
Experiences from the edge
of Exascale

Andrew Emerson

16/02/2017 Cineca Winter School 2017 1

Exascale Projects

• DEEP/DEEP-ER
‐ Focus on software+hardware technologies based on Intel MIC KNC/KNL

processors and other innovative technologies (e.g. NVM, NAM, etc)

• Mont Blanc/Mont Blanc 2
‐ Emphasis on energy saving technologies with ARM chips

• Oprecomp
‐ “Approximate” computing with trans-precision approaches.

16/02/2017 Cineca Winter School 2017 2

The DEEP project

16/02/2017 Cineca Winter School 2017 3

Project acronym: DEEP (Dynamical

Exascale Entry

Platform)

Contract no.: ICT-287530

Project type: IP/STREP

Start date: 1 December 2011

Duration: 45 months

End date: 31 August 2015

Total budget: 18 500 000 €

Funding from the

EC:
8 300 000 €

Dynamical Exascale Entry Platform

The DEEP project
• Objective of project to build a heterogeneous cluster as a

prototype for an Exascale computer based on many core chips
(Intel MIC), innovative cooling technologies and a carefully
designed runtime software stack.

• The main idea in DEEP is the Cluster-Booster concept where
the computer is divided into two parts:

1. The “Cluster” with conventional multi-core chips (e.g.
SandyBridge)

2. The “Booster” based on many-core chips, e.g. Intel KNC chips.

• The reasoning is that for most HPC applications, not all parts
of the code are highly parallel so while the most parallel
kernels will be run on the Booster, the more serial-like parts
can stay on the Cluster.

• Final peak performance ~500 Tflops.

• Also experimentation with a smaller Booster (32 nodes) using
immersive cooling technology.

16/02/2017 Cineca Winter School 2017 4

Booster
(384
KNCs)

Cluster
(128
SB)

Important engineering
effort by Eurotech and Intel.
Remember that “standard”
KNC chips are co-processors
and not self-bootable.

DEEP GreenICEBooster

Cluster-Booster architecture

Cineca Winter School 2017 5

Low/Medium scalable code parts Highly scalable code parts

128 Xeon (Sandy Bridge) 384 Xeon Phi (KNC)

The strategy is to design an architecture where applications can be divided
into highly scalable and low or medium scalable code portions.

16/02/2017

Programming environment

Cineca Winter School 2017 6

Cluster Booster

Booster
Interface

In
fin

ib
a
n

d

E
xto

llCluster Booster
Protocol

MPI_Comm_spawn

ParaStation MPI

OmpSs on top of MPI provides pragmas to ease the offload process

16/02/2017

Application running on DEEP

Cineca Winter School 2017 7
7

Source code

Compiler

Application
binaries

DEEP
Runtime

16/02/2017

OmpSs

Directive-based task programming model developed by the Barcelona
Supercomputing Centre (BSC).

Allows tasks to be executed asynchronously according to the data flow
of the program. Programmers indicate data dependencies of functions
(i.e. tasks) via OpenMP-like directives.

Programs are compiled with the Mercurium compiler (source-to-source
compiler) which generates tasks for the Nanos++ runtime.

In DEEP/-ER extended version of OmpSs with offload facility.

Similarities and some convergence with the latest OpenMP versions
(4.x) or Intel offloading directives but OmpSs is currently more flexible,
e.g. OmpSs offload allows MPI calls within offloaded kernels (unlike
Intel MPI).

Cineca Winter School 2017 816/02/2017

/* test.c */

#include <stdio.h>

int main(int argc, char *argv[])

{

int x = argc;

#pragma omp task inout(x)

{

x++;

}

#pragma omp task in(x)

{

printf("argc + 1 == %d\n", x);

}

#pragma omp taskwait

return 0;

}

$ mcc -o test --ompss test.c

Nanos++ prerun

Nanos++ phase

Application enabling for the DEEP
architecture

• DEEP+DEEP-ER applications:

‐ Brain simulation (EPFL)

‐ Space weather simulation (KULeuven)

‐ Climate simulation (CYI)

‐ Computational fluid engineering (CERFACS)

‐ High temperature superconductivity (CINECA)

‐ Seismic imaging (CGG)

‐ Human exposure to electromagnetic fields (INRIA)

‐ Geoscience (BADW-LRZ)

‐ Radio astronomy (Astron)

‐ Oil exploration (BSC)

‐ Lattice QCD (UREG)

Cineca Winter School 2017 9

Wide range of application codes covering many areas of science and engineering.

