
MPI advanced features

Fabio Affinito – SCAI department
f.affinito@cineca.it

Summary

1. Introduction
2. MPI derived datatypes
3. Non blocking collective communications
4. Topologies and neighbourhood collectives
5. One-sided communication
6. MPI and MPI+X

Introduction

HPC machines are more and more oriented towards nodes with large number of cores
(with a constant amount of memory).

Different programming models exist according to the model of memory consistency:
- distributed memory
- UMA/NUMA shared memory
- PGAS and similars

core core

memory

core core

memory

core core

memory memory

shared PGAS distributed

MPI

What is MPI?
- not a programming model
- not a language

But a standard relying on the distributed memory programming model
(or paradigm).

Note that all models can be mapped to any architecture more or less
efficiently (i.e. that depend on the execution model).

MPI3 is a standard, whose efficiency is highly dependent on the
execution model (and on the implementation of the standard)

MPI cornerstones

- Communication concepts
- Point to point communications
- Collective communications
- One sided communications
- Collective I/O operations

- Declarative concepts
- Groups and communicators
- Derived datatypes
- Process topologies

- Tool support
- Linking and runtime

MPI history

MPI is an open standard library interface for message passing.
The standard is ratified by the MPI Forum.

1.0 – 1.1 – 1.2 – 1.3 1994-2008 Basic message-passing concepts

2.0 – 2.1 2008 Added one sided and I/O
concepts

2.2 2009 Merging and smaller fixes

3.0 2012 Several new features

Best practises

Valid not only for MPI…
1. Identify a scalable algorithm
2. Check if there are existing libraries that can help my work.

1. Computation libraries (MKL, PetSC, ScaLAPACK..)
2. Utility libraries (LibXC, HDF5)
3. Etc.

3. Increase modularity of your applications
1. Writing (parallel) libraries has many benefits

1. Introduction
2. MPI derived datatypes
3. Non blocking collective communications
4. Topologies and neighbourhood collectives
5. One-sided communication
6. MPI and MPI+X

Derived datatypes

- Derived datatypes are in the MPI standard since v.1.0.

- Some extensions have been made in MPI-2.x and MPI-
3.0

- Why is still an «advanced concept»?
- not really popular (bad reputation…)

- It enables many elegant optimization (zero copy)

- It is a very elegant concept (and makes your code more
clean!)

Terminology

- Type size
- Size of the DDT signature (in bytes)
- Important for matching

- Lower bound
- Where does the DDT start
- It can contain some «holes»

- Extent
- Complete size of the DDT
- Allow to «interleave» DDT. It can be dangerous

DDT overview

Basic datatypes

MPI has several pre-defined datatypes, used in
elementary operations such as MPI_Send and
MPI_Recv.

int [10]

MPI_Send(x,4,MPI_INT, …);

Basic datatypes

It is possible to define a different element of a buffer.

But you are limited to send contiguous data

MPI_Send(&x[2],4,MPI_INT, …);

New derived datatypes permit to overcome (not only)
this limitation

Contiguous datatype

It is the most simple datatype.
Apparently trivial, but it can be a building block for other DDT.

MPI Datatype mynewtype;
MPI_Type_contiguous(count=4,oldtype=MPI_INT, newtype=&mynewtype);
MPI_Type_commit(&mynewtype)

MPI_Send(x,1,mynewtype …);

Array layout in memory

1 2 3 4 5 6 7 8

1 2

3 4

5 6

7 8

1 5

2 6

3 7

4 8

C: row-major Fortran: col-major

Process grid

- Use the C convention for the process coordinates, even in Fortran
- Processes always ordered as for C arrays (and array indexes start with 0)

- This is what is returned by MPI for cartesian topologies
- Example: process rank layout on a 4x4 process grid

- Rank 6 is at position (i=1,j=2) for C and
Fortran

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

i

j

Sub-array layout in memory

Fortran

C

Vector datatypes

Vector datatype: definition

MPI_Type_vector(int count, int blocklength, int stride, MPI_Datatype
oldtype, MPI_Datatype *newtype);

MPI_Datatype vector3x2;
MPI_Type_vector(3, 2, 4,MPI_FLOAT, &vector3x2)
MPI_Type_commit(&vector3x2)

Vectors and subarrays

MPI_Send(&x[1][1],1,vector3x2, …);

MPI_SEND(x(2)(2), 1,vector3x2, …)

Vectors and subarrays

MPI_Send(&x[1][2],1,vector3x2, …);

MPI_SEND(x(2)(3), 1,vector3x2, …)

Datatype extent

- Datatypes are read from memory separated by their extent
- For basic datatypes, extent is the size of the object
- For vector datatypes, extent is the distance from first to last data

