(Cineca

High Performance
Computing 2017

Domain specific libraries for
PDEs

Simone Bna - simone.bna@cineca.it
SuperComputing Applications and Innovation Department

\

CINECA

Cineca

High Performance
Computing 2017

» Introduction to Sparse Matrix algebra
» The PETSc toolkit

» Sparse Matrix Computation with PETSc
» Profiling and preliminary tests on KNL

CINECA

(Cineca

High Performance
Computing 2017

Introduction to Sparse matrix
algebra

CINECA

Cineca

High Performance
Computing 2017

> A sparse matrix is a matrix in which the number of non-zeroes

>

CINECA

entries is O(n) (The average number of non-zeroes entries in each

row is bounded independently from n)

1.0 0

5.0

0

0

0
0
0
0

0

10.0

0
0

o oo

0
0
0
0
12.0

A dense matrix is a non-sparse matrix (The number of non-zeroes

elementsis O(n2)) (1

0
3.4
8.6
5.4
4.3
3.2

3.4
3.5
2.8
5.4
5.8
6.7
3.4
0

7.5
5.4
9.2
4.3
2.2
2.1
5.4
4.5

2.3
1.0
1.1
3.4
3.1
3.4
0.2
0.7

1
3
2.1
2.9
4.3
3.2
9.8

2.1
0
0

1.1

3.4

2.1

0.8

0.3

8.5

2.1\
24
4.3
2.3
3.5
1.2

1.2

Cineca

High Performance
Computing 2017

» The sparsity of a matrix is defined as the number of zero-valued
elements divided by the total number of elements (m x n for an m

X N matrix)

» The density of a matrix is defined as the complementary of the

sparsity: density = 1 - sparsity

» For Sparse matrices the sparsity is = 1 and the density is << 1

Example:

10 0 50 0 0 0 0 0O

_ _ 0 30 0 0 0 0 110 0

m=38 nnzeros= 12 0O 0 0 0 90 0 0 0O

O 0 60 0 0 0 0 0

n=38 nzeros= m*n - Nnnzeros O 0 0 70 0O 0O 0 0

20 0 0 0 O 100 0 0

L _ 0O 0 0 8 0 0 0 0
sparsity =64 - 12 / 64 = 0.8125 0 40 0 0 0 0 0 120

density =15-.0.8125 = 0.1875
CINECA

CINECA

Cineca

High Performance
Computing 2017

The distribution of non-zero elements of a sparse matrix can be

described by the sparsity pattern, which is defined as the set of

entries of the matrix different from zero. In symbols:

{(,)):Aij + 0}

2000

4000

6000}

8000

10000

12000} , , } o s
0 2000 4000 6000 8000 10000 12000
nz = 250260

CINECA

Cineca

High Performance
Computing 2017

The sparsity pattern can be represented also as a Graph, where

nodes i and j are connected by an edge if and only if 4;; =0

In a Sparse Matrix the degree of a vertex in the graph is

<<relatively low>>

Conceptually, sparsity corresponds to a system loosely coupled

—
=
—
—
—
=

na
=
=
—y
=
=

L
]
—
]
=)
=]

F-Y
=
=
=
-
=

on
=
—
=
=)
=

Cineca

High Performance
Computing 2017

> Matrices are used to store the Jacobian of a PDE.

» The following discretizations generates a sparse matrix

» Finite difference
> Finite volume

» Finite element method (FEM)

> Different discretization can lead to a Dense linear matrix:

» Spectral element method (SEM)

CINECA

Cineca

High Performance
Computing 2017

» The sparsity pattern in finite difference depends on the topology
of the adopted computational grid (e.g. cartesian grid), the

indexing of the nodes and the type of stencil

Star stencil Box stencil

CINECA

Cineca

High Performance
Computing 2017

» The sparsity pattern in finite difference depends on the topology
of the adopted computational grid (e.g. cartesian grid), the

indexing of the nodes and the type of stencil

0 i |
7. 8. 9. ® ® ®
21 @ ° ° ° -
° ° °
4+ e) °) -
° ° [° [
47 3 6
6 ® °) e
° ° °
8 [° [o |
° o °
1° 2 L | | | |
0 2 4 6 8 10

CINECA

>

>

CINECA

Cineca

High Performance
Computing 2017

The sparsity pattern depends on the topology of the adopted
computational grid (e.g. unstructured grid), the kind of the finite
element (e.g. Taylor-Hood, Crouzeix-Raviart, Raviart-Thomas,

Mini-Element,...) and on the indexing of the nodes.

