

Domain specific libraries for PDEs

Simone Bnà - simone.bna@cineca.it SuperComputing Applications and Innovation Department

Outline

Introduction to Sparse Matrix algebra

Cineca

- > The PETSc toolkit
- Sparse Matrix Computation with PETSc
- Profiling and preliminary tests on KNL

Introduction to Sparse matrix algebra

Definition of a Sparse Matrix and a Dense Matrix

A sparse matrix is a matrix in which the number of non-zeroes entries is O(n) (The average number of non-zeroes entries in each row is bounded independently from n)

			-				
1.0	0	5.0	0	0	0	0	0
0	3.0	0	0	0	0	11.0	0
0	0	0	0	9.0	0	0	0
0	0	6.0	0	0	0	0	0
0	0	0	7.0	0	0	0	0
2.0	0	0	0	0	10.0	0	0
0	0	0	8.0	0	0	0	0
0	4.0	0	0	0	0	0	12.0

> A dense matrix is a non-sparse matrix (The number of non-zeroes

elements is $O(n^2)$)

7.52.32.18.5 $3.5 \quad 0 \quad 5.4 \quad 1.0 \quad 1$ 0 2.10 2.41.14.3 $3.4 \quad 2.3$ $6.7 \quad 9.8 \quad 2.1 \quad 3.4 \quad 4.3$ $2.1 \quad 3.5$ $5.4 \quad 0.2 \quad 3.2$ 1.20.81.2 $4.5 \quad 0.7 \quad 9.8$ 0.31.2

Sparsity and Density

- Cineca TRAINING High Performance Computing 2017
- The sparsity of a matrix is defined as the number of zero-valued elements divided by the total number of elements (m x n for an m x n matrix)
- The density of a matrix is defined as the complementary of the sparsity: density = 1 sparsity
- For Sparse matrices the sparsity is ~ 1 and the density is << 1</p>
 Example:

		/ 1.0	0	5.0	0	0	0	0	0 \
m = 8	nnzeros = 12	0	3.0	0	0	0	0	11.0	0
m = 0		0	0	0	0	9.0	0	0	0
_		0	0	6.0	0	0	0	0	0
n = 8	nzeros = m*n - nnzeros	0	0	0	7.0	0	0	0	0
		2.0	0	0	0	0	10.0	0	0
sparsity =	: 64 - 12 / 64 = <mark>0 8125</mark>	0	0	0	8.0	0	0	0	0
sparsicy -	04 12 / 04 - 0.0125	0	4.0	0	0	0	0	0	12.0/
density =	1 - 0.8125 = 0.1875								

Sparsity pattern

The distribution of non-zero elements of a sparse matrix can be described by the sparsity pattern, which is defined as the set of entries of the matrix different from zero. In symbols:

Cineca

High Performance Computing 2017

 $\{(i,j):Aij \neq 0\}$

Sparsity pattern

The sparsity pattern can be represented also as a **Graph**, where nodes *i* and *j* are connected by an edge if and only if $A_{ij} \neq 0$

Cineca

5

0

0

0

0

0

- In a Sparse Matrix the degree of a vertex in the graph is <<relatively low>>
- Conceptually, sparsity corresponds to a system loosely coupled

Jacobian of a PDE

- Matrices are used to store the Jacobian of a PDE.
- > The following discretizations generates a sparse matrix

Cineca

- Finite difference
- Finite volume
- Finite element method (FEM)
- Different discretization can lead to a Dense linear matrix:
 - Spectral element method (SEM)

Sparsity pattern in Finite Difference

The sparsity pattern in finite difference depends on the topology of the adopted computational grid (e.g. cartesian grid), the indexing of the nodes and the type of stencil

Cineca

Sparsity pattern in Finite Difference

The sparsity pattern in finite difference depends on the topology of the adopted computational grid (e.g. cartesian grid), the indexing of the nodes and the type of stencil

Sparsity pattern in Finite Element

Cineca TRAINING High Performance Computing 2017

- The sparsity pattern depends on the topology of the adopted computational grid (e.g. unstructured grid), the kind of the finite element (e.g. Taylor-Hood, Crouzeix-Raviart, Raviart-Thomas, Mini-Element,...) and on the indexing of the nodes.
- In Finite-Element discretizations, the sparsity of the matrix is a direct consequence of the small-support property of the finite element basis
- Finite Volume can be seen as a special case of Finite Element

Don't reinvent the wheel!

