounds to look for
incorrect array indices.

– for intel compilers try also -fpe0 –traceback, which stops the
program if a floating point error is detected.

– use options for uninitialised variable detection, etc.

• For performance reasons many run-time checks are switched off by
default. Remember to switch them off again when debugging is complete.

• If possible also worth using a different compiler to see if the problem
persists, or more useful error or warning messages are obtained.

22/05/2017 8Intro to HPC programming: tools and techniques

Before starting the debugger..

Static Analysis tools for C, e.g.

splint [-options] filename[s]

• Unused declarations

• Type inconsistences

• Infinite loops

• Possible Memory leaks

• many others

For Fortran tools include ftncheck, Forcheck, Cleanscape
FortranLint,etc

22/05/2017 Intro to HPC programming: tools and techniques 9

Before starting the debugger

Some advice

– Do not ignore compiler warnings, even if they appear to be
harmless

– Use multiple compilers to check the code

– Try a static checker

– Re-run test cases frequently

Serious developers will use infrastructures implementating Continuous
Integration, which run defined compilation and execution tests every
time a new version of the code is uploaded to a repository. New code
is not accepted until it passes all the tests.

22/05/2017 Intro to HPC programming: tools and techniques 10

Most popular debuggers

• Some debuggers are distributed with the compiler suite:

– Commercial

• Portland pgdbg

• Intel

– Free

• Gnu gdb

• There are also some powerful, commercial debuggers from independent
vendors:

– DDT (Allinea)

– Totalview (Rogue Wave Software)

– Valgrind (particularly for Memory problems)

22/05/2017 11Intro to HPC programming: tools and techniques

Debugger capabilities

• The purpose of a debugger is to allow you to see what is going
on “inside” another program while it executes or what another
program was doing at the moment it crashed.

• Using specific commands, debuggers allow real-time
visualization of variable values, static and dynamic memory state
(stack, heap) and registers state.

• Common errors include:

• pointer errors

• array indexing

• memory allocation

• argument and parameter mismatches

• communication deadlocks in parallel programming

• I/O

• ...

22/05/2017 12Intro to HPC programming: tools and techniques

Compiling rules for debugging

• In order to debug a program effectively, the debugger needs
debugging information which is produced compiling the program
with the “-g” flag.

• This debugging information is stored in the object files fused in the
executable; it describes the data type of each variable or function
and the correspondence between source line numbers and
addresses in the executable code.

• Opimization should be at –O0, -O1 or –O2 level.

• GNU compiler:

• gcc/g++/gfortran –g [other flags] source –o executable

• INTEL compiler:

• icc/icpc/ifort –g [other flags] source –o executable

22/05/2017 13Intro to HPC programming: tools and techniques

Execution

• The standard way to run the debugger is:

• debugger executable name or

• debugger exe corefile

• Otherwise it’s possible to first run the debugger and then point to the executable
to debug:

GNU gdb:

gdb

> file executable

• It’s also possible to debug an already-runnnig program started outside the
debugger attaching to the process id of the program.

• Syntax:

• GNU gdb:

gdb

> attach process_id

gdb attach process_id

22/05/2017 14Intro to HPC programming: tools and techniques

GDB command list

run: start debugged program
list: list specified function or line. Two arguments with comma
between specify starting and ending lines to list.

list begin,end

break <line> <function> : set breakpoint at specified line
or function, useful to stop execution before a critical point.
break filename:line

break filename:function

It’s possible to insert a boolean expression with the sintax:

break <line> <function> condition

With no <line> <function>, uses current execution address of
selected stack frame. This is useful for breaking on return to a stack
frame.

22/05/2017 15Intro to HPC programming: tools and techniques

GDB command list /2

• clear <line> <func> : Clear breakpoint at specified line
or function.

• delete breakpoints [num] : delete breakpoint number
“num”. With no argument delete all breakpoints.

• If : Set a breakpoint with condition; evaluate the condition each time
the breakpoint is reached, and stop only if the value is nonzero. Allowed
logical operators: > , < , >= , <= , ==

• Example :

break 31 if i >= 12

• condition <num> < expression> : As the “if”
command associates a logical condition at breakpoint number “num”.