16/02/2017

TurboRVB -Quantum Monte Carlo code

• TurboRVB is a Quantum Monte Carlo code which can
be used to study quantum phenomena such as
ferromagnetism and superconductivity.

• The calculations are based on different “walkers”
that sample the space in an independent manner (#
walkers defined by user).

• At user defined intervals walkers communicate to
exchange relative weights.

• Every N steps, the values of the energy computed by
each walker are reduced and written to a file.

• Written and developed by S. Sorella and others at
SISSA (Trieste)

Cineca Winter School 2017 1016/02/2017

TurboRVB characteristics
• “Fortran90”, pure MPI code. Typical

scientific academic code, few modern
software design principles (many global
variables).

• Execution time dominated by linear
algebra routines (e.g MKL) performed by
each walker (typically 90%).

• Highly parallel due to weak coupling
between walkers. Normally 1 MPI task =1
walker, but walkers can share MPI tasks
(strong scaling). Weak scaling if no. of.
MPI tasks = no. of. walkers.

• Low memory, low I/O for normal system
sizes.

Cineca Winter School 2017 1116/02/2017

Pseudo code:

CALL initialization

DO imain = 1, number_of_mc_steps
DO j = 1,number_of_walkers

CALL move_walkers_and_compute_sth
ENDDO
CALL mix_walkers_weights
IF(write_flag)THEN

CALL write_on_file
ENDIF

ENDDO
CALL finalization

Initialize variables; calculate and write lattice positions;
Print to stdout simulation’s info

Computationally intensive;
Massive use of dgemm.

Mixing of the walkers’ weights. Based
on p2p communications

Dumping some information to
file

Dumping final information to
file

Program structure – pseudo code

Cineca Winter School 2017 1216/02/2017

Application behaviour

Cineca Winter School 2017 13

Strong scaling on Fermi (BG/Q) for 200
electrons.
No. of walkers=8192.
IBM XL Fortran + ESSL (2 OpenMP/MPI task)

16/02/2017

0

10

20

30

40

50

60

24 48 96 192 384 768

Se
co

n
d

s

Number of cores

Performance on JUDGE

Weak Scaling on Judge (Juelich). 1 MPI task=1
MC walker.

Weak Application behaviour on Xeon Phi
• The application does not scale well over

multiple Xeon Phi nodes.

• Analysis with a profiler/trace tool (e.g. Extrae,
Tau, Scalasca etc) can indicate problems with
the communication pattern.

16/02/2017 Cineca Winter School 2017 14

1

2

4

8

16

32

64

1 2 4 8 16 32

R
u

n
 t

im
e

 (s
e

co
n

d
s)

Number of processors

Xeon Xeon Phi

Figure 27: Weak scaling of TurboRVB. Xeon® setups used 8 MPI

processes, 2 OpenMP® threads and 64 walkers per processor, whereas

Xeon Phi™ used 60 MPI processes, 4 OpenMP® threads and 60 walkers

per coprocessor (CINECA)

a

b

c

d

e

f

MPI collectives with 120 processes
and 4 OpenMP®thread

MPI collectives with 120 processes
and 1 OpenMP®thread

unbalanced collectives

Porting of TurboRVB to the DEEP
architecture - 1

Optimisation on Xeon Phi.
‐ Vectorisation.

 Few loops have been identified which would benefit from enhanced
vectorisation.

‐ OpenMP support.
 Since MPI performance within MIC was expected to be poor this

should bring benefits but the program style made this difficult and
the effort was abandoned for DEEP (but continued for DEEP-ER).

‐ Reduce I/O.
 Not really a great worry for QMC, although task-level restart files

are inconvenient. Parallel I/O strategies (e.g. SIONLIB) being
pursued instead in DEEP-ER.

Cineca Winter School 2017 15

But in any case for many problems up to 90% of time may be spent in the linear
algebra libraries so gains may be limited.

16/02/2017

Porting of TurboRVB to the DEEP
architecture - 2

Focus in DEEP on restructuring code to allow offload via OmPss
from the MPI-only version.

Cineca Winter School 2017 16

Master

worker

worker worker

workerwalkers are
spawned on
booster nodes via
ompss tasks

• The single MASTER node reads the input and
starts the program by offloading the workers on
the booster nodes.
• Each worker is really one MPI task, but is
wrapped by OmpSS.