- The use of storage techniques for sparse matrices is fundamental, in particular for large-scale problems
- Standard dense-matrix structures and algorithms are slow and ineffcient when applied to large sparse matrices
- There are some available tools to work with Sparse matrices that uses specialised algorithms and data structures to take advantage of the sparse structure of the matrix

- The PETSc toolkit (http://www.mcs.anl.gov/petsc/)
 - The TRILINOS project (https://trilinos.org/)

 \geq

The PETSc toolkit

PETSc in a nutshell

Cineca TRAINING High Performance Computing 2017

PETSc – Portable, Extensible Toolkit for Scientific Computation

Is a suite of data structures and routines for the scalable (parallel) solution of scientific applications mainly modelled by partial differential equations.

- Tools for distributed vectors and matrices
- Linear system solvers (sparse/dense, iterative/direct)
- Non linear system solvers
- Serial and parallel computation
- Support for Finite Difference and Finite Elements PDE discretizations
- Structured and Unstructured topologies
 - Support for debugging, profiling and graphical output

Cineca **High Performance** Computing 2017 **PETSc class hierarchy** Level of Abstraction **Application Codes** TS (Time Stepping) **SNES** (Nonlinear Equations Solvers) KSP PC (Krylov Subspace Methods) (Preconditioners) Matrices Vectors Index Sets BLAS MPI 444

Frameworks built on top of Petsc

- > PETSc is a toolkit, not a framework
- > PETSc is PDE oriented, but not specific to any kind of PDE
- Alternatives:
 - FEM packages: MOOSE, libMesh, DEAL.II, FEniCS
 - Solvers for classes of problems: CHASTE

PETSc numerical components

Parallel Numerical Components of PETSc

Nonlinear Solvers					Time S	teppers	
Newton-ba	Other			IMEX	Pseudo-Time		
Line Search Trust Region		Oulei	'	General Linea	ar	Stepping	Runge-Kut

Krylov Subspace Methods								
GMRES	CG	CGS	Bi–CG–Stab	TFQMR	Richardson	Chebychev	Other	

	Preconditioners							
Additi Schwa	ive arz	Block Jacobi	Jacobi	ILU	ICC	LU (sequential only)	Other	

Matrices							
Compressed Sparse Row (AIJ)	Block Compressed Sparse Row (BAIJ)	Blo	Symmetric ock Compressed Ro (SBAIJ)	w	Dense	Other	

		Index S	Sets	
Vectors	Indices	Block Indices	Stride	Other

External Packages

- > Dense linear algebra: Scalapack, Plapack
- Sparse direct linear solvers: Mumps, SuperLU, SuperLU_dist
- Grid partitioning software: Metis, ParMetis, Jostle, Chaco, Party

Cineca

- ODE solvers: PVODE
- Eigenvalue solvers (including SVD): SLEPc
- > Optimization: TAO

PETSc design concepts

Goals

 Portability: available on many platforms, basically anything that has MPI

Cineca

High Performance Computing 2017

- Performance
- Scalable parallelism
- Flexibility: easy switch among different implementations
- Approach
 - Object Oriented Delegation Pattern : many specific implementations of the same object
 - Shared interface (overloading): MatMult(A,x,y); // y <- A x same code for sequential, parallel, dense, sparse
 - Command line customization

Drawback

Nasty details of the implementation hidden

PETSc and Parallelism

- PETSc is layered on top of MPI: you do not need to know much MPI when you use PETSc
- All objects in PETSc are defined on a communicator; they can only interact if on the same communicator
- Parallelism through MPI (Pure MPI programming model). Limited support for use with the hybrid MPI-thread model.
 - PETSc supports to have individual threads (OpenMP or others) to each manage their own (sequential) PETSc objects (and each thread can interact only with its own objects).
 - No support for threaded code that made Petsc calls (OpenMP, Pthreads) since PETSc is not «thread-safe».
- Transparent: same code works sequential and parallel.

Sparse Matrix computation with PETSc

Vectors

Cineca TRAINING High Performance Computing 2017

What are PETSc vectors?