Subarray datatype

A single call defines multidimensional subsections:

- useful when working with 3D arrays

MPI_Type_create_subarray(int ndims, int array_of_sizes[], int
array_of_subsizes[], int array_of_starts[], int order,
MPI_Datatype oldtype, MPI_Datatype *newtype)

Subarray datatypes: C

#define NDIMS 2
MPI_Datatype subarray3x2;
int array_of_sizes[NDIMS], array_of_subsizes[NDIMS],
arrays_of_starts[NDIMS];

array_of_sizes[0] = 5;
array_of_sizes[1] = 4;
array_of_subsizes[0] = 3;
array_of_subsizes[1] = 2;
array_of_starts[0] = 2;
array_of_starts[1] = 1;

order = MPI_ORDER_C;

MPI_type_create_subarray(NDIMS, array_of_sizes, array_of_subsizes, array_of_starts,
order, MPI_FLOAT, &subarray3x2);

MPI_TYPE_COMMIT(&subarray3x2);

Subarray datatypes: Fortran

integer, parameter :: ndims = 2
integer subarray3x2
integer, dimension(ndims) :: array_of_sizes, array_of_subsizes,
arrays_of_starts

array_of_sizes(1) = 5
array_of_sizes(2) = 4
array_of_subsizes(1) = 3
array_of_subsizes(2) = 2
array_of_starts(1) = 2
array_of_starts(2) = 1
order = MPI_ORDER_FORTRAN

call MPI_TYPE_CREATE_SUBARRAY(ndims, array_of_sizes, array_of_subsizes, array_of_starts,
order, MPI_REAL, subarray3x2, ierr)

call MPI_TYPE_COMMIT(subarray3x2, ierr)

Using subarray datatype

MPI_Send(&x[0][0], 1, subarray3x2, ...);
MPI_SEND(x , 1, subarray3x2, ...)
MPI_SEND(x(1,1) , 1, subarray3x2, ...)

Matching messages

Messages are packed during the transmission between processes and empty entries
are removed.

A datatype consists of:
- Type signature: an ordered list of the basic datatypes
- Type map: locations of each basic datatype

For a receive to match a send only signatures need to match.

Final considerations

1. Creation of datatypes requires an overhead
1. No need to redefine datatypes every time
2. Array sizes unlikely to change: define datatypes once for all

2. Beware of creating too many datatypes
1. They consume memory
2. Use MPI_Type_free whenever possible

3. Don’t:
do loop=1,1000000

do stuff
define type
use type
free type

end do

1. Introduction
2. MPI derived datatypes
3. Non blocking collective communications
4. Topologies and neighbourhood collectives
5. One-sided communication
6. MPI and MPI+X

Nonblocking and collective communication

- Nonblocking communication
- Deadlock avoidance
- Overlap communication and computation

- Collective communication
- Optimized routines

- Nonblocking collective communications
- Combine both advantages
- System noise/imbalance resiliency
- Semantic advantages

Nonblocking communication

Very simple semantics:
- Function returns no matter what
- No progress guarantee!
- Available:

- Non blocking tests (test,testany,testsome…)
- Blocking wait (wait,waitany, waitall…)

Motivation: pipelining
if(r == 0) {

for(int i=0; i<size; ++i) {
arr[i] = compute(arr, size);
}
MPI_Send(arr, size, MPI_DOUBLE, 1, 99, comm);

} else {
MPI_Recv(arr, size, MPI_DOUBLE, 0, 99, comm, &stat);

}

Motivation: pipelining
if(r == 0) {

MPI_Request req=MPI_REQUEST_NULL;

for(int b=0; b<nblocks; ++b) {

if(b) {

if(req != MPI_REQUEST_NULL) MPI_Wait(&req, &stat);

MPI_Isend(&arr[(b-1)*bs], bs, MPI_DOUBLE, 1, 99, comm, &req);

}

for(int i=b*bs; i<(b+1)*bs; ++i) arr[i] = compute(arr, size);

}

MPI_Send(&arr[(nblocks-1)*bs], bs, MPI_DOUBLE, 1, 99, comm);

} else {

for(int b=0; b<nblocks; ++b)

MPI_Recv(&arr[b*bs], bs, MPI_DOUBLE, 0, 99, comm, &stat);

}

Pipeline performance model

No pipeline:

T = Tcomp(s) + Tcomm(s) + Tstartc(s)

Pipeline:

T = nblocks * [max(Tcomp(bs) , Tcomm(bs)) + Tstartc(bs)]

Collective communication

Three types:
- Synchronization (Barrier)
- Data Movement (Scatter, Gather, Alltoall, Allgather)
- Reductions (Reduce, Allreduce, (Ex)Scan, Red_scat)
Common semantics:
- no tags (communicators can serve as such)
- Blocking semantics (return when complete)
- Not necessarily synchronizing (only barrier and all*)