In Finite-Element discretizations, the sparsity of the matrix is a

direct consequence of the small-support property of the finite

element basis

Finite Volume can be seen as a special case of Finite Element

>

>

CINECA

Cineca

High Performance
Computing 2017

The use of storage techniques for sparse matrices is fundamental,

in particular for large-scale problems

Standard dense-matrix structures and algorithms are slow and

ineffcient when applied to large sparse matrices

There are some available tools to work with Sparse matrices that
uses specialised algorithms and data structures to take advantage

of the sparse structure of the matrix

!

The PETSc toolkit (http://www.mcs.anl.gov/petsc/)

The TRILINOS project (https://trilinos.org/)

(- Cineca

High Performance
Computing 2017

The PETSc toolkit

CINECA

Cineca

4 High Performance
@ Computing 2017

PETSc — Portable, Extensible Toolkit for Scientific Computation

Is a suite of data structures and routines for the scalable (parallel) solution
of scientific applications mainly modelled by partial differential equations.

>

YV V V VY

>
>,

CINECA

Tools for distributed vectors and matrices

Linear system solvers (sparse/dense, iterative/direct)
Non linear system solvers

Serial and parallel computation

Support for Finite Difference and Finite Elements PDE
discretizations

Structured and Unstructured topologies

;_:S.ypport for debugging, profiling and graphical output

PETSc class hierarchy

Application Codes

Level of
Abstraction

A\

SNES

(Nonlinear Equations Solvers)

PC

(Preconditioners)

{

TS

(Time Stepping)

KSP

(Krylov Subspace Methods)

Matrices

Vectors

Index Sets

CINECA

BLAS

MPI

Cineca

High Performance
Computing 2017

Cineca

High Performance
Computing 2017

» PETSc is a toolkit, not a framework
» PETSc is PDE oriented, but not specific to any kind of PDE

> Alternatives:

> FEM packages: MOOSE, libMesh, DEAL.II, FEniCS

> Solversfor classes of problems: CHASTE

MOOSE

Multiphy sics object-oriented
Simulation environment

y

libMesh DEAL.II PHAML FENICS Chaste

Adaptiv e Finite Element library Sophisticated C++ based finite The parallel Hierarchical Adaptive Sophisticated py thon based finite Cancer, Heart and Soft Tissue

element simulation package MultiLev el Project element simulation package Environment

e

PETSc

Portable, Extensible Toolkit for Scientific
Computation

CINECA

Cineca

{

High Performance

PETSc numerical components computing 2017

Parallel Numerical Components of PETSc

Nonlinear Solvers .
Time Steppers
Newton—based Methods
IMEX Pseudo-Ti
Other General Lindar s 0_ me Runge—Kutf
Line Search | Trust Region Stepping
Krylov Subspace Methods
GMRES CG CGSs Bi—CG-Stab TFOME Richardson Chebychev Other
Preconditioners
Additive Block . LU
Schwarz Jacobi Jacobi .U ICC (sequential only) Other
Matrices
Compressed Block Compressed Symmetric
Sparse Row Sparse Row Blgck Compressed Rqw Dense Other
(ALY (BAILD) (SBAII)
Index Sets
Vectors
Indices Block Indices Stride Other

CINECA

v V. V V V V

CINECA

Cineca

High Performance
Computing 2017

Dense linear algebra: Scalapack, Plapack

Sparse direct linear solvers: Mumps, SuperLU, SuperLU_dist
Grid partitioning software: Metis, ParMetis, Jostle, Chaco, Party
ODE solvers: PVODE

Eigenvalue solvers (including SVD): SLEPc

Optimization: TAO

Cineca

High Performance
Computing 2017

Goals

« Portability: available on many platforms, basically anything that
has MPI

* Performance
« Scalable parallelism

» Flexibility: easy switch among different implementations
Approach

* Object Oriented Delegation Pattern : many specific
implementations of the same object

« Sharedinterface (overloading):
MatMult(A,x,y); //y <- AX
same code for sequential, parallel, dense, sparse

« Command line customization
Drawback
* Nasty details of the implementation hidden

CINECA

Cineca
High Performance
Computing 2017
» PETSc is layered on top of MPI: you do not need to know much MPI when
you use PETSc

» All objects in PETSc are definedon a communicator; they can only

interact if on the same communicator

» Parallelism through MPI (Pure MPI programming model). Limited support
for use with the hybrid MPI-thread model.