- Represent elements of a vector space over a field (e.g. Rⁿ)
- Usually they store field solutions and right-hand sides of PDE
- Vector elements are **PetscScalars** (there are no vectors of integers)
- Each process locally owns a subvector of contiguously numbered global indices

Features

- Vector types: STANDARD (SEQ on one process and MPI on several), VIENNACL, CUSP...
- Supports all vector space operations
 - VecDot(),VecNorm(),VecScale(), ...
- Also unusual ops, like e.g. VecSqrt(), VecReciprocal()
- Hidden communication of vector values during assembly
- Communications between different parallel vectors

Cineca TRAINING

High Performance Computing 2017

Numerical vector operations

Function Name	Operation
VecAXPY(Vec y,PetscScalar a,Vec x);	y = y + a * x
VecAYPX(Vec y,PetscScalar a,Vec x);	y = x + a * y
VecWAXPY(Vec w,PetscScalar a,Vec x,Vec y);	w = a * x + y
VecAXPBY(Vec y,PetscScalar a,PetscScalar b,Vec x);	y = a * x + b * y
VecScale(Vec x, PetscScalar a);	x = a * x
VecDot(Vec x, Vec y, PetscScalar *r);	$r = ar{x}' * y$
VecTDot(Vec x, Vec y, PetscScalar *r);	r = x' * y
<pre>VecNorm(Vec x,NormType type, PetscReal *r);</pre>	$r = x _{type}$
VecSum(Vec x, PetscScalar *r);	$r = \sum x_i$
VecCopy(Vec x, Vec y);	y = x
VecSwap(Vec x, Vec y);	y = x while $x = y$
VecPointwiseMult(Vec w, Vec x, Vec y);	$w_i = x_i * y_i$
VecPointwiseDivide(Vec w,Vec x,Vec y);	$w_i = x_i/y_i$
<pre>VecMDot(Vec x,int n,Vec y[],PetscScalar *r);</pre>	$r[i] = \bar{x}' * y[i]$
<pre>VecMTDot(Vec x,int n,Vec y[],PetscScalar *r);</pre>	r[i] = x' * y[i]
<pre>VecMAXPY(Vec y,int n, PetscScalar *a, Vec x[]);</pre>	$y = y + \sum_{i} a_i * x[i]$
<pre>VecMax(Vec x, int *idx, PetscReal *r);</pre>	$r = \max x_i$
<pre>VecMin(Vec x, int *idx, PetscReal *r);</pre>	$r = \min x_i$
VecAbs(Vec x);	$x_i = x_i $
VecReciprocal(Vec x);	$x_i = 1/x_i$
VecShift(Vec x,PetscScalar s);	$x_i = s + x_i$
VecSet(Vec x,PetscScalar alpha);	$x_i = \alpha$

CINECA

Matrices

Cineca TRAINING High Performance Computing 2017

What are PETSc matrices?

- Roughly represent linear operators that belong to the dual of a vector space over a field (e.g. Rⁿ)
- In most of the PETSc low-level implementations, each process logically owns a submatrix of contiguous rows

Features

- Supports many storage formats
 - AIJ, BAIJ, SBAIJ, DENSE, VIENNACL, CUSP (on GPU) ...
- Data structures for many external packages
 - MUMPS (parallel), SuperLU_dist (parallel), SuperLU, UMFPack
- Hidden communications in parallel matrix assembly
- Matrix operations are defined from a common interface
- Shell matrices via user defined MatMult and other ops

Matrices

The default matrix representation within PETSc is the general sparse **AIJ format** (Yale sparse matrix or Compressed Sparse Row, CSR)

Cineca

High Performance Computing 2017

> The nonzero elements are stored by rows

- Array of corresponding column numbers
- Array of pointers to the beginning of each row

Matrix memory preallocation

Cineca TRAINING High Performance Computing 2017

- PETSc matrix creation is very flexible: No preset sparsity pattern
- Memory preallocation is critical for achieving good performance during matrix assembly, as this reduces the number of allocations and copies required during the assembling process. Remember: malloc is very expensive (run your code with -memory_info, malloc_log)
- Private representations of PETSc sparse matrices are dynamic data structures: additional nonzeros can be freely added (if no preallocation has been explicitly provided).
- No preset sparsity pattern, any processor can set any element: potential for lots of malloc calls
- Dynamically adding many nonzeros
 - requires additional memory allocations
 - requires copies
 - \rightarrow kills performances!