Nonblocking collective communication

Nonblocking variants of all collectives
- MPI_Ibcast(<bcast args>, MPI_Request *req);
Semantics:
- Function returns no matter what
- No guaranteed progress (quality of implementation)
- Usual completion calls (wait, test) + mixing
- Out-of order completion
Restrictions:
- No tags, in-order matching
- Send and vector buffers may not be touched during operation
- MPI_Cancel not supported
- No matching with blocking collectives

Semantic advantages:
- Enable asynchronous progression (and manual)
- Software pipelinling
- Decouple data transfer and synchronization
- Noise resiliency!
- Allow overlapping communicators (see also neighborhood

collectives)
- Multiple outstanding operations at any time
- Enables pipelining window

Nonblocking collective communication

Noisy systems

When dealing with a very large number of cores it can
happen that one of them is delayed for a wide number
of reasons (daemons, interrupts, steal cycles).

This delay is likely to propagate…

Non-blocking barrier?

What can that be good for?
Semantics:
- MPI_Ibarrier() – calling process entered the barrier, no

synchronization happens
- Synchronization may happen asynchronously
- MPI_Test/Wait() – synchronization happens if necessary
Uses:
- Overlap barrier latency (small benefit)
- Use the split semantics! Processes notify non-collectively but

synchronize collectively!

Semantics example: DSDE

Dynamic Sparse Data Exchange
- Dynamic: comm. pattern varies across iterations
- Sparse: number of neighbors is limited (O(logP))
- Data exchange: only senders know neighbors

DSDE

Main Problem: metadata
Determine who wants to send how much data to me (I must post receive and reserve memory)
OR:
Use MPI semantics:
- Unknown sender (MPI_ANY_SOURCE)
- Unknown message size (MPI_PROBE)
Reduces problem to counting the number of neighbours
Allow faster implementation!

DSDE using Alltoall (PEX)

Based on Personalized Exchange (PEX)

- Processes exchange metadata
(sizes) about neighborhoods
with all-to-all
- Processes post receives
afterwards
- Most intuitive but least
performance and scalability!

DSDE using Reduce/Scatter

Based on Personalized Census (PCX)
Processes exchange metadata
(counts) about neighborhoods
with reduce_scatter
- Receivers checks with wildcard
MPI_IPROBE and receives
messages
- Better than PEX but non-
deterministic!

DSDE using nonblocking barrier

Combines metadata with actual
transmission

- Point-to-point synchronization
- Continue receiving until barrier

completes
- Processes start coll. synch.
(barrier) when p2p phase ended
barrier = distributed marker!
- Better than PEX, PCX, RSX!

MPI_Request reqs[m];

for (i=0, i<m,++i){

MPI_Issend(sbuf[i],size[i],type,dest[i],tag,comm,&reqs[i]);

MPI_Request barrier_req;

int barrier_done=0, barrier_active=0;

while(!barrier_done){

MPI_Iprobe(MPI_ANY_SOURCE,tag,comm,&flag,&stat);

if(flag){

//allocate buffer and receive msg

}

if(!barrier_active){

int flag;

MPI_Testall(m,reqs,&flag,MPI_STATUS_IGNORE);

if(flag){

MPI_Ibarrier(comm,&barrier_request);

barrier_active=1;

}

}else{

MPI_Test(&barrier_request,&barrier_done,MPI_STATUS_IGNORE);

}

}

Nonblocking and 2D-FFT
● 2D-FFT can be distributed among different processes each of them executes a 1D-FFT
● After the 1D-FFT along, for example, the x-direction is completed, an MPI_Alltoall is performed.
● Now, each process can execute a 1D-FFT along the y-direction and a final MPI_Alltoall permits to

obtain the complete 2D-FFT

Nonblocking and 2D-FFT

● The performance can be improved if we start the transposition and,
without waiting for the completion, we start working on the FFT
along the second direction

1. Introduction
2. MPI derived datatypes
3. Non blocking collective communications
4. Topologies and neighbourhood collectives
5. One-sided communication
6. MPI and MPI+X

Topologies

MPI topologies have been introduced in the v.2.0 of
the MPI standard as a tool for a better usage of
processes distributions.