» PETSc supports to have individual threads (OpenMP or others) to each manage their own

(sequential) PETSc objects (and each thread can interact only with its own objects).

> No support for threaded code that made Petsc calls (OpenMP, Pthreads) since PETSc is not

«thread-safe».

» Transparent: same code works sequential and parallel.

CINECA

(Cineca

High Performance
Computing 2017

Sparse Matrix computation with
PETSc

CINECA

Cineca

High Performance
Computing 2017

What are PETSc vectors?

Represent elements of a vector space over a field (e.g. R")
Usually they store field solutions and right-hand sides of PDE
Vector elements are PetscScalars (there are no vectors of integers)

Each process locally owns a subvector of contiguously numbered
global indices

Features

CINECA

Vector types: STANDARD (SEQ on one process and MPI on several),
VIENNACL, CUSP...

Supports all vector space operations
* VecDot (),VecNorm(),VecScale (), ..

Also unusual ops, likee.g. VvecSqgrt (),VecReciprocal ()
Hidden communication of vector values during assembly
Communications between different parallel vectors

Numerical vector operations

CINECA

Function Name

(- Cineca

High Performance
Computing 2017

Operation

VecAXPY (Vec y,PetscScalar a,Vec x);
VecAYPX(Vec y,PetscScalar a,Vec x);
VecWAXPY (Vec w,PetscScalar a,Vec x,Vec y);

VecAXPBY (Vec y,PetscScalar a,PetscScalar b,Vec x);

VecScale(Vec x, PetscScalar a);

VecDot(Vec x, Vec y, PetscScalar *r);
VecTDot(Vec x, Vec y, PetscScalar *r);
VecNorm(Vec x,NormType type, PetscReal *r);
VecSum(Vec x, PetscScalar *r);

VecCopy(Vec x, Vec y);

VecSwap(Vec x, Vec y);
VecPointwiseMult(Vec w, Vec x,Vec y);
VecPointwiseDivide(Vec w,Vec x,Vec y);
VecMDot(Vec x,int n,Vec y[],PetscScalar *r);
VecMTDot(Vec x,int n,Vec y[],PetscScalar *r);
VecMAXPY (Vec y,int n, PetscScalar *a, Vec x[]);
VecMax(Vec X, int *1dx, PetscReal *r);
VecMin(Vec x, int *idx, PetscReal *r);
VecAbs(Vec x);

VecReciprocal(Vec x);

VecShift(Vec x,PetscScalar s);

VecSet(Vec x,PetscScalar alpha);

Yy=y+axx
y=x+axy
w=a*xxr+Y
y=axxr+bxy
r=ax*xx

r==1 %y

r=a xvy
Tzllfglltype
r=> x;

Y=
y=axwhilex =y
W; = X * Y4

w; = xi/yi

r[i| = &’ * y[i]
ri] =z’ * yli]
y=y+ 3 a;*z[i]
r = maxx;

Cineca

High Performance
Computing 2017

What are PETSc matrices?

Roughly represent linear operators that belong to the dual of
a vector space over a field (e.g. R")

In most of the PETSc low-level implementations, each process
logically owns a submatrix of contiguous rows

Features
Supports many storage formats
AlJ, BAIJ, SBAIJ, DENSE, VIENNACL, CUSP (on GPU) ...
Data structures for many external packages

MUMPS (parallel), SuperLU_dist (parallel), SuperLU,
UMFPack

Hidden communications in parallel matrix assembly
Matrix operations are defined from a common interface
Shell matrices via user defined MatMult and other ops

CINECA

(Cineca

High Performance

Matrices Computing 2017

012345¢678 The default matrix representation within PETSc is
the general sparse AlJ format (Yale sparse
matrix or Compressed Sparse Row, CSR)

—
—

» The nonzero elements are stored by rows
» Array of corresponding column numbers
» Array of pointers to the beginning of each row

U B WO N

value

index

CINECA

CINECA

Cineca

High Performance
Computing 2017

PETSc matrix creation is very flexible: No preset sparsity pattern

Memory preallocation is critical for achieving good performance
during matrix assembly, as this reduces the number of allocations
and copies required during the assembling process. Remember:
malloc is very expensive (run your code with -memory_info, -
malloc_log)

Private representations of PETSc sparse matrices are dynamic data
structures: additional nonzeros can be freely added (if no
preallocation has been explicitly provided).