16/02/2017

Porting of TurboRVB to the DEEP
architecture - 3

Cineca Winter School 2017 17

CALL READ_INPUT

CALL DEEP_BOOSTER_ALLOC (MPI_COMM_SELF, nhosts, nboosters, comm_boosters)

!$OMP TASK in(itest,iopt,ngen,nw,nscra,iseedr,nelup,neldo,&

!$OMP nx,ny,nxp,nyp,pbcx,pbcy,tabflag,krepm,ncheck,errmax,release,&

!$OMPavlast,power,trotter,ltab,U,lambda,gammat,gshift,mu,muwf,tprime,tprimewf,&

!$OMPcuteloc,ifstop,delta,deltaf,gutz,dtg,rmshort,swave,mesbcs,yesrew,epsreg,epsmach, &

....

!$OMPncore,iread,iskip,evalopar,yestwo,tpar,iboot,nweight,epsi,epsdgel,ieser,tbra,etria

l,&

!$OMPktrial,btrial,nbra,nbrag,nbrat,typereg,recbra,fngutz,epscut,epscutg,cutrelease)

ONTO(BOOSTERS,I)

call offloadcode

!$OMP end task

ENDDO

!$OMP taskwait

CALL DEEP_BOOSTER_FREE(comm_boosters)

CALL nanos_mpi_finalizef()

• Porting was not trivial since not only does the code need re-arranging but OmPss
requires that allocatablearrays are allocated before being offloaded (in the
original code the allocations were spread out through the program).
• But the process with OmpSS still easier than with OpenMP/MPI or Intel directives.

16/02/2017

Wraps
MPI_Spawn

Offload TurboRVB results on DEEP
• The DEEP Cluster/Booster was not available before

the end of the project so the applications were
tested instead on the MIC partition on Mare
Nostrum.

• OmPss offload compared well with Native mode in
one node – but no so well over multiple nodes.

• Analysis revealed bottlenecks in the branching
routines (collectives + point-to-point).

• Without the DEEP cluster/booster difficult to draw
conclusions other than the approach appears
feasible.

16/02/2017 Cineca Winter School 2017 18

0

200

400

600

800

1000

1200

1400

0 20 40 60 80

w
a

llt
im

e
/s

cores

offload 5x5

offload 10x10

"native 5x5"

native 10x10

0

100

200

300

400

500

600

700

800

0 50 100 150

w
al

lt
im

e
/s

#cores

Offload - Native comparison over 2,4 Xeon

Phis

2 MICS

native

4 MICS

0

100

200

300

1 2

R
un

 t
im

e
(s

ec
on

ds
)

of nodes

Performance of the branching phase in Xeon
processors

Offload Regular

DEEP Summary

• Engineering delays unfortunately meant that the machine was not ready before the end
of the project (one application did run shortly after the project finished).

• The TurboRVB application probably wouldn’t have ported too well on he DEEP cluster
given the poor performance over multiple KNC nodes. But much was learnt about the
application and the communication patterns affecting performance. An OpenMP version
might have been useful but would have required too much effort.

• The OmpSs offload mechanism was successful although inefficient on KNC.

• Other applications benefited significantly from the efforts in optimisation and
vectorisation and some probably would have exploited well the Cluster/Booster design.

• Currently, the machine is up and (sometimes) running at the Juelich Supercomputer
Centre.

16/02/2017 Cineca Winter School 2017 19

DEEP-ER (DEEP – Extended Reach)

Similar goals to DEEP: construction and testing of a
Booster-Cluster architecture (this time based on
KNL), but more emphasis on experimenting with
hardware and software technologies.

Strong promotion for the idea of Co-Design, i.e.
design hardware, middleware and software
applications together to improve integration.

16/02/2017 Cineca Winter School 2017 20

DEEP-ER Cluster and Applications

16/02/2017 Cineca Winter School 2017 21

7 Applications

• Human Exposure to Electromagnetic Fields (Inria)
• Radio Astronomy(Astron)
• Earthquake Source Dynamics (LRZ)
• Enhancing Oil Exploration (BSC)
• Lattice QCD (UREG)
• Space Weather (KU Leuwen)
• High Temperaure Superconductivity (Quantum

Monte Carlo, Cineca)

DEEP-ER technologies

• Cluster-Booster based on KNLs and EXTOLL
network.

• Non-Volatile Memory(NVM) and Network
Attached Memories (NAM)

• BeeGFS filesystem and SIONlib + Exascale 10
libraries for fast parallel I/O.

• Task based resiliency with OmpPs and SCR
(scalable checkpoint and restart)

• Parastation MPI

• Application tools such as JUBE (benchmarking),
Extrae/Paraver (profiling and traces)

16/02/2017 Cineca Winter School 2017 22

To allow hardware, software
and application developers to
do the co-design effectively a
small prototype (Software
Development Vehicle or SDV)
was made available early on in
the project.