• next <count>: continue to the next source line in the current
(innermost) stack frame, or count lines.

22/05/2017 16Intro to HPC programming: tools and techniques

GDB command list/3

continue: continue program being debugged, after signal or breakpoint

where : print backtrace of all stack frames, or innermost “count” frames.

step : Step program until it reaches a different source line. If used before
a function call, allow to step into the function. The debugger stops at the first
executable statement of that function

step count : executes count lines of code as the next command

finish : execute until selected stack frame or function returns and stops
at the first statement after the function call. Upon return, the value returned
is printed and put in the value history.

set args : set argument list to give program being debugged when it is
started. Follow this command with any number of args, to be passed to the
program.

set var variable = <EXPR>: evaluate expression EXPR and
assign result to variable variable, using assignment syntax appropriate for
the current language

22/05/2017 17Intro to HPC programming: tools and techniques

GDB Command list/4

search <expr>: search for an expression from last line listed

reverse-search <expr> : search backward for an expression from
last line listed

display <exp>: Print value of expression exp each time the program
stops.

print <exp>: Print value of expression exp

This command can be used to display arrays:

print array[num_el]displays element num_el

print *array@len displays the whole array

watch <exp>: Set a watchpoint for an expression. A watchpoint stops
execution of your program whenever the value of an expression changes.

info locals: print variable declarations of current stack frame.

show values <number> : shows number elements of value history
around item number or last ten.

22/05/2017 18Intro to HPC programming: tools and techniques

GDB command list/5

• backtrace <number,full> : shows one line per frame, for

many frames, starting with the currently executing frame (frame

zero), followed by its caller (frame one), and on up the stack. With
the number parameter print only the innermost number frames.

With the full parameter print the values of the local variables also.

– #0 squareArray (nelem_in_array=12, array=0x601010) at

variable_print.c:67

– #1 0x00000000004005f5 in main () at variable_print.c:34

• frame <number> : select and print a stack frame.

• up <number> : allow to go up number stack frames

• down <number> : allow to go up number stack frames

• info frame : gives all informations about current stack frame

• detach: detach a process or file previously attached.

• quit: quit the debugger

22/05/2017 19Intro to HPC programming: tools and techniques

Using Core dumps for Postmortem
Analysis

In computing, a core dump, memory dump, or storage dump consists
of the recorded state of the working memory of a computer
program at a specific time, generally when the program has
terminated abnormally.

Core dumps are often used to assist in diagnosing
and debugging errors in computer programs.

In most Linux Distributions core file creation is disabled by default for a
normal user but it can be enabled using the following command :

 ulimit -c unlimited

Once “ulimit –c” is set to “unlimited” run the program and the core file
will be created

The core file can be analyzed with gdb using the following syntax:
 gdb -c core executable

22/05/2017 20Intro to HPC programming: tools and techniques

Parallel debugging

• Parallel debugging is more complex than serial because
multiple processes need to be debugged simultaneously.

• Normally debuggers can be applied to multi-threaded parallel
codes, containing OpenMP or MPI directives, or even
OpenMP and MPI hybrid solutions.

• For OpenMP, the threads of a single program are akin to
multiple processes except that they share one address space
(that is, they can all examine and modify the same variables).
On the other hand, each thread has its own registers and
execution stack, and perhaps private memory.

• GDB provides some facilities for debugging OpenMP and MPI
programs but usually a dedicated debugger such as Totalview
is employed.

22/05/2017 21Intro to HPC programming: tools and techniques

Debugging OpenMP Applications

GDB facilities for debugging multi-threaded programs :

– automatic notification of new threads

– thread <thread_number> command to switch among threads

– info threads command to inquire about existing threads
(gdb) info threads

* 2 Thread 0x40200940 (LWP 5454) MAIN__.omp_fn.0 (.omp_data_i=0x7fffffffd280)
at serial_order_bug.f90:27

1 Thread 0x2aaaaaf7d8b0 (LWP 1553) MAIN__.omp_fn.0
(.omp_data_i=0x7fffffffd280) at serial_order_bug.f90:27

thread apply <thread_number> <all> args allow to apply a command to apply a
command to a list of threads.