No preset sparsity pattern, any processor can set any element:
potential for lots of malloc calls

Dynamically adding many nonzeros
- requires additional memory allocations
~ requires copies
— Kkills performances!

Cineca

High Performance
‘ Computing 2017

Each process logically owns a matrix subset of contiguously numbered global
rows. Each subset consists of two sequential matrices corresponding to
diagonal and off-diagonal parts.

(12 0 [0 3 0] 0 4)
PO 0 5 6 | 7 0 0 | 8 0
9 0 10 | 11 0 0 | 12 0
13 0 14 | 15 16 17 | 0 0
P10 18 0 | 19 20 21 | 0 0
00 0 0 | 222 0 | 24 0
| 25 26 27 | 0 0 2/ | 29 0
\30 0 0 | 31 32 33 | 0 34/

anEc:_

Process 0

dnz=2, onz=2

dnnz[0]=2, onnz[0]=2
dnnz[1l]=2, onnz[1l]=2
dnnz[2]=2, onnz[2]=2
Process 1

dnz=3, onz=2
dnnz[0]=3, onnz[0]=2
dnnz[1]=3, onnz[l]=1
dnnz[2]=2, onnz[2]=1

Process 2

dnz=1, onz=4
dnnz[0]=1, onnz[0]=4
dnnz[1]=1, onnz[1]=4

Numerical Matrix Operations

Function Name

(Cineca

High Performance
Computing 2017

Operation

MatAXPY (Mat Y, PetscScalar a,Mat X,MatStructure);
MatMult(Mat A, Vec x, Vec y);

MatMultAdd(Mat A,Vec x, Vec y,Vec z);
MatMultTranspose(Mat A,Vec x, Vec y);
MatMultTransposeAdd(Mat A, Vec x, Vec y, Vec z);
MatNorm(Mat A,NormType type, double *r);
MatDiagonalScale(Mat A,Vec 1,Vec r);
MatScale(Mat A,PetscScalar a);

MatConvert(Mat A,MatType type,Mat *B);
MatCopy(Mat A,Mat B,MatStructure);
MatGetDiagonal(Mat A, Vec x);
MatTranspose(Mat A,MatReuse,Mat* B);
MatZeroEntries(Mat A);

MatShift(Mat Y,PetscScalar a);

Y=Y+4+axX
y=Axzx
z=y+ Axzx
y=AT %z
z=y+ Al 2
= 1Al e
A = diag(l) x A = diag(r)
A=ax A
B=A
B=A

r = diag(A)
B = AT
A=0

Y=Y +axl

CINECA

Cineca

{

High Performance
Computing 2017

y €A*Xx,+B*Xxp

s off-pocessor comeciont— © - Xg Needs to be communicated

« A*Xx,can be computed in the
meantime

Algorithm

* [|nitiate asynchronous sends/receives

for xg
| « compute A * x,
gﬁﬁ:gSLE;DCk has on—processor . make sure XB]S]n

« compute B * xp

Due to the splitting of the matrix
storage into A (diag) and B (off-diag)
part, code for the sequential case can

CINECA be reused.

CINECA

Cineca

High Performance
Computing 2017

Solve a linear system A x = b using the Gauss Elimination method

can be very time-resource consuming

Alternatives to direct solvers are iterative solvers
Convergence of the succession is not always guaranteed
Possibly much faster and less memory consuming

Basic iteration: y <- A x executed once x iteration

Also needed a good preconditioner: B = A"

CINECA

Cineca

High Performance
Computing 2017

KSP (Krylov SPace Methods) objects are used for solving linear
systems by means of iterative methods.

Convergence can be improved by using a suitable PC object
(preconditonery).

Almost all iterative methods are implemented.

Classical iterative methods (not belonging to KSP solvers) are
classified as preconditioners

Direct solution for parallel square matrices available through
external solvers (MUMPS, SuperLU_dist). Petsc provides a built-in
LU serial solver.