MPI 3.0 introduces new neighbourhood collective
operations:

- MPI_Neighbor_allgather[v]

- MPI_Neighbor_alltoall[v|w]

Recap of MPI topologies

Regular n-dimensional grid or torus topology:
- MPI_CART_CREATE

General graph topology
- MPI_GRAPH_CREATE

all processes specify all edges in the graph (not scalable)
General graph topology (distributed version)

- MPI_DIST_GRAPH_CREATE_ADJACENT
all processes specify their incoming and outgoing neighbours

- MPI_DIST_GRAPH_CREATE
all processes can specify any edge in the graph

Recap of MPI topologies

Testing the topology type associated with a communicator
– MPI_TOPO_TEST
Finding the neighbours for a process
– MPI_CART_SHIFT
Find out how many neighbours there are:
– MPI_GRAPH_NEIGHBORS_COUNT
Get the ranks of all neighbours:
– MPI_GRAPH_NEIGHBORS
Find out how many neighbours there are:
– MPI_DIST_GRAPH_NEIGHBORS_COUNT
Get the ranks of all neighbours:
– MPI_DIST_GRAPH_NEIGHBORS

Neighbourhood collective operations

MPI_[N|In]eighbor_allgather[v]
– Send one piece of data to all neighbours
– Gather one piece of data from each neighbour

MPI_[N|In]eighbor_alltoall[v|w]
– Send different data to each neighbour
– Receive different data from each neighbour

Use-case: regular or irregular domain decomposition codes
– Where the decomposition is static or changes infrequently
– Because creating a topology communicator takes time

Buffer ordering

MPI_Neighbor_allgather
- Send the same message to all neighbours
- Contiguous chunks in in receive buffer from each incoming neighbour

snd_buffer

n
e

igh
b

o
u

rs

sendtype
sendcount

rcv_buffer

rcv_buffer

rcv_buffer

rcv_buffer

recvtype
recvcount

From 1° neighbour

From 2nd neighbour

From 3rd neighbour

From 4th neighbour

MPI_Neighbor_allgatherv
- Send the same message to all neighbours
- Non-contiguous variable-sized chunks in in receive buffer from each incoming

neighbour

snd_buffer

n
e

igh
b

o
u

rs

sendtype
sendcount

rcv_buffer

rcv_buffer

rcv_buffer

rcv_buffer

Recvtypes, displs
recvcount

From 1° neighbour

From 2nd neighbour

From 3rd neighbour

From 4th neighbour

MPI_Neighbor_alltoall
- Send the same message to all neighbours
- Contiguous chunks in in receive buffer from each incoming neighbour

snd_buffer

n
eigh

b
o

u
rs

sendtype
sendcount

snd_buffer

snd_buffer

snd_buffer rcv_buffer

rcv_buffer

rcv_buffer

rcv_buffer

recvtype
recvount

From 1° neighbour

From 2nd neighbour

From 3rd neighbour

From 4th neighbour

Neighborhoods collectives

Neighborhood collectives add communication functions to
process topologies

- Collective optimization potential!
Allgather
- One item to all neighbors
Alltoall
- Personalized item to each neighbor
High optimization potential (similar to collective operations)
- Interface encourages use of topology mapping!

1. Introduction
2. MPI derived datatypes
3. Non blocking collective communications
4. Topologies and neighbourhood collectives
5. One-sided communication
6. MPI and MPI+X

Outline

MPI RMA basic concepts
- Why RMA?
- Terminology
- Program flow

Getting started with RMA
- Management of windows
- Fence synchronization
- Moving data around

Why RMA?

- One sided communication functions are an
interface to MPI RMA

- It can provide a performance/scalability increase
for your codes
- Programmability reasons
- Hardware (interconnect) reasons
- But it is not a silver bullet!

RMA terminology

Origin is the process that performs the call.

Target is the process whose memory is accessed.

- All remote access are performed on windows of
memory

- All accesses calls are non-blocking and issued
inside an epoch

RMA program flow

1. Collectively initialize a window

2. Start a RMA epoch (synchronization)

3. Perform communication calls (put,get,etc.)

4. Close the RMA epoch (synchronization)

5. Collectively free the window

Window creation

- Window creation is a collective operation.
- Each process may specify different locations, sizes, displacement units and

info arguments
- The same region of memory may appear in multiple windows that have

been defined for a process. But concurrent communications to overlapping
windows are disallowed.

- Performance may be improved by ensuring that the windows align with
boundaries such as word or cache-line boundaries.

int MPI_Win_create(void *base, MPI_Aint size, int disp_unit,
MPI_Info info, MPI_Comm comm, MPI_Win *win)

Window management

This function permits to retrieve the window attributes.
- min_keyval options are: MPI_WIN_BASE, MPI_WIN_SIZE,

MPI_WIN_DISP_UNIT, MPI_WIN_CREATE_FLAVOR,
MPI_WIN_MODEL

- Attribute_val if the attribute is available and in this case (flag is
true), otherwise flag will be false

int MPI_Win_get_attr(MPI_Win win, int win_keyval,
void *attribute_val, int *flag)

Window management

After all RMA calls have been completed (i.e. after
the epoch is closed), you should free the window.

int MPI_Win_free(MPI_Win *win)

Fences

Synchronization calls are required to start and stop an
epoch.