• When any thread in your program stops, for example, at a breakpoint, all
other threads in the program are also stopped by GDB.

• GDB cannot single-step all threads in lockstep. Since thread scheduling is
up to your debugging target’s operating system (not controlled by GDB),
other threads may execute more than one statement while the current
thread completes a single step unless you use the command :set
scheduler-locking on.

• GDB is not able to show the values of private and shared variables in
OpenMP parallel regions.

22/05/2017 22Intro to HPC programming: tools and techniques

Debugging MPI applications

• Even more difficult than OpenMP since in principle could
involve many thousands of tasks.

• Many MPI errors are possible including: invalid arguments,
type matching, race conditions, deadlocks etc.

• Debugging communications is not easy. Some
communication-related bugs may be hidden by MPI buffering
such that they occur only for certain numbers of tasks or
program inputs.

• Generally best to use the minimum no. of tasks necessary to
reproduce the unexpected behaviour.

22/05/2017 23Intro to HPC programming: tools and techniques

Debugging MPI Applications

• There are two common ways to use serial debuggers such
GDB to debug MPI applications

1. Attach to individual MPI processes after they are running
using the “attach” method available for serial codes
launching instances of the debugger to attach to the
different MPI processes.

2. Open a debugging session for each MPI process through
the command “mpirun”.

22/05/2017 24Intro to HPC programming: tools and techniques

Debugging MPI Applications

Attach method

– Run the application in the usual way.
mpirun –np 4 executable

– From another shell, use the top command to find the MPI
processes which bind to the executable:

PID executable MPI
processes

22/05/2017 25Intro to HPC programming: tools and techniques

Debugging MPI Applications

• Run up to “n” instances of the debugger in “attach” mode,
where n is the number of the MPI processes of the
application. Using this method you should have to open up to
n shells.

• Referring to the previous slide we have to run four instances
of GDB:
gdb attach 12513 (shell 1)

gdb attach 12514 (shell 2)

gdb attach 12515 (shell 3)

gdb attach 12516 (shell 4)

• Use debugger commands for each shell as in the serial case

22/05/2017 26Intro to HPC programming: tools and techniques

Debugging MPI Applications

• mpirun method

– This technique launches a separate window for each MPI
process in MPI_COMM_WORLD, each one running a serial
instance of GDB that will launch and run your MPI
application.

mpirun -np 2 xterm -e gdb nome_eseguibile

22/05/2017 27Intro to HPC programming: tools and techniques

MPI Run-time diagnostics

• Somtimes useful to know how the MPI tasks were created and
on which physical nodes they were created (binding).

====================== ALLOCATED NODES
===============

Data for node: Name: node102 Num slots: 4 Max slots: 0
Data for node: Name: node103ib0 Num slots: 4 Max slots:
0

===
======================== JOB MAP
=====================
Data for node: Name: node102 Num procs: 4

Process OMPI jobid: [38452,1] Process rank: 0
Process OMPI jobid: [38452,1] Process rank: 1
Process OMPI jobid: [38452,1] Process rank: 2
Process OMPI jobid: [38452,1] Process rank: 3

Data for node: Name: node103ib0 Num procs: 4
Process OMPI jobid: [38452,1] Process rank: 4
Process OMPI jobid: [38452,1] Process rank: 5
Process OMPI jobid: [38452,1] Process rank: 6
Process OMPI jobid: [38452,1] Process rank: 7openmpi

