
OpenMP: advanced features

Mirko Cestari – m.cestari@cineca.it

Eric Pascolo – eric.pascolo@cineca.it

SuperComputing Applications and Innovation Department

mailto:m.cestari@cineca.it
mailto:eric.pascolo@cineca.it

2

Outline

● Introduction to OpenMP
● Some technicalities
● General characteristics of Taks
● Some examples

3

Advantegs of OpenMP

● Standardized

– Enhance portability

● Ease of use

– Limited set of directives

– Fast (incremental) parallelization

● Portability

– C, C++ And Fortran API

– Part of many compilers

● Can be used with MPI

– Hybrid code, I.e. to reduce impact of collective communications

4

Multi-threaded process

● Each thread may be regarded as a concurrent execution flow

5

Fork-Join parallel execution

6

OpenMP program

Execution model

● fork-join parallel execution

● the program starts with an initial thread

● when a parallel construct is encountered a team is created

● parallel regions may be nested arbitrarily

● worksharing constructs permit to divide work among
threads

7

OpenMP program

Shared-memory model

● all threads have access to the memory

● each thread is allowed to have a temporary view of the
memory

● each thread has access to a thread-private memory

● two kinds of data-sharing attributes: private and shared

● data-races trigger undefined behavior

Programming model

● compiler directives + environment variables + run-time
library

8

OpenMP core elements

9

Outline

● Introduction to OpenMP
● Some technicalities
● General characteristics of Taks
● Some examples

10

OpenMP: memory access

● OpenMP is not cc-NUMA aware

– We need to take care of different memory
access

– Threads placement can be important

● Cache coherency plays a role

– False sharing

11

Shared memory systems

● Memory is shared

● Distinction between NUMA/UMA systems

12

cc-NUMA

13

Numa memory access

● Windows, Linux and other OS by default uses a first
touch policy to place data in memory

● The core that touches the memory owns the data

core core core core

RAM RAM

Arr[0,...,N]

for (i=0;i<N;i++)
Arr[i] = 1.0

Arr[0,...,N]

14

Numa memory access

core core core core

RAM RAM

for (i=0;i<N/2;i++)
Arr[i] = 1.0

Arr[0,...,N/2] Arr[N/2,...,N]

for (i=N/2;i<N;i++)
Arr[i] = 1.0

● Increases aggregated memory bandwidth (reduce latency)

15

OpenMP: thread placing

● Give more control to the programmer

● You need info on the system topology

– lstopo from hwloc (cache dimension, topology)

– cpuinfo (proc ids, physical cores, hardware
threads)

16

OpenMP: thread placing

● Set OpenMP places: OMP_PLACES

● sockets
● cores
● threads
● …

● Define thread binding: OMP_PROC_BIND

● spread
● close
● master

17

thread placing: examples

OMP_PLACES=cores

place0

place1

place2 place4

place3 place5

place6 place8 place10

place11place9place7

2 sockets, 6 cores per socket

OMP_PLACES=sockets

place1place0

18

thread placing: examples

OMP_PLACES=”{0:3},{3:3},{6:3},{9:3}”

place0 place1 place3place2

2 sockets, 6 cores per socket

19

OpenMP: thread binding

Define thread binding: OMP_PROC_BIND

– true/false

– spread: spread threads evenly among the places
(useful for nesting)

– close: starts by placing T/P threads in parent
thread’s place, and then proceeds in a round-robin
fashion allocating T/P threads in each place

– master: the threads in the team are assigned to the
same place as the master thread

20

Thread binding API

New in OpenMP 4.5

● int omp_get_num_places()

● int omp_get_place_num_procs(int place_num)

● void omp_get_place_proc_ids(int place_num, int *ids)

● int omp_get_place_num(void)

21

Goals of binding

● Avoid that threads move among the cores (losing all caches)