Fences are the simplest way of doing this.

int MPI_Win_fence(int assert, MPI_Win win)

Data movement with RMA

MPI_Put MPI_Get MPI_Accumulate

RMA communication

Get data from target’s memory

int MPI_Get(void *origin_addr, int origin_count, MPI_Datatype origin_datatype, int
target_rank, MPI_Aint target_disp, int target_count, MPI_Datatype target_datatype,
MPI_Win win)

Put data into target’s memory

int MPI_Put(const void *origin_addr, int origin_count, MPI_Datatype origin_datatype,
int target_rank, MPI_Aint target_disp, int target_count, MPI_Datatype
target_datatype, MPI_Win win)

Accumulate data in target’s memory with some other data

int MPI_Accumulate(void *origin_addr, int origin_count, MPI_Datatype origin_datatype,
int target_rank, MPI_Aint target_disp, int target_count, MPI_Datatype
target_datatype, MPI_Op op, MPI_Win win)

RMA communication

Similarly to non-blocking P2P one must wait for synchronisation (i.e. end of epoch)
until accessing retrieved data (get) or overwriting written data (put/accumulate)

target_disp is in bytes (multiplied by window displacement unit), origin_count and
target_count are in elements of data type

Undefined operations:
•Local stores/reads with a remote PUT in an epoch
•Several origin processes performing concurrent PUT to the same target location
•Single origin process performing multiple PUTs to the same target location in a single

epoch
•Accumulate supports the MPI_Reduce operations, but NOT user defined operations.

Also supports MPI_REPLACE which is effectively the same as a put.

RMA communication

No guaranteed ordering for put/get

Results for concurrent put/accumulate are
undefined

For concurrent accumulate operations to the
same location ordering is guaranteed

Fence example

MPI_Win win;
if (rank == 0) {

MPI_Win_create(buf, sizeof(int)*20, 1, MPI_INFO_NULL, comm, &win);
} else {

MPI_Win_create(NULL, 0, 1, MPI_INFO_NULL, comm, &win);
}
MPI_Win_fence(MPI_MODE_NOPRECEDE,win);

if (rank != 0) {
MPI_Get(mybuf, 20 , MPI_INT, 0, 0, 20, MPI_INT, win);

}
MPI_Win_fence(MPI_MODE_NOSUCCEED, win);
MPI_Win_free(&win)

Only rank 0 attach an
area of memory to the
window

No RMA calls before
the fence

Non-zero ranks get
the 20 integer from
rank zeroNo RMA calls after the

fence

Synchronization modes

Active target
- Both processes are explicitly involved in the data movement. Only one

process issues the data transfer call but all processes issue the
synchronisation.

Passive target
- Only the origin process is involved in the data movement, there are no

calls made on the target process. For instance two origin processes might
communicate by accessing the same location in a target window, and the
target process (which does not participate) might be distinct from the
origin processes.

Fence is an example of active target as each process issues the fence calls

Fence: active target synchronization

● MPI_WIN_FENCE starts and
ends access and exposure
epoch of all processes in the
window

● Collective synchronization
model

● All operations complete at the
second fence synchronization

Lock/unlock: passive target synchronization

● One sided asynchronous
communication

● Target does not participate
in communication operation

● Shared memory-like model

Epoch types

Access epoch definition
- RMA communication calls (get, put etc) can only be issued inside an access

epoch. This is started with an RMA synchronisation call on the origin and
completes with the next synchronisation call.

- i.e. it is used to access the remote memory of another process.

Exposure epoch
- Used in active target communication, this is required to expose memory on the

target so it can be accessed by other processes’ RMA operations.

Fences abstract the programmer from this as they will complete/start both access and
exposure epochs automatically as required

Post-start-complete-wait

The programmer can handle explicitly different
kinds of epochs

Post creates an exposure epoch
Wait ends an exposure epoch
Start creates an access epoch
Complete ends an access epoch

Post-start-complete-wait

Post will not block, start may or may not
block

Wait will block until all matching complete
calls and guarantees target RMA
completion

Complete will block until RMA
communications of that epoch have
completed and guarantees origin RMA
completion

PSCW example

int ranks[]={0,1,2};

if (rank == 0) {

MPI_Win_create(buf, sizeof(int)*3, sizeof(int), MPI_INFO_NULL, MPI_COMM_WORLD, &win);

} else {

MPI_Win_create(NULL, 0, sizeof(int), MPI_INFO_NULL, MPI_COMM_WORLD,

&win);

}

if (rank == 0) {

MPI_Group_incl(comm_group, 2, ranks+1, &group);

MPI_Win_post(group, 0, win);

MPI_Win_wait(win);

} else {

MPI_Group_incl(comm_group, 1, ranks, &group);

MPI_Win_start(group, 0, win);

MPI_Put(buf, 1, MPI_INT, 0, rank, 1, MPI_INT, win);

MPI_Win_complete(win);

}

RMA memory model

Public and private window copies
- Public memory region is addressable by other processes

(i.e. exposed main memory)
- Private memory (i.e. transparent caches or communication

buffers) which is only locally visible but elements from
public memory might be stored.