Xeon part (or SDV-Cluster)
16 dual-socket Intel® Xeon® E5-2680 nodes
16 NVMe cards Intel DC P3400, 400 GB each (one in each
server)

Xeon Phipart (or SDV-Booster)
8 Intel® Xeon Phi (KNL) nodes
2 NVMe cards Intel DC P3400 (integrated in two of the KNL
boards)
Storage

2 storage servers (spinning disks, 57 TB) and
1 metadata server (SSDs)

Additionally, the SDV has also one NAM (network attached
memory) board integrated.

http://www.deep-er.eu/press-corner/glossary/13-knl.html
http://www.deep-er.eu/press-corner/glossary/15-nam.html

Cineca Applications for DEEP-ER

TURBORVB
‐ As for DEEP but concentrate on technologies for I/O and resilience (SIONLIB,

SCR)

2degas (“the mock-up”)
‐ Because of poor performance on Xeon Phi Cineca was asked to try an

alternative QMC code.

‐ Chose 2degas, a similar application to TURBORVB but with a simpler
communication pattern

16/02/2017 Cineca Winter School 2017 23

2degas Mock-up

2Degas is a QMC for the simulation of a two-dimensional electron gas based on a Jastrow-Slater
basis function.

Developed in the Physics dept. of University of Rome “La Sapienza” by Moroni and coworkers.

Written in plain Fortran77+MPI. Very scalable (minimal MPI communications), but only weak-scaling
(unlike Turbo). Each MC walker is represented by 1 MPI process.

Advantages

Smaller and easier code.

The internal kernel is lightweight and the communication pattern is simpler.

Disadvantages

Quite an “old” code(12 yrs), certainly requires some modernisation.

No OpenMP version

16/02/2017 Cineca Winter School 2017 24

2degas program structure for standard input

16/02/2017 Cineca Winter School 2017 25

Read control input and coords

Outer theta loop

Inner theta loop

End block loop

End Inner theta loop

Start block loop

End Outer theta loop

End Program

MC cycle loop
Reduce and calc averages
Store coord data for next block
Write restart files

“twist” angle of spins

Blocks for calculating
statistical averages

MC loop main number
crunching part.
Average calculation
requires collectives
(e.g. MPI_Reduce)

Performance of mock-up on various
architectures

Cineca Winter School 2017 26

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70

%
Ef

fi
ci

e
n

cy

nodes

Parallel Efficiency 2degas Fermi (BG/Q)

0

20

40

60

80

100

120

0 5 10 15 20 25

%
Ef

fi
ci

e
n

cy

nodes

Parallel Efficiency 2degas Galileo

(Broadwell)

0

20

40

60

80

100

120

0 20 40 60 80

%
 E

ff
ic

ie
n

cy

#cores

Parallel efficiency Native mode
Intel Xeon Phi (Galileo)

Very high parallel efficiency,
even with MPI on KNC.

16/02/2017

Porting of mock-up to SDV

Original intention to port directly the F77 version onto the SDV and

modernise the code later.

Decided to bring forward the modernisation activity to a partial F90 version:

‐ F77 version did not compile on MICs due to unaligned COMMON blocks. Rather than

re-align COMMONs, decided to replace with F90 modules.

‐ Some hard limits in the number of walkers were best resolved with F90 constructs.

‐ Original version used inbuilt LAPACK and LINPACK routines for matrix determinants.

Replaced with LAPACK calls for compatibility with MKL.

Little performance difference, but code now easier to modify.

Cineca Winter School 2017 2716/02/2017

Performance of MPI mock-up on SDV

Cineca Winter School 2017 28

Poor parallel scaling of
mockup on SDV was
attributed to the /sdv-work
filesystem on the SDV.
Changing directories to the
/NVME/tmp alternative
filesystem (requiring code
changes for task-local
directories)
removed the performance
problem.

0

20

40

60

80

100

120

0 5 10 15 20

%
 E

ff
ic

ie
n

cy

#nodes

Parallel Efficiency on DEEP and SDV

DEEP SDV (/sdv-work) SDV (/NVME/tmp)

16/02/2017

OpenMP Port of 2degas

• One reason for adopting the 2degas
mock-up was to investigate QMC on
MIC with OpenMP, something deemed
to difficult with TurboRVB (complex
communication pattern).

• Initial Vtune analysis of MPI version on
Haswell looked promising…

16/02/2017 Cineca Winter School 2017 29

..but this is misleading
because this is an average
over 800,000 MC cycles

Initialising a
large array

OpenMP port of 2degas

• A hybrid approach of threading each MPI task (i.e.
each MC walker) with OpenMP was abandoned:

‐ Most loops are a function of the number of electrons
(in our case 26 in total), so are quite short and often
very nested.