● If threads share cache

– useful if they are working on same data
● caches do not replicate same data (increasing effective

cache size, decreasing cache misses)
– false sharing can be mitigated

● If threads do not share cache

– useful if the don't work on the same data

– cache don't compete for data (increasing effective cache size,
decreasing cache misses)

22

CPU caches (1)

● All data read or written by the CPU cores is stored in the cache

● If the CPU needs data caches are searched first

● Data is stored in lines (typically 64 bytes)

sys/devices/system/cpu/cpu0/cache/index0/coherency_line_size

● When memory content is needed by the CPU the entire cache
line is loaded into L1d

● A cache line which holds values that are not yet written to main
memory or higher-level caches is said to be “dirty”

● Eventually the dirty bit will tell the processor to write the data
back before discarding the data

23

CPU caches (2)

● All processors are supposed to see the same memory content at
all times

– cache coherency
● When a second processor needs a value from a dirty line of a

processor:

– the processor sends the content of the cache line to the
second processor

– if the value is required to be written on, the first processor needs
to invalid the cache line. It will need to read the new content
from a higher-level cache or main memory

● False sharing

24

False sharing

core core

RAM RAM

All cores working on same data: A[0,...,100]

A[24,...,31] A[24,...,31]

A[0,...,24] A[25,...,49]

 A[0,...,100]

25

Outline

● Introduction to OpenMP
● Some technicalities
● General characteristics of Tasks
● Some examples

OpenMP 2.5

2 main worksharing contructs
– Loop construct:

• the number of iterations is determined before
entering the loop

• Number of iterations cannot be changed
– sections contruct: sections are statically defined at

compiled time

Synchronization constructs affect the whole team of
threads

– Not just units of work

Tasks: motivations

• Modern applications are larger and more complex

• Irregular and dynamic structures are widely used
– While loops

– Recursive routines

• OpenMP 2.5 is not suitable to leverage these kinds of
concurrency

Pointer chasing using single

#pragma omp parallel private(p)
{
 p = head;
 while(p) {
 #pragma omp single nowait
 process(p);
 p=p->next;
 }
}

Each thread performs the while loop (traverses the whole list)

Each thread has to determine if another thread already executed the
work on that element

29

Tasks

 First Introduced in OpenMP 3.0
● has been the major addition from OpenMP 2.5

 Refined in OpenMP 3.1, 4.0 and 4.5

Fortran
1.0

1998

Fortran
1.1

Fortran
2.0

2.5 3.0 3.1 4.0

C/C++
2.0

C/C++
1.0

2002

200019991997

2005 2008 2011 2013

Tasking

• From a thread-centric model to a task centric-model

• A model in which users identify independent unit of
work
– i.e. intrinsically unbalanced
– rely on the system to schedule these units

• Irregular parallelism: dynamically generated units of
work that can be executed asynchronously

31

Tasking in OpenMP

#pragma omp parallel
...

{
 [code]
}
...

{
 [code]
}

...

 Thread

 Thread

 Thread

 Thread

 Thread

The assumption here is that tasks are independent

32

Task construct

#pragma omp task [clause[[,]clause] ...]
{
 structured­block
}

explicit task construct
a task can be executed immediately or deferred
runtime system will decide when the task is
executed
tasks can also be nested

34

Definitions

Task construct – task directive plus structured block

 #pragma omp task [clause[[,]clause] ...]

 structured-block

Task – instructions and data created when a thread
encounters a task contruct
– Different encounters of the same task construct

generate different tasks

Task region – all the code encountered during the
execution of a task

Pointer chasing using tasks
#pragma omp parallel private(p)
 #pragma omp single
 {
 p = head;
 while(p) {
 #pragma omp task
 process(p);
 p=p->next;
 }
 }

• One thread creates tasks

• When it finishes, it reaches the implicit barrier and starts to execute
the tasks

• The other threads directly go the implicit barrier and start to
execute the tasks

Data scoping in tasks

• private and firstprivate: business as usual

Example:

a = 1, b = 1, c = 1
#pragma omp parallel private(b) firstprivate(c)