Many KSP options can be controlled by command line
Tolerances, convergence and divergence reason
Custom monitors and convergence tests

Solver Types

CINECA

Method

(

KSPType

Cineca

High Performance
Computing 2017

Options
Database
Name

Richardson

Chebyshev

Conjugate Gradient [| ']
BiConjugate Gradient

Generalized Minimal Residual [16]
Flexible Generalized Minimal Residual
Deflated Generalized Minimal Residual
Generalized Conjugate Residual

BiCGSTAB [1Y]

Conjugate Gradient Squared [15]
Transpose-Free Quasi-Minimal Residual (1) [~]
Transpose-Free Quasi-Minimal Residual (2)

Conjugate Residual
Least Squares Method
Shell for no KSF method

KSPRICHARDSON
KSPCHEBYSHEV
KSPCG

KSPBICG
KSPGMRES
KSPFGMRES
KSPDGMRES
KSPGCR
KSPBCGS
KSPCGS
KSPTFQMR
KSPTCQMR
KSPCR

KSPLSQR
KSPPREONLY

richardson
chebyshev
cg

bicg
gmres
femres
dgmres
gcr

bcgs

cgs

tfigmr
tcqmr

cr

Isqr
preonly

(Cineca

High Performance

Preconditioner types computing 2017

Method PCType Options Database Name
Jacobi PCIACOBI jacobi
Block Jacobi PCBJACOBI bjacobi
SOR (and SSOR) PCSOR sor

SOR with Eisenstat trick PCEISENSTAT eisenstat
Incomplete Cholesky PCICC icc
Incomplete LU PCILU ilu
Additive Schwarz PCASM asm
Algebraic Multigrid PCGAMG gamg
Linear solver PCKSP ksp
Combination of preconditioners PCCOMPOSITE composite
LU PCLU lu
Cholesky PCCHOLESKY cholesky
No preconditioning PCNONE none
Shell for user-defined PC PCSHELL shell

CINECA

CINECA

Cineca

High Performance
Computing 2017

Exact factorization: A = LU

Inexact factorization: A= M =L U wherelL, U obtained by throwing
away the ‘fill-in’ during the factorization process (sparsity pattern of
M is the same as A)

Application of the preconditioner (that is, solve Mx = y) approx same
cost as matrix-vector product y <- A X

Factorization preconditioners are sequential

PCICC: symmetric matrix, PCILU: nonsymmetric matrix

CINECA

Cineca

/ High Performance
Computing 2017

Factorization preconditioners are sequential

We can use them in parallel as a subpreconditioner of a parallel
preconditioner as Block Jacobi or Additive Schwarz Methods (ASM)

Each processor has its own block(s) to work with
Block Jacobi is fully parallel, ASM requires communications between

neighbours
ASM can be more robust than Block Jacobi and have better
convergence properties Domain partitioning Matrix blocks

it

(Cineca

High Performance
Computing 2017

Profiling and preliminary tests on
KNL

CINECA

Cineca

High Performance
Computing 2017

* Integrated profiling of:
- time
- floating-point performance
- memory usage
—- communication
« User-defined events
« Profiling by stages of an application

-log view - Prints an ASCII version of performance data at
program’s conclusion. These statistics are comprehensive and
concise and require little overhead; thus, -1og view is intended
as the primary means of monitoring the performance of PETSc
codes.

CINECA

Time (sec):
Objects:
Flops:
Flops/sec:
MPI Messages:

MPTI Message Lengths:

MPI Reductions:

KSPSetUp 1
KSPSolve 1
PCSetUp 1
PCSetUpOnBlocks 1
PCApply 326
MatMult 325
MatSolve 326
MatLUFactorNum 1
MatILUFactorSym 1
MatGetRowldJ 1
MatGetOrdering 1
VecTDot 650
VecNorm 326
VecCopy 2
VecSet 327
VecAXPY 650
VecAYPX 324
VecScatterBegin 325
VecScatterEnd 325

CINECA \

=
.

el el el el e i e e i i
A

(e e R e B o i o B« B o B oo B oo B eo B o B oo B e B oo B o B oo B a0 B oo B oo

s s 0 Wb R R

Max
9.163e+00
2.700e+01
6.364e+09
6.945e+08
8.537e+03
4.705e+07
9.950e+02

.3081e-024572.2 0.00e+00

.525%9e+00
.6221e-01
.6222e-01
.0862e+00
.0308e+00
.0722e+00
-1603e-01
.3884e-02 1.
.0634e-02262
.1935e-0211.
.2052e-01
.0363e-0110.
.4809e-04
.0189e-02
.4167e-02
.2747e-02
.2347e-02
.2485e-02

1.

1

7.

1.

NN e

P RRe e
o

0

WO WN R T OWW NP R R NN

6.
.70e+08
.70e+08
.87e+09
.09e+09
.87e+09
.70e+08
.00e+00

0.00e+0
.00e+00
.68e+07
.85e+07
.00e+00
.00e+00
.68e+07
.83e+07
.00e+00
.00e+00

SO W0 0 WO oo PR NWwND R

36e+09

1.