- Coherent if updates to main memory are automatically
reflected in private copy consistently

- Non-coherent if updates need to be explicitly synchronised

RMA memory model

MPI therefore has two models
•Unified if public and private copies are identical – used if possible,

realistic on cache coherent machines. (This was added in MPI v3)
•Separate if they are not, here there is only one copy of a variable in

process memory but also a distinct public copy for each window
that contains it. The old model

RMA memory model

In the separate model a suitable synchronisation call (i.e. end of an
epoch) must be issued to make these consistent. In the unified
model some synchronisation calls might be omitted for
performance reasons

The window attribute tells you which model it follows

Locks and unlocks

PSCW is an example of active target synchronisation as the target must still
explicitly create an exposure epoch

Locks/unlocks are an example of passive synchronisation where only the origin
takes part.

int MPI_Win_lock(int lock_type, int rank, int assert, MPI_Win win)
int MPI_Win_unlock(int rank, MPI_Win win)

Inside the epoch (i.e. between lock & unlock) then RMA communication calls
as normal, these complete for both the origin and target on the
corresponding unlock.

Locks and unlocks

The lock type argument to lock is either:
- MPI_LOCK_SHARED where multiple processes may access the target window at

any one time
- MPI_LOCK_EXCLUSIVE where only one process may access the target window at

any one time
MPI 3 also added lock_all and unlock_all variants which control access to all processes

associated with a window.

There is also
- flush to flush outstanding RMA operations on the window to the target rank
- sync to synchronise public & private window copies (separate memory model)

Locks and unlocks: example

MPI_Win win;

if (rank == 0) {
MPI_Win_create(NULL,0,1,MPI_INFO_NULL,MPI_COMM_WORLD,&win);
MPI_Win_lock(MPI_LOCK_SHARED,1,0,win);
MPI_Put(buf,1,MPI_INT,1,0,1,MPI_INT,win);
MPI_Win_unlock(1,win);
MPI_Win_free(&win);

} else {
MPI_Win_create(buf,2*sizeof(int),sizeof(int), MPI_INFO_NULL,
MPI_COMM_WORLD, &win);
MPI_Win_free(&win);

}

Shared memory with MPI

● MPI-3 permits to manage shared memory access to
different processes

● It uses many of the concepts of one-sided
communication

● Can be simpler to implement wrt OpenMP threads
● It can live together with other different MPI

parallelization layers

MPI and shared memory

RMA windows vs shared memory windows

● Shared memory windows
allow application processes
to directly perform
load/store accesses on all
of the window memory

– e.g. x[100]=10

Memory allocation and placement

● Shared memory allocation does not need to be uniform across processes

– Processes can allocate a different amount of memory (even zero)
● The MPI standard does not specify where the memory would be placed

(e.g. which physical memory it will be pinned to)
● The total allocated shared memory on a communicator is contiguous by

default

– Users can pass an info hint called “noncontig” that will allow the MPI
implementation to align memory allocations from each process to
appropriate boundaries to assist with placement

MPI Shared memory example
int main(int argc, char ** argv)
{

int buf[100];
MPI_Init(&argc, &argv);
MPI_Comm_split_type(..., MPI_COMM_TYPE_SHARED, .., &comm);
MPI_Win_allocate_shared(comm, ..., &win);
MPI_Win_lockall(win);

/* copy data to local part of shared memory */

MPI_Win_sync(win);

/* use shared memory */

MPI_Win_unlock_all(win);
MPI_Win_free(&win);
MPI_Finalize();
return 0;

}

1. Introduction
2. MPI derived datatypes
3. Non blocking collective communications
4. Topologies and neighbourhood collectives
5. One-sided communication
6. MPI and MPI+X

MPI+X

HPC systems based on multicore makes hybrid solution a must.
For heterogeneous systems with GPUs, the most natural approach is

MPI+Cuda.
In most cases (homogenous systems) the most popular approach si

MPI+OpenMP.
Recently, using RMA and Shared Memory capabilities of MPI, made

MPI+MPI an option.