Preallocation of a parallel sparse matrix

Each process **logically owns** a matrix subset of contiguously numbered global rows. Each subset consists of two sequential matrices corresponding to **diagonal** and **off-diagonal** parts. **Process 0**

PO		1) 9	2 5 0	0 6 10	0 7 11	$\begin{array}{c} 3 \\ 0 \\ 0 \end{array}$	0 0 0		$\begin{array}{c} 0\\ 8\\ 12 \end{array}$	4 0 0
P1	1 (3))	0 18 0	14 0 0	15 19 22	16 20 23	$\begin{array}{c} 17\\21\\0\end{array}$	 	0 0 24	0 0 0
P2	$\binom{2}{3}$	25 10	26 0	$\begin{array}{c} 27\\ 0 \end{array}$	0 31	$\begin{array}{c} 0 \\ 32 \end{array}$	28 33		$\begin{array}{c} 29 \\ 0 \end{array}$	0 34 /

dnz=2, onz=2

Process 1

dnz=3, onz=2

dnnz[1]=3, onnz[1]=1

dnnz[2]=2, onnz[2]=1

Process 2

dnz=1, onz=4
dnnz[0]=1, onnz[0]=4
dnnz[1]=1, onnz[1]=4

Numerical Matrix Operations

Function Name	Operation
MatAXPY(Mat Y, PetscScalar a, Mat X, MatStructure);	Y = Y + a * X
MatMult(Mat A, Vec x, Vec y);	y = A * x
MatMultAdd(Mat A, Vec x, Vec y, Vec z);	z = y + A * x
MatMultTranspose(Mat A,Vec x, Vec y);	$y = A^T * x$
MatMultTransposeAdd(Mat A, Vec x, Vec y, Vec z);	$z = y + A^T * x$
<pre>MatNorm(Mat A,NormType type, double *r);</pre>	$r = A _{type}$
MatDiagonalScale(Mat A, Vec l, Vec r);	$A = \operatorname{diag}(l) * A * \operatorname{diag}(r)$
MatScale(Mat A,PetscScalar a);	A = a * A
<pre>MatConvert(Mat A,MatType type,Mat *B);</pre>	B = A
MatCopy(Mat A,Mat B,MatStructure);	B = A
MatGetDiagonal(Mat A, Vec x);	$x = \operatorname{diag}(A)$
MatTranspose(Mat A,MatReuse,Mat* B);	$B = A^T$
MatZeroEntries(Mat A);	A = 0
MatShift(Mat Y,PetscScalar a);	Y = Y + a * I

CINECA

Matrix multiplication (MatMult)

$y \leftarrow A * x_A + B * x_B$

- x_B needs to be communicated
- A * x_A can be computed in the meantime

Algorithm

- Initiate asynchronous sends/receives for x_B
- compute A * x_A
- make sure x_B is in
- compute B * x_B

Due to the splitting of the matrix storage into A (diag) and B (off-diag) part, code for the sequential case can be reused.

Sparse Matrices and Linear Solvers

 Solve a linear system A x = b using the Gauss Elimination method can be very time-resource consuming

Cineca

- Alternatives to direct solvers are iterative solvers
- Convergence of the succession is not always guaranteed
- Possibly much faster and less memory consuming
- Basic iteration: y <- A x executed once x iteration
- Also needed a good preconditioner: $B \approx A^{-1}$

Iterative solver basics

- **KSP** (*Krylov SPace Methods*) objects are used for solving linear systems by means of iterative methods.
- Convergence can be improved by using a suitable **PC** object (preconditoner).
- Almost all iterative methods are implemented.
- Classical iterative methods (not belonging to KSP solvers) are classified as preconditioners
- Direct solution for parallel square matrices available through external solvers (MUMPS, SuperLU_dist). Petsc provides a built-in LU serial solver.
- Many KSP options can be controlled by command line
- Tolerances, convergence and divergence reason
- Custom monitors and convergence tests

Solver Types

Cineca TRAINING High Performance Computing 2017

		Options
		Database
Method	КЅРТуре	Name
Richardson	KSPRICHARDSON	richardson
Chebyshev	KSPCHEBYSHEV	chebyshev
Conjugate Gradient [12]	KSPCG	cg
BiConjugate Gradient	KSPBICG	bicg
Generalized Minimal Residual [16]	KSPGMRES	gmres
Flexible Generalized Minimal Residual	KSPFGMRES	fgmres
Deflated Generalized Minimal Residual	KSPDGMRES	dgmres
Generalized Conjugate Residual	KSPGCR	gcr
BiCGSTAB [19]	KSPBCGS	bcgs
Conjugate Gradient Squared [18]	KSPCGS	cgs
Transpose-Free Quasi-Minimal Residual (1) [8]	KSPTFQMR	tfqmr
Transpose-Free Quasi-Minimal Residual (2)	KSPTCQMR	tcqmr
Conjugate Residual	KSPCR	cr
Least Squares Method	KSPLSQR	lsqr
Shell for no KSP method	KSPPREONLY	preonly

