

MPI RMA Exercise

Advanced MPI course

2

1 Introduction and Aims

In this exercise you will explore using MPI RMA for halo swapping in a simple
computational code. The code currently issues non-blocking P2P
communications the halo swap and we want to replace this with RMA. It is a very
simple example of what you might want to do on your own existing codes and
replacing P2P calls (especially halo swapping) with RMA is popular for
increasing performance and scalability.

2 The existing code

This is a simple Jacobi iteration in 2D, with decomposition in 1D. Decomposition
is done over the X dimension and is allocated as evenly as possible amongst the
processes. After computing the initial absolute residual, the code progresses in
iterations. Firstly halo swapping is performed with the rank-1 and rank+1
neighbour, the current relative residual is then calculated from the u_k array and
the calculation then performed, writing new values into the u_kp1 array (which
are values for the next iteration.) Lastly the u_k and u_kp1 values are swapped
around for the next iteration by using a temp array (in the C code lines 86-88,
Fortran code lines 93-95.)

We provide both a C version and Fortran version, use which ever language is
most familiar to you.

Important: For simplicity we are going to assume an even decomposition of data
in the X dimension, this will make your RMA work simpler. The submission
script is set so X=1024, Y=512 running over 128 processes, I suggest keeping
these values the same until you get the exercises working.

3 Exercise

These exercises involve writing MPI code, you can refer to the API online, which
will give you the syntax of all the required calls, at

http://www.mpich.org/static/docs/v3.2/www3/

3.1 Compilation

Make sure you are in your /work filesystem and download the jacobi.zip file
onto ARCHER:

wget http://www.archer.ac.uk/training/course-
material/2016/09/160929_AdvMPI_EPCC/jacobi.zip

Then unpack the archive using the unzip command, switch to the jacobi
directory and if you prefer C go into the c directory, if you prefer Fortran then the
f directory. Lastly issue the make command.

http://www.mpich.org/static/docs/v3.2/www3/

3

After compilation the jacobi executable will have been created.

3.2 Submit the existing code

Submit this existing code to ARCHER via qsub subjacobi.pbs you can track
your job’s progress via qstat –u $USER

The output of the job will be written as a file in your current directory (called
Jacobi.oXXXXX) where the X’s are the job ID number. This contains information
about the global system size (size in X and Y), a summary of progress as the code
ran, the number of iterations it took to converge and the total runtime in
seconds.

3.3 Replace non-blocking P2P with RMA (using fences)

Refactor the code (specifically the halo swapping at lines 62-70 of the C code or
lines 69-77 of the Fortran code) to use RMA rather than non-blocking P2P.
Create a window on u_k at the start of the code and free it at the end. Use the
fence synchronization (use no assertions, i.e. 0 for the assert argument) that we
discussed in the first lecture to start and stop the epoch. You can use either the
get or put communication calls and I suggest operating on the buffer u_k
directly. Be a bit careful when thinking about which target displacements (and
locations in your u_k buffer) should be used for each communication call.

The default submission script is splitting up X=1024 over 128 cores, this ensures
an even decomposition of data which is easier to work with. I suggest assuming
this even decomposition, certainly until you get a version working.

Submit the job to ARCHER and time it. How does it compare to the non-blocking
P2P? Now consider which assertions are appropriate for which fences. Pop these
in, recompile and resubmit – does the addition of these assertions decrease the
runtime?

3.4 Modifying the code to use Post-start-complete-wait (PSCW)

Note: These concepts are discussed in the second RMA lecture

Instead of fence synchronization use PSCW, for every process you will need to
think about the groups of ranks which need to be involved in the exposure epoch
and which need to be involved in the access epoch. We are just changing the
synchronisation here - your communication calls should remain unchanged from
the fence code.
Once you have done this retime the code, does using PSCW make an impact on
the runtime?

4

3.5 Modifying the code to use lock & unlock

Note: These concepts are discussed in the second RMA lecture

Use the lock/unlock (with a shared lock) synchronization calls and see how this
impacts the runtime. Note that this code doesn’t really suit the lock/unlock
approach (as we need some synchronisation between iterations for data
consistency.) Therefore I suggest you place a barrier after this halo swapping to
ensure the target does not rush ahead with further iterations. The unlock
guarantees that RMA operations have completed both at the origin and target –
hence you can use either a get or a put

How about using an exclusive lock, does this impact the overall runtime? On each
iteration we are locking and unlocking – instead use a flush and move the lock
(use a shared lock) before the loop and unlock after the loop. We are now only
creating one access epoch per process for the entire code, how does this impact
the runtime?

4 Summary

In this exercise we have looked at refactoring an existing computational code to
replace some of the P2P calls with RMA. You can see that how many options
there are available to you and this increases as we work with more complex
programs. Over and above simply replacing P2P calls there are methods, such as
double buffering, which work well with RMA and can provide significant
performance benefits.