‐ The sequential nature of the MC algorithm does not
easily allow OpenMP tasks within each walker.

• Opted instead to convert pure MPI version to pure
OpenMP version. Not expected to gain much in the
short term, even on MIC, because of low MPI
communications but (maybe) useful for MIC
implementations.

16/02/2017 Cineca Winter School 2017 30

ITAC Analysis

Re-factoring of 2degas code

• For OpenMP conversion

decided to do major

refactoring of the code,

involving subroutines used in

the benchmark input,

converting everything to f90.

• Used Photran re-factoring

tools + custom scripts to

perform the conversion.

16/02/2017 Cineca Winter School 2017 31

reptation.f (10K lines) →
reptation.f90 (5859 lines)

OpenMP mock-up v1.0

• Final seg fault resolved
mid- August (thanks to
Totalview)

• Initial tests on Galileo
(Haswell) node
disappointing when
compared to MPI version.

16/02/2017 Cineca Winter School 2017 32

200

250

300

350

400

450

500

0 5 10 15 20

w
al

lt
im

e
/s

#cores

OpenMP on Haswell

v1.0

MPI

OpenMP v1.0 – Vtune Analysis

16/02/2017 Cineca Winter School 2017 33

• Vtune confirmed poor
performance and scaling due to
omp critical.

• In particular in the routine which
uses scratch files to store
coordinates between Monte
Carlo trial moves

OpenMP v2.0

• Scratch files
“removed” to
memory.

• Better performance
and scaling on
Haswell, but
performance and
scaling still poor on
KNC.

16/02/2017 Cineca Winter School 2017 34

200

250

300

350

400

450

500

0 5 10 15 20

w
al

lt
im

e/
s

#cores

OpenMP on Haswell

v1.0 v2.0 MPI

0

500

1000

1500

0 20 40 60 80

W
al

lt
im

e
/s

cores

KNC MIC (Galileo)

mpi omp

OMP v2.0 on KNL

• Same story on SDV/KNL.

• Vtune analysis again points the finger at an
OMP critical region.

• But this time in the routine which writes
restart files

16/02/2017 Cineca Winter School 2017 35

0

50

100

150

200

250

300

350

400

450

0 10 20 30 40 50 60 70

w
a

ll
ti

m
e/

s

#cores

OMP KNL (SDV)

OMP KNL MPI KNL

10 blocks, 500 MC
cycles/block

OMP v2.0 on KNC

16/02/2017 Cineca Winter School 2017 36

0

200

400

600

800

1000

1200

1400

1600

0 10 20 30 40 50 60 70

W
a

ll
ti

m
e/

s

cores

KNC MIC (Galileo)

mpi omp OMP (1 block)

• In FORTRAN, need to use
unit numbers which are
distinct for each thread.

• If this is done can remove
the $OMP critical.

• Scaling much better,
although performance still
less than MPI.

OMP v2.0 on KNL

• Same story on KNL, but if we push up
the number of threads, OpenMP
starts to beats MPI (single node)

16/02/2017 Cineca Winter School 2017 37

0

500

1000

1500

2000

0 50 100 150 200 250 300

w
al

lt
im

e
/s

threads or tasks

OMP v2.0 - MPI on KNL

OMP MPI

0

50

100

150

200

250

300

350

400

0 20 40 60 80

w
al

lt
im

e
/s

threads or tasks

OMP v2.0 - MPI on KNL (10-60
threads)

OMP MPI

KNL optimisations

16/02/2017 Cineca Winter School 2017 38

0

50

100

150

200

250

300

350

400

0 20 40 60 80

w
al

lt
im

e/
s

#threads

Effect of KNL/HBM on OMP version

no HBM HBM

• Because of short loops, little scope for
vectorisation.

• Using the MCDRAM (High Bandwidth
memory)

• HBM used with numactl but could
consider memkind library.

• Small influence of HBM, not suprising
given low memory footprint of this
input.

• Other applications have reported greater
speed-ups (e.g. 2x).

numactl --membind 1 ./rept.x

OpenMP conversion summary

• OpenMP threading of original MPI Walkers not viable due to small loops and

lack of tasking possibilities (sequential algorithm).

• Decided instead to convert MPI tasks into OpenMP threads. No great speedup

expected with current input on MIC because MPI communications low.

• Initial performance results disappointing due to two omp critical regions. One can

be removed by using memory instead of scratch files. The second removed but

localising FORTRAN input unit numbers.