#!/bin/bash

#PBS -l walltime=30

#PBS -l select=2:ncpus=4:mpiprocs=4

#PBS -A cin_staff

#PBS -o out

#PBS -e err

cd $PBS_O_WORKDIR

module load autoload openmpi

mpirun --display-allocation --display-
map exe

22/05/2017 28Intro to HPC programming: tools and techniques

MPI Run-time diagnostics

#!/bin/bash

#PBS -l walltime=30

#PBS -l select=2:ncpus=4:mpiprocs=4

#PBS -A cin_staff

#PBS -o out

#PBS -e err

cd $PBS_O_WORKDIR

module load autoload intelmpi

export I_MPI_DEBUG=5

mpirun ./spawnexample

[0] MPI startup(): Rank Pid Node name Pin cpu

[0] MPI startup(): 0 18836 node102 {0,1,2}

[0] MPI startup(): 1 18837 node102 {3,4,5}

[0] MPI startup(): 2 18838 node102 {6,7,8}

[0] MPI startup(): 3 18839 node102 {9,10,11}

[0] MPI startup(): 4 32649 node103 {0,1,2}

[0] MPI startup(): 5 32650 node103 {3,4,5}

[0] MPI startup(): 6 32651 node103 {6,7,8}

[0] MPI startup(): 7 32652 node103 {9,10,11}

Intel mpi

Also possible via the MPI_Get_processor_name function call

22/05/2017 29Intro to HPC programming: tools and techniques

Debugging MPI with PMPI

• MPI implementations also provide a profiling interface called
PMPI.

• In PMPI each standard MPI function (MPI_) has an equivalent
function with prefix PMPI_ (e.g. PMPI_Send, PMI_RECV, etc).

• With PMPI it is possible to customize normal MPI commands
to provide extra information useful for profiling or debugging.

• Not necessary to modify source code since the customized
MPI commands can be linked as a separate library during
debugging. For production the extra library is not linked and
the standard MPI behaviour is used.

22/05/2017 30Intro to HPC programming: tools and techniques

PMPI Examples

// profiling example

static int send_count=0;

int MPI_Send(void*start,int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm)

{

send_count++;

return PMPI_Send(start, count, datatype, dest, tag, comm);

}

! Unsafe uses of MPI_Send

! MPI_Send can be implemented as MPI_Ssend (synchronous send)

subroutine MPI_Send(start, count, datatype, dest,

tag, comm, ierr)

integer start(*), count, datatype, dest, tag, comm

call PMPI_Ssend(start, count, datatype,

dest, tag, comm, ierr)

end

Profiling

Debugging

22/05/2017 31Intro to HPC programming: tools and techniques

Debugging MPI with totalview and
RCM

• Totalview is a powerful, sophisticated, programmable tool for
debugging serial or parallel programs.

• Being a graphical tool, for best results recommended to use a
remote visualization tool such as RCM (Remote Connection
Manager), rather than just an X-display (slow).

• It is also a commercial product, so licenses are limited!

22/05/2017 32Intro to HPC programming: tools and techniques

Debugging MPI with Totalview and
RCM

1. Download and install RCM on workstation:
http://www.hpc.cineca.it/content/remote-visualization-rcm

2. Launch RCM and log on to Marconi. You will be given a
Linux-style desktop.

3. Open a terminal and prepare a PBS/Loadleveler job script.
Insert the DISPLAY number in the job script. Or open an
interactive PBS session.

22/05/2017 33Intro to HPC programming: tools and techniques

Debugging MPI with totalview and
RCM - Example

#!/bin/bash

#PBS -l walltime=00:30:00
#PBS -l select=1:ncpus=4:mpiprocs=4:mem=15gb
#PBS -N totalview
#PBS -o job.out
#PBS -e job.err
#PBS -q debug
account number (type saldo -b)
#PBS -A your_account_here

module load profile/advanced
module load autoload openmpi/1.6.3--gnu--4.7.2
module load totalview/8.12.0-1

export DISPLAY=node097:1

cd $PBS_O_WORKDIR
mpirun –tv –n 4 poisson.exe

22/05/2017 Intro to HPC programming: tools and techniques 34

Debugging MPI with totalview and
RCM

22/05/2017 35Intro to HPC programming: tools and techniques

Summary

• All programs have bugs.

• Parallel programs are particularly difficult because of the need to
debug multiple processes and the interactions between them.

• A debugging strategy should include:

– compiler options to lower side-effects of optimisation and
increase the level of compile-time and run-time checking.

– Static analysis tools

– post-mortem analysis of stack traces and core files

– run-time diagnostic options

– the use of debuggers such as gdb or Totalview

– in tandem with profilers or similar tools to understand better
what the program is doing

22/05/2017 36Intro to HPC programming: tools and techniques