CINECA

Preconditioner types

TRAINING High Performance Computing 2017

Cineca

Method	РСТуре	Options Database Name
Jacobi	PCJACOBI	jacobi
Block Jacobi	PCBJACOBI	bjacobi
SOR (and SSOR)	PCSOR	sor
SOR with Eisenstat trick	PCEISENSTAT	eisenstat
Incomplete Cholesky	PCICC	icc
Incomplete LU	PCILU	ilu
Additive Schwarz	PCASM	asm
Algebraic Multigrid	PCGAMG	gamg
Linear solver	PCKSP	ksp
Combination of preconditioners	PCCOMPOSITE	composite
LU	PCLU	lu
Cholesky	PCCHOLESKY	cholesky
No preconditioning	PCNONE	none
Shell for user-defined PC	PCSHELL	shell

CINECA

Factorization preconditioner

• Exact factorization: A = LU

 Inexact factorization: A ≈ M = <u>L</u> <u>U</u> where <u>L</u>, <u>U</u> obtained by throwing away the 'fill-in' during the factorization process (sparsity pattern of M is the same as A)

Cineca

- Application of the preconditioner (that is, solve Mx = y) approx same cost as matrix-vector product y <- A x
- Factorization preconditioners are sequential
- PCICC: symmetric matrix, PCILU: nonsymmetric matrix

Parallel preconditioners

- Factorization preconditioners are sequential
- We can use them in parallel as a subpreconditioner of a parallel preconditioner as Block Jacobi or Additive Schwarz Methods (ASM)
- Each processor has its own block(s) to work with
- Block Jacobi is fully parallel, ASM requires communications between neighbours
- ASM can be more robust than Block Jacobi and have better convergence properties
 Domain partitioning
 Matrix bk

Cineca

Profiling and preliminary tests on KNL

Profiling and performance tuning

- Integrated profiling of:
 - time
 - floating-point performance
 - memory usage
 - communication
- User-defined events
- Profiling by stages of an application

-log_view - Prints an ASCII version of performance data at program's conclusion. These statistics are comprehensive and concise and require little overhead; thus, -log_view is intended as the primary means of monitoring the performance of PETSc codes.

Cineca

High Performance Computing 2017

Log view: Overview

	Max	Max/Min	Avg	Total
Time (sec):	9.163e+00	1.00040	9.162e+00	
Objects:	2.700e+01	1.00000	2.700e+01	
Flops:	6.364e+09	1.01926	6.286e+09	1.697e+11
Flops/sec:	6.945e+08	1.01926	6.861e+08	1.852e+10
MPI Messages:	8.537e+03	3.71335	3.845e+03	1.038e+05
MPI Message Lengths:	4.705e+07	2.07804	7.962e+03	8.266e+08
MPI Reductions:	9.950e+02	1.00000		