• Performance and scaling broadly similar to MPI version upto 60 threads/tasks at

which point OpenMP becomes much better.

16/02/2017 Cineca Winter School 2017 39

Beyond OpenMP

• . Would need to re-introduce MPI in order to re-enable internode
communications (e.g. MPI_Bcast at the beginning and MPI_Reduce during
the run).

• Alternatively, use the NAM which acts as a fast, shared memory for all the
nodes in the SDV. At the moment, only low-level API available and a
planned MPI_Reduce wrapper for the NAM will not be ready in time.

• Unfortunately, OmpSs cannot be used because $OMP threadprivate
variables not supported

16/02/2017 Cineca Winter School 2017 40

Resilience technologies and TURBORVB -
SIONLib

• Library developed by Juelich Supercomputing Centre and and others to
enable the reading and writing of binary data to/from many task-local files
to one or a small number of files.

• Very useful if you have MPI programs where each rank writes/reads its own
file (task local). Avoids having thousands of restart files.

• For parallel access, opening and closing files are collective calls but
reads/writes can be asynchronous. Also possible to use a serial interface.

• Simple API which mimics usual C or FORTRAN I/O commands: fopen ->

sion_open, fwrite -> sion_fwrite, etc.

16/02/2017 Cineca Winter School 2017 41

SIONLIB API overview
• API resembles logical task-local files

‐ Simple integration into application code

• Internal mapping to single or few large files
‐ Reduces load of meta data server

…

Application

Tasks

Logical

task-local

files

Parallel file system

Physical

multi-file

t1 t2 t3 tn-2 tn-1 tn

SIONlib

Serial
program

16/02/2017 Cineca Winter School 2017 42

SIONlib API overview: code example
• For basic cases direct translation of serial task-local calls to calls using MPI

• Interfaces for MPI, OpenMP, hybrid (MPI + OpenMP) and generic
communication

‐ Individual communication call backs can be used

C

/* fopen()  */
sid=sion_paropen_mpi(filename , “bw“,

&numfiles, &chunksize,

gcom, &lcom, ...);

/* fwrite(bindata,1,nbytes, fileptr)  */
sion_fwrite(bindata, 1, nbytes, sid);

/* fclose()  */
sion_parclose_mpi(sid)

chunksize – defines the block range in the file over
which each task reads or writes. Used to ensure
contention-free access. Normally set as the largest
variable in a read/write.

16/02/2017 Cineca Winter School 2017 43

SIONLib and TurboRVB

Original version of the code does
not checkpoint – task-local
restart files only written at the
end of program.

First task – modify program to
allow restarts (either task-local or
Sionlib) to be dumped at user-
selected intervals.

Then replace Fortran calls with
SIONlib equivalents.

16/02/2017 Cineca Winter School 2017 44

/
&checkpoint

idumpfreq=10

checkp_enabled=.true.

siondump=.false.

/

call fsion_paropen_mpi(trim(checkpfilebase),

mode, nfiles, comm, lComm,chunksize, fsblksize,

rank, newfname, sid)

isize=kind(irece)

nelem=1

call fsion_write(irece,isize,nelem,sid,ierr)

call fsion_parclose_mpi(sid,ierr)

SIONlib and TURBORVB

• SIONlib utility provides compile and load
flags for the make.

• Program is run as usual but env variables
can control execution and provide debug
info

‐ SION_COLLSIZE

• No. of collectors, i.e. no. of tasks involved in
collecting data and writing the file (cf. MPI-IO).

‐ SION_DEBUG

• Debug information

• Other utilities also available

‐ sionsplit, sioncat, siondump, siondefrag.

16/02/2017 Cineca Winter School 2017 45

SIONCONFIG=/usr/local/bin/sionconfig

SION_FLAGS=$(shell $(SIONCONFIG) --mpi --cflags --f77 --32)

SION_CFLAGS=$(shell $(SIONCONFIG) --mpi --cflags --gcc --32)

SION_LIBS=$(shell $(SIONCONFIG) --mpi --libs --f77 --32)

0

50

100

150

200

250

300

350

-1 64 128 256 512 768

ch
e

ck
p

o
in

t
ti

m
e

 [s
]

SION_COLLSIZE

Checkpoint time at 512 nodes for

different SION_COLLSIZE BG/Q

SIONlib and TURBORVB

• Turbo with Sionlib when tested on various
clusters showed no particular performance
speed-up when writing checkpoints, but since
Turbo is not I/O intensive did not expect this.

• Main advantage for Turbo is to minimise the
number of restart files needed, although
some partners did report significant speed-
ups.