• Inside the parallel region

– a (shared) 1

– b (private) undefined

– c (private) 1

Data scoping in tasks

• private and firstprivate: business as usual

– If a variable is private on a task construct, the references
to it inside the construct are to new uninitialized storage
that is created when the task is executed

– If a variable is firstprivate on a construct, the references
to it inside the construct are to new storage that is created
and initialized with the value of the existing storage of
that name when the task is encountered

Data scoping in tasks

• shared: same business, from a new perspective

– shared among all tasks (“horizontal”)
– shared among a task and a descendant (“vertical”)
– If a variable is shared on a task construct, the

references to it inside the construct are to the storage
with that name at the point where the task was
encountered

Data scoping in tasks

The behavior you want for tasks is usually firstprivate,
because tasks may not be executed until later (and variables
may have gone out of scope)

Variables that are private when the task construct is
encountered are firstprivate by default

Variables that are shared in all constructs starting from the
innermost enclosing parallel construct are shared by default

Use default(none) to help avoid races!!!

Task data scoping example

#pragma omp parallel shared(a) private(b)
{
 …
 #pragma omp task
 int c;
 process(a,b,c);
 }
}

Task data scoping example

Task data scoping example

44

Outline

● Introduction to OpenMP
● Some technicalities
● General characteristics of Taks
● Some examples

Load balancing of lists
#pragma omp parallel
{
 #pragma omp for private(p)
 for (i=0; i<num_lists; i++) {
 p = heads[i];
 while(p) {
 #pragma omp task
 process(p);
 p=p->next;
 }
 }
}
•Assign one list per thread could be unbalanced
•Multiple threads create tasks
•All the team cooperates executing them

Tree traversal with task

void preorder(node *p) {
 process(p->data);
 if (p->left)
 #pragma omp task
 preorder(p->left);
 if (p->right)
 #pragma omp task
 preorder(p->right);
}

•Tasks are composable
•It isn’t a worksharing construct
•But what about postorder traversal?

When/where explicit tasks complete?

• #pragma omp taskwait
– applies only to siblings, not to descendants
– task is suspendended until siblings complete

• #pragma omp taskgroup
 {

create_a_group_of_tasks(could_create_nested_task)
}
– at the end of the region current task is suspended until all child tasks generated in

the region and their descendants complete execution

• #pragma omp barrier
– applies to all tasks generated in the current parallel region up to the barrier
– matches user expectation
– obviously applies also to implicit barriers

When/where explicit tasks complete?

taskwait

taskgroup

thread switching
 #pragma omp single
 {
 #pragma omp task untied
 for (i=0; i<ONEZILLION; i++)
 #pragma omp task
 process(item[i]);
 }

•Eventually, too many tasks are generated
•Generating task is suspended and executing thread switches to a long
and boring task
•Other threads get rid of all already generated tasks, and start starving…
•With thread switching, the generating task can be resumed by a
different thread, and starvation is over
•Too unsafe to be the default, the programmer is responsible!

The if clause

● When the if clause argument is false
– the encountered task is executed immediately by the encountering

thread, and the enclosing task is suspended up to its end
– the data environment is still local to the new task
– and it’s still a different task with synchronization
– does not apply to descendants

● It’s a user directed optimization
– when the cost of the task is comparable to the runtime overhead
– to control cache and memory affinity

Conclusions on tasks

• Tasks allow to express a lot of irregular parallelism

• The tasking concept opens up opportunities to
parallelize a wider range of applications

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 34
	Pointer chasing using task
	Data scoping in explicit tasks
	Slide 38
	Slide 39
	Slide 40
	Task data scoping example
	Slide 42
	Slide 43
	Slide 44
	Load balancing on lists with tasks
	Tree traversal with task
	When/where explicit tasks complete?
	Slide 50
	Enter thread switching
	The if clause
	Conclusions on task