KSPSetUp	1	1.0	1.3081e-02	4572	.2 0.00e+	00 0.	.0 0.0e+	00 0.0e+	00 0.0e+	-00	0	0	0	0	0	0	0	0	0	0 0
KSPSolve	1	1.0	8.5259e+00	1.0	6.36e+09	1.0	1.0e+05	6.3e+03	9.8e+02	2 93	100	99	78	98	1001	L001	L001	1001	L00	19907
PCSetUp	1	1.0	1.6221e-01	1.2	1.70e+08	1.0	0.0e+00	0.0e+00	0.0e+00) 2	3	0	0	0	2	3	0	0	0	27991
PCSetUpOnBlocks	1	1.0	1.6222e-01	1.2	1.70e+08	1.0	0.0e+00	0.0e+00	0.0e+00) 2	3	0	0	0	2	3	0	0	0	27989
PCApply	326	1.0	4.0862e+00	1.1	2.87e+09	1.0	0.0e+00	0.0e+00	0.0e+00) 43	46	0	0	0	46	46	0	0	0	18990
MatMult	325	1.0	4.0308e+00	1.1	3.09e+09	1.0	1.0e+05	6.3e+03	0.0e+00) 41	48	99	78	0	44	481	L001	100	0	20186
MatSolve	326	1.0	4.0722e+00	1.1	2.87e+09	1.0	0.0e+00	0.0e+00	0.0e+00) 43	46	0	0	0	46	46	0	0	0	19055
MatLUFactorNum	1	1.0	1.1603e-01	1.2	1.70e+08	1.0	0.0e+00	0.0e+00	0.0e+00) 1	3	0	0	0	1	3	0	0	0	39132
MatILUFactorSym	1	1.0	4.3884e-02	1.4	0.00e+00	0.0	0.0e+00	0.0e+00	0.0e+00) 0	0	0	0	0	0	0	0	0	0	0
MatGetRowIJ	1	1.0	1.0634e-02	2623	.6 0.00e+	00 0.	.0 0.0e+	00 0.0e+	00 0.0e+	-00	0	0	0	0	0	0	0	0	0	0 0
MatGetOrdering	1	1.0	1.1935e-02	11.3	0.00e+00	0.0	0.0e+00	0.0e+00	0.0e+00) 0	0	0	0	0	0	0	0	0	0	0
VecTDot	650	1.0	5.2052e-01	7.5	7.68e+07	1.0	0.0e+00	0.0e+00	6.5e+02	2 3	1	0	0	65	4	1	0	0	67	3982
VecNorm	326	1.0	4.0363e-01	10.7	3.85e+07	1.0	0.0e+00	0.0e+00	3.3e+02	2 2	1	0	0	33	3	1	0	0	33	2575
VecCopy	2	1.0	3.4809e-04	1.4	0.00e+00	0.0	0.0e+00	0.0e+00	0.0e+00) 0	0	0	0	0	0	0	0	0	0	0
VecSet	327	1.0	1.0189e-02	1.2	0.00e+00	0.0	0.0e+00	0.0e+00	0.0e+00) 0	0	0	0	0	0	0	0	0	0	0
VecAXPY	650	1.0	8.4167e-02	1.3	7.68e+07	1.0	0.0e+00	0.0e+00	0.0e+00) 1	1	0	0	0	1	1	0	0	0	24625
VecAYPX	324	1.0	4.2747e-02	1.2	3.83e+07	1.0	0.0e+00	0.0e+00	0.0e+00) 0	1	0	0	0	0	1	0	0	0	24168
VecScatterBegin	325	1.0	4.2347e-02	2.9	0.00e+00	0.0	1.0e+05	6.3e+03	0.0e+00) 0	0	99	78	0	0	01	L001	100	0	0
VecScatterEnd	325	1.0	4.2485e-02	2.6	0.00e+00	0.0	0.0e+00	0.0e+00	0.0e+00) 0	0	0	0	0	0	0	0	0	0	0

Petsc benchmark: ex56 (3D linear elasticity)

- 3D, tri-linear quadrilateral (Q1), displacement finite element formulation of linear elasticity. E=1.0, nu=0.25.
- Unit box domain with Dirichlet boundary condition on the y=0 side only.
- Load of 1.0 in x + 2y direction on all nodes (not a true uniform load).
- np = number of processes; npe^{1/3} must be integer
- ne = number of elements in the x,y,z direction; (ne+1)%(npe^{1/3}) must equal zero
- Default solver: GMRES + BLOCK_JACOBI + ILU(0)

Petsc benchmark:	High Performance Computing 2017	
	Command	Time
Broadwell (ne=80, np=27)	mpirun -np 27 ./ex56 -ne 80 -log_view	14.2 s
KNL (ne=80, np=27) + DRAM	mpirun -np 64 numactlmembind=0,1 ./ex56 -ne 79 -log_view	38.61 s
KNL (ne=80, np=27) + MCDRAM=FLAT + NUMA=SNC2	mpirun -np 27 numactlmembind=2,3 ./ex56 -ne 80 -log_view	12.12 s
KNL (ne=79, np=64) + MCDRAM=FLAT + NUMA=SNC2	mpirun -np 64 numactlmembind=2,3 ./ex56 -ne 79 -log_view	10.90 s
KNL (ne=80, np=27) + MCDRAM=CACHE	mpirun -np 27 ./ex56 -ne 80 -log_view	14.12 s
KNL (ne=80, np=64) + MCDRAM=CACHE	mpirun -np 64 ./ex56 -ne 79 -log_view	12.50 s

()

Cineca TRAINING

Thank you for the attention