MPI+OpenMP

Using together MPI and OpenMP permits to create a hierarchy
(intranode/internode) able to exploit the cores using threads.

Typically, MPI+OpenMP does not improve the scalability in the regime
where MPI is scaling well, but it permits to increase the scalability
when MPI reaches the saturation.

MPI+OpenMP

Maintenance costs

- Maintenance of a hybrid MPI+OpenMP code can be harder
than for a pure MPI code

- When mixing MPI and OpenMP, typical problems of those
approaches sum up

- In particular, in OpenMP there is the risk of race conditions
and non deterministic bug. The presence of MPI on top
can make the debugging much more complex.

Portability issues

- Even if both MPI and OpenMP are highly portable (in
principle)

- MPI+OpenMP can have some portability issues
- Thread safety: if the maximum level is assumed,

portability will be reduced

Performance pitfalls

- Adding OpenMP may introduce additional overheads not present in the
MPI code (e.g. synchronisation, false sharing, sequential sections, NUMA
effects).

- Adding OpenMP introduces a tunable parameter – the number of threads
per MPI process

- optimal value depends on hardware, compiler, input data
- hard to guess the right value without experiments

- Placement of MPI processes and their associated OpenMP threads within
a node can have performance consequences.

Performance pitfalls

- The mixed implementation may require more synchronisation than a pure
OpenMP version, if non-thread-safety of MPI is assumed.

- Implicit point-to-point synchronisation via messages may be replaced by (more
expensive) barriers.

- loose thread to thread synchronisation is hard to do in OpenMP

- In the pure MPI code, the intra-node messages will often be naturally overlapped
with inter-node messages

- harder to overlap inter-thread communication with inter-node messages – see later

- OpenMP codes can suffer from false sharing (cache-to-cache transfers caused by
multiple threads accessing different words in thesame cache block)

- MPI naturally avoids this

- Incremental parallelization can be insufficient to guarantee parallel efficiency

NUMA effects

• Nodes which have multiple sockets are NUMA: each socket has it’s own block of
RAM.

• OS allocates virtual memory pages to physical memory locations
• has to choose a socket for every page

• Common policy (default in Linux) is first touch – allocate on socket where the first
read/write comes from
• right thing for MPI
• worst possible for OpenMP if data initialisation is not parallelised
• all data goes onto one socket

• NUMA effects can limit the scalability of OpenMP: it may be advantageous to run
one MPI process per NUMA domain, rather than one MPI process per node.

NUMA effects

It is crucial to define the assignment of MPI tasks and threads
explicitly
This is more important when the number of cores becomes very
large (i.e. Intel Xeon Phi)

Use the APIs of your environment (for example KMP_AFFINITY on Intel
Composer), the batch scheduler settings.

In any case, don’t trust the automatic assignment and check the
assignment.

Using numactl can be a good idea.

Hybrid MPI+OpenMP

MPI provide several levels to implement OpenMP functions,
depending on when/how threads are permitted to make
MPI library calls.

Each of these levels has pros and cons.
Let’s review shortly these 4 degrees.

Hybrid MPI+OpenMP
Master-only
- all MPI communication takes place in the sequential part of the OpenMP program (no MPI in parallel

regions)
Funneled
- all MPI communication takes place through the same (master) thread
- can be inside parallel regions
Serialized
- only one thread makes MPI calls at any one time
- distinguish sending/receiving threads via MPI tags or communicators
- be very careful about race conditions on send/recv buffers etc.
Multiple
- MPI communication simultaneously in more than one thread
- some MPI implementations don’t support this
- …and those which do mostly don’t perform well

Thread safety

Thread safety enforces an ordering in the calls to different threads/tasks.

Making MPI libraries thread-safe is difficult
- lock access to data structures
- multiple data structures: one per thread
- Adds significant overheads

MPI defines various classes of thread usage
- library can supply an appropriate implementation

MPI_Init_thread support

• MPI_INIT_THREAD (required, provided, ierr)
– IN: required, desired level of thread support (integer).
– OUT: provided, provided level (integer).
provided may be less than required.

• Four levels are supported:
– MPI_THREAD_SINGLE: Only one thread will runs. Equals to MPI_INIT.
– MPI_THREAD_FUNNELED: processes may be multithreaded, but only the main

thread can make MPI calls (MPI calls are delegated to main thread)
– MPI_THREAD_SERIALIZED: processes could be multithreaded. More than one

thread can make MPI calls, but only one at a time.
– MPI_THREAD_MULTIPLE: multiple threads can make MPI calls, with no restrictions.

MPI_Init_thread

• The various implementations differs in levels of thread-safety
• If your application allow multiple threads to make MPI calls

simultaneously, whitout MPI_THREAD_MULTIPLE, is not thread-
safe

• Using OpenMPI, you have to use –enable-mpi-threads at configure
time to activate all levels.