16/02/2017 Cineca Winter School 2017 46

0

200

400

600

800

1.000

1.200

1.400

10 20 30 40 50 60 80 100

w
al

lt
im

e
 [s

]

of tasks

Rank local and SIONlib comparison for 400 and

800 electrons in native mode on Galileo Xeon
Phi

SIONlib (400) rank-local (400)

SIONlib (800) rank-local (800)

0

200

400

600

800

1.000

1.200

1.400

64 128 256 512 1.024

To
ta

l w
al

lt
im

e
 [s

]

of nodes

Rank-local SIONlib comparison (walltime) on

Fermi

rank-local collsize=-1 collsize=0

Time taken to do time ls in a results
directory for n=32768

Sionlib Rank local

Real 0m0.003s 0m33.794s

User 0m0.001s 0m0.896s

Sys 0m0.002s 0m1.506s

SIONLib restarts

SIONLib on the other hand greatly
reduces the time needed to perform
restarts

16/02/2017 Cineca Winter School 2017 47

restart time/s

nodes Sionlib
Rank-
local

1 0.43 18.01

2 0.47 144.53

3 1.97 299.29

4 1.35 508.78

5 2.42 501.32

Direct

SSD

GPFS

SSD

GPFS

SIONlib 0.07 3.18 1.60

Rank local 1.11 551.00 515.00

Using SSD disks (PICO) can lead to further
improvements in start up times.
Note that I/O results vary quite considerably
so more correct to do many runs and estimate
an average value.

Scalable Checkpoint and Restart (SCR)
In DEEP-ER based on the library developed at the
Lawrence Livermore National Library (LLNR).

Based on observations that often only 1 node
fails and that task-based checkpointing for
example does not scale on global filesystems such
as GPFS.

By inserting commands in the source on what is
to be checkpointed, SCR can store checkpoints on
local disks which can be automatically and
transparently migrated to the GPFS (or other
filesystem).

16/02/2017 Cineca Winter School 2017 48

SCR_USER_NAME=deep70

SCR_JOB_NAME=cp

SCR_FLUSH=10 #SCR flush node-local dir to global fs every X

checkpoints

SCR_FETCH=1 # enable or disable fetching from global file system

during restart.

SCR_CACHE_SIZE=2

STORE=/tmp

STORE=/mnt/beeond COUNT=10 TYPE=BEEGFS

CKPT=1 STORE=/mnt/beeond INTERVAL=1 TYPE=SINGLE

SIONlib and SCR

SCR_Start_checkpt()

SCR_Complete_checkpt()

sid=sion_paropen_mpi(fn_scr, “wb,buddy“ ...)

SCR_Route_file(fn, &fn_scr)

fn =“check1”

fn_scr=“/abspath/check1”

(node0) “/abspath/check1”

(node1) “/abspath/check1.00001”
…

(node0) “/abspath/check1_buddy”

(node1) “/abspath/check1_buddy.00001”
…

sion_parclose_mpi(sid)

info=sion_get_io_info(sid)
- List of filename opened on this task
- Bytes written

SCR_update_filename(info)
SCR also integrates with SIONlib, but
currently the API has only been
updated in C.

16/02/2017 Cineca Winter School 2017 49

Non-volatile Memory (NVM)

Memory than can retain information even after being
powered-off.

Typical examples include Flash memory or standard hard
disks (“spinning disks”) but usually these technologies are
not suitable for replacing DDR RAM due to performance
(disks) or low write endurance (Flash).

Now available NVM devices to replace disks in HPC clusters.

In DEEP-ER many SDV nodes have been equipped with
NVM disks and NVMe for local storage. Can be combined
with SCR. Aim is to connect to Booster nodes.

TurboRVB is not I/O intensive so only modest speedups
obtained but other partners reported performance
improvements.

16/02/2017 Cineca Winter School 2017 50

node node node node node

2 x CPUs
Intel Xeon E5-2680v3, 12-
Core (Haswell)

RAM
128 GB (DDR4 , PC2133
ECC)

1 x SSD
400 GB NVMe Intel DC
P3700

2 x HDD 1.0 TB S-ATA 6 Gb/s

Network Attached Memory (NAM)

Recent technology which allows memory to be
directly attached to the network (as opposed to
a node with a processor).

The idea is to reduce the HPC bottleneck of
moving data around the system to be
processed by processing data as it passes
through the network → near data computing.

In the DEEP-ER project the NAM is based on
PCIe with FPGA and a hybrid memory cube
(4Gb in total).