COoORrRPROOCHEBPOOORRREREREBE
Co e T e T e e

(e BN e e BN e i o B e B a0 B o B o i 0 B o0 B oo i e B oo B B oo i o B e B a0
. .

O OO0 O OC OO OO0 OO OOoOCoCRrEOo

{

Cineca

High Performance
Computing 2017

Max/Min Avg Total
1.00040 9.162e+00
1.00000 2.700e+01
1.01926 6.286e+09 1.697e+11
1.01926 6.861e+08 1.852e+10
3.71335 3.845e+03 1.038e+05
2.07804 7.962e+03 8.266e+08
1.00000
0.0e+00 0.0e+00 0.0e+00 0O 0O O 0O O o 0 0 0 O 0
.0et05 ©6.3e+03 9.8e+02 93100 99 78 98 100100100100100 19907
.0e+00 0.0e+00 0.0e+t00 2 3 0O 0O O 2 3 0 0 0 27991
.0e+00 0.0e+00 0.0e+00 2 3 0 0 O 2 3 0 0 0 27989
.0e+00 0.0e+00 0.0e+00 43 46 0 0 0 46 46 0 0 0 18990
.0e+05 6.3e+03 0.0e+00 41 48 99 78 0 44 48100100 0 20186
.0et00 0.0e+00 0.0e+00 43 46 0 0 0 46 46 0 0 0 19055
.0e+00 0.0e+00 0.0e+00 1 3 0O O O 1 3 0 0 0 39132
.0e+00 0.0e+00 0.0e+00 O O O 0O O O 0 0 0 0 0
0.0e+00 0.0e+00 0.0e+t00 0O 0O O O O 0O 0o 0 0o O 0
.0e+00 0.0e+00 0.0e+00 O O O 0O O O 0 0 0o 0O 0
.0e+00 0.0e+00 6.5e+02 3 1 0 0 65 4 1 0 0 67 3982
.0e+00 0.0e+00 3.3e+02 2 1 0 0 33 3 1 0 0 33 2575
.0e+00 0.0e+00 0.0e+t00 O O O O O o 0 0o 0 O 0
.0e+00 0.0e+00 0.0e+00 O O O 0O O 0O 0 0 0 O 0
.0e+00 0.0e+00 0.0e+00 1 1 O 0O O 1 1 0 0 0 24625
.0e+00 0.0e+00 0.0e+00 O 1 O 0O O 0 1 0 0 0 241e8
.0et05 6.3e+03 0.0e+00 0O 0 99 78 0 0 0100100 O 0
.0e+00 0.0e+00 0.0e+00 O O O O O o 0 0 0 O 0

CINECA

Cineca

High Performance
Computing 2017

3D, tri-linear quadrilateral (Q1), displacementfinite element formulation
of linear elasticity. E=1.0, nu=0.25.

Unit box domain with Dirichlet boundary condition on the y=0 side only.
Load of 1.0 in x + 2y direction on all nodes (not a true uniform load).
np = number of processes; npe™{1/3} must be integer

ne = number of elements in the x,y,z direction; (ne+1)%(npe”{1/3})
must equal zero

Default solver: GMRES + BLOCK_JACOBI + ILU(0)

Broadwell (ne=80, np=27)

KNL (ne=80, np=27) + DRAM

KNL (ne=80, np=27) +
MCDRAM=FLAT +
NUMA=SNC2

KNL (ne=79, np=64) +

MCDRAM=FLAT +

NUMA=SNC2

KNL (ne=80, np=27) +

MCDRAM=CACHE

KNL (ne=80, np=64) +
MCDRAM=CACHE

CINECA

mpirun -np 27 ./ex56 -ne 80 -log_view

mpirun -np 64 numactl --membind=0,1
/ex56 -ne 79 -log_view

mpirun -np 27 numactl --membind=2,3
/ex56 -ne 80 -log_view

mpirun -np 64 numactl --membind=2,3
/ex56 -ne 79 -log_view

mpirun -np 27 ./ex56 -ne 80 -log_view

mpirun -np 64 ./ex56 -ne 79 -log_view

Cineca

High Performance
Computing 2017

14.2 s

38.61s

12.12s

14.12s

12.50s

(Cineca

High Performance
Computing 2017

Thank you for the attention

CINECA