• Higher level corresponds higher thread-safety. Use the required
safety needs.

MPI_THREAD_SINGLE

• It is fully equivalent to the master-only approach

!$OMP PARALLEL DO

do i=1,10000

a(i)=b(i)+f*d(i)

enddo

!$OMP END PARALLEL DO

call MPI_Xxx(...)

!$OMP PARALLEL DO

do i=1,10000

x(i)=a(i)+f*b(i)

enddo

!$OMP END PARALLEL DO

#pragma omp parallel for

for (i=0; i<10000; i++)

{ a[i]=b[i]+f*d[i];

}

/* end omp parallel for */

MPI_Xxx(...);

#pragma omp parallel for

for (i=0; i<10000; i++)

{ x[i]=a[i]+f*b[i];

}

/* end omp parallel for */

MPI_THREAD_FUNNELED

• It adds the possibility to make MPI calls inside a parallel
region, but only the master thread is allowed to do so

MPI_THREAD_FUNNELED

• MPI function calls can be: outside a parallel region or in a parallel
region, enclosed in “omp master” clause

• There's no synchronization at the end of a “omp master” region, so
a barrier is needed before and after to ensure that data buffers are
available before/after the MPI communication

!$OMP BARRIER

!$OMP MASTER

call MPI_Xxx(...)

!$OMP END MASTER

!$OMP BARRIER

#pragma omp barrier

#pragma omp master

MPI_Xxx(...);

#pragma omp barrier

MPI_THREAD_SERIALIZED

• MPI calls are mad concurrently by two or more different
threads. All the MPI communications are serialized.

MPI_THREAD_SERIALIZED

• MPI calls can be outside parallel regions, or inside, but enclosed in a
“omp single” region (it enforces the serialization)

• Again, a barrier should ensure data consistency

!$OMP BARRIER

!$OMP SINGLE

call MPI_Xxx(...)

!$OMP END SINGLE

#pragma omp barrier

#pragma omp single

MPI_Xxx(...);

MPI_THREAD_MULTIPLE

• It is the most flexible mode, but also the most complicate one
• Any thread is allowed to perform MPI communications, without any

restrictions.

Comparison to pure MPI

Funneled/serialized
• All threads but the master are sleeping during MPI communications
• Only one threads may not be able to lead up to max inter-node

bandwith

Pure MPI
• Each CPU can lead up max inter-node bandwidth

Hints: overlap as much as possible communications and computations

Overlap communications and computations

• In order to overlap communications with computations, you require at
least the MPI_THREAD_FUNNELED mode

• While the master thread is exchanging data, the other threads performs
computation

• It is difficult to separate code that can run before or after the data
exchanged are available

!$OMP PARALLEL
if (thread_id==0) then

call MPI_xxx(…)
else

do some computation
endif

!$OMP END PARALLEL

1. Introduction
2. MPI derived datatypes
3. Non blocking collective communications
4. Topologies and neighbourhood collectives
5. One-sided communication
6. MPI and MPI+X
7. Bonus track: Endpoints

MPI endpoints

Not yet implemented in MPI3.0

Proposed for MPI4.0.

Idea is to make Multiple style easier to use and
easier to implement efficiently.

Mapping of ranks to processes

In MPI there is a correspondance one-to-one between ranks.
Threads can be mapped many-to-one wrt to processes.

Provide a many-to-one mapping of ranks to processes
• Allows threads to act as first-class participants in MPI operations
• Improve programmability of MPI + node-level and MPI + system-level models
• Potential for improving performance of hybrid MPI + X
• A rank represents a communication “endpoint”
• Set of resources that supports the independent execution of MPI
communications

Mapping of ranks to processes

Endpoints: proposed interface

int MPI_Comm_create_endpoints(MPI_Comm parent_comm, int
my_num_ep, MPI_Info info, MPI_Comm *out_comm_hdls[])

• Each rank in parent_comm gets my_num_ep ranks in
out_comm
• my_num_ep can be different at each process
• Rank order: process 0’s ranks, process 1’s ranks, etc.
• Output is an array of communicator handles
• ith handle corresponds to ith endpoint create by
parent process
• To use that endpoint, use the corresponding handle

Endpoints: example

Resources and credits

Many resources available online

- MPI version 3 standard is very comprehensive
- https://cvw.cac.cornell.edu/MPIoneSided is a good resource
- https://htor.inf.ethz.ch/publications/img/mpi3-rma-overview-and-model.pdf
- http://www.mpich.org/static/docs/v3.2/www3/
- Credits to EPCC online courses and T. Hoefler’s