16/02/2017 Cineca Winter School 2017 51

node

node

node

node

node

node

node

node

node

node

NAM usage
As well as being memory, the NAM can perform
limited operations.

For DEEP-ER the NAM is predicted to have two
main uses:

1. Checkpoints and Restarts. The NAM can be used
to store (incremental) system and checkpoints for
restarting in case of processor fails.

2. For MPI Global operations such as SUM, MIN,
MAX etc. (e.g. MPI_Reduce). The NAM thus acts
as a sort of global, shared memory on which
simple operations can be applied.

The complication is that the current API in DEEP-ER
is based on low-level network (i.e. EXTOLL) GET and
PUT requests. To simplify the life of C/FORTRAN
programmers a library (libnam) is being developed.

16/02/2017 Cineca Winter School 2017 52

double op[] = {1.0, 2.0, 3.0, 4.0, 5.0};

double result;

nam_allocation_t *my_alloc;

my_alloc = nam_malloc(sizeof(double) * 6);

nam_put

(op, 0, sizeof(double) * 5, my_alloc);

nam_reduce_op

(0, 5, 5, &result, DOUBLE , SUM, NULL,

NAM_RETURN, my_alloc);

nam_free(my_alloc);

JUBE - Juelich Benchmark Environment

A Python/XML based system for systematically performing benchmarks developed by JSC.

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/JUBE/_node.html

The philosophy is that the platform-dependent configuration files (e.g. hardware details
such as nodes/core or batch system) are separated from application and benchmark run
parameters.

In this was easy to benchmark the same application on a different platform, or a different
application on the same platform.

As well as running the benchmark runs also allows the application performance data to be
analysed, collected and displayed.

16/02/2017 Cineca Winter School 2017 53

JUBE - benchmarking

Particularly convenient the facility to
automatically loop over any benchmark
parameter (e.g. node, threads, etc) thus
avoiding complicated loops in shell scripts.

Also useful the ability to define new variables
and more complicated (python-based)
scripted manipulations.

The main difficulty lies in the initial
customization of the application and platform
files.

16/02/2017 Cineca Winter School 2017 54

this will run
benchmarks for
1,2,4,6,8, and 10
nodes.

DEEP/DEEP-ER Summary

• Many of technologies used and developed in the project are freely
available:

‐ OmPSs

‐ SIONlib

‐ SCR

‐ JUBE etc.

• The DEEP-ER Cluster/Booster itself is expected to be available via
PRACE in late 2017.

16/02/2017 Cineca Winter School 2017 55

Mont Blanc - 1,2 and 3

16/02/2017 Cineca Winter School 2017 56

Exascale project with the aim of
building Energy efficient Exascale
systems, for example using processors
normally used in mobile systems such
as ARM .

Extensive use of OmPSs as the
programming model.

Mont-Blanc projects in a glance

57

Vision: to leverage the fast growing market of mobile technology

for scientific computation, HPC and non-HPC workload.

Mont-Blanc

2012 2013 2014 20162015

Mont-Blanc 3

Mont-Blanc 2

58

QuantumESPRESSO

Weak & Strong scalability on MB prototype – OmpSs(SMP)

 <60% efficiency above ca. 512 cores
 With the new ETH driver:

 Higher limit in scalability
 2-2.5x better perfomance

59

QuantumESPRESSO

Power consumption on MB prototype – OmpSs(SMP)

 Reproducible power
consumption
mesurement up to
512 SDBs

 5.5 kJ @ 256 SDBs
 E2S decrease as

#core increase

Oprecomp – OPen TransPrecision
COMPuting

Again main emphasis to reduce the energy required in order to do
computing.

But here among some of the key ideas will be the use of transprecision
computing, in other words using appropriate floating point accuracy
(not only double precision!).

Algorithms and (micro)benchmarks will be tested on two different
classes of hardware:

mW – PULP processors

MW – IBM Power

16/02/2017 Cineca Winter School 2017 60

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 732631.

Oprecomp – hardware + software

16/02/2017 Cineca Winter School 2017 61

PULP – Parallel Ultra Low
Power Processor.
32 bit chip RISC-V core
developed at ETH Zurich
and Universita’ di Bologna.

Normally used in embedded
systems: sensors, low-
resolution cameras,
accelerometers etc.

Summary

Many Exascale projects are concentrating on reducing the power required to perform HPC,
combining innovative hardware and software approaches.

The important feature relies on co-design, develop hardware, middleware and application
software together.

For application developers good software design is important: in the DEEP/ER projects
much time was lost re-factoring code.

Communication is important, particularly between hardware and software engineers.

16/02/2017 Cineca Winter School 2017 62

