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Exascale Projects

• DEEP/DEEP-ER 
‐ Focus on software+hardware technologies based on Intel MIC KNC/KNL 

processors and other innovative technologies (e.g. NVM, NAM, etc)

• Mont Blanc/Mont Blanc 2
‐ Emphasis on energy saving technologies with ARM chips

• Oprecomp
‐ “Approximate” computing with trans-precision approaches.
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The DEEP project

16/02/2017 Cineca Winter School 2017 3

Project acronym: DEEP (Dynamical 
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The DEEP project
• Objective of project to build a heterogeneous cluster as a 

prototype for an Exascale computer based on many core chips 
(Intel MIC), innovative cooling technologies and a carefully 
designed runtime software stack.

• The main idea in DEEP is the Cluster-Booster concept where 
the computer is divided into two parts:

1. The “Cluster” with conventional multi-core chips (e.g. 
SandyBridge)

2. The “Booster” based on many-core chips, e.g. Intel KNC chips.

• The reasoning is that for most HPC applications, not all parts 
of the code are highly parallel so while the most parallel 
kernels will be run on the Booster, the more serial-like parts 
can stay on the Cluster. 

• Final peak performance ~500 Tflops.

• Also experimentation with a smaller Booster (32 nodes) using 
immersive cooling technology.
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Booster 
(384 
KNCs)

Cluster 
(128 
SB)

Important engineering 
effort by Eurotech and Intel. 
Remember that “standard” 
KNC chips are co-processors 
and not self-bootable. 

DEEP GreenICEBooster 



Cluster-Booster architecture
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Low/Medium scalable code parts Highly scalable code parts

128 Xeon (Sandy Bridge) 384 Xeon Phi (KNC)

The strategy is to design an architecture where applications can be divided 
into highly scalable and low or medium scalable code portions. 
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Programming environment
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OmpSs on top of MPI provides pragmas to ease the offload process
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Application running on DEEP
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Source code
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Application 
binaries

DEEP 
Runtime
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OmpSs

Directive-based task programming model developed by the Barcelona 
Supercomputing Centre (BSC).

Allows tasks to be executed asynchronously according to the  data flow
of the program. Programmers indicate data dependencies of functions 
(i.e. tasks) via OpenMP-like directives.

Programs are compiled with the Mercurium compiler (source-to-source 
compiler) which generates tasks for the Nanos++ runtime.

In DEEP/-ER extended version of OmpSs with offload facility.

Similarities and some convergence with the latest OpenMP versions 
(4.x) or Intel offloading directives but OmpSs is currently more flexible, 
e.g. OmpSs offload allows MPI calls within offloaded kernels (unlike 
Intel MPI).
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/* test.c */

#include <stdio.h>

int main(int argc, char *argv[])

{

int x = argc; 

#pragma omp task inout(x)

{ 

x++;

} 

#pragma omp task in(x)

{ 

printf("argc + 1 == %d\n", x); 

} 

#pragma omp taskwait

return 0;

}

$ mcc -o test --ompss test.c

Nanos++ prerun

Nanos++ phase



Application enabling for the DEEP 
architecture

• DEEP+DEEP-ER applications:

‐ Brain simulation (EPFL)

‐ Space weather simulation (KULeuven)

‐ Climate simulation (CYI)

‐ Computational fluid engineering (CERFACS)

‐ High temperature superconductivity (CINECA)

‐ Seismic imaging (CGG)

‐ Human exposure to electromagnetic fields (INRIA)

‐ Geoscience (BADW-LRZ)

‐ Radio astronomy (Astron) 

‐ Oil exploration (BSC)

‐ Lattice QCD (UREG)
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Wide range of application codes covering many areas of science and engineering.
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TurboRVB -Quantum Monte Carlo code

• TurboRVB is a Quantum Monte Carlo code which can 
be used to study quantum phenomena such as 
ferromagnetism and superconductivity.

• The calculations  are based on different “walkers” 
that sample the space in an independent manner (# 
walkers defined by user).

• At user defined intervals walkers communicate to 
exchange relative weights.

• Every N steps, the values of the energy computed by 
each walker are reduced  and written to a file.

• Written and developed by S. Sorella and others at 
SISSA (Trieste)
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TurboRVB characteristics
• “Fortran90”, pure MPI code. Typical 

scientific academic code, few modern 
software design principles (many global 
variables). 

• Execution time dominated by linear 
algebra routines (e.g MKL) performed by 
each walker (typically 90%).

• Highly parallel due to weak coupling 
between walkers. Normally 1 MPI task =1 
walker, but walkers can share MPI tasks 
(strong scaling). Weak scaling if no. of. 
MPI tasks = no. of. walkers.

• Low memory, low I/O for normal system 
sizes.
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Pseudo code:

CALL initialization

DO imain = 1, number_of_mc_steps
DO j = 1,number_of_walkers

CALL move_walkers_and_compute_sth
ENDDO
CALL mix_walkers_weights
IF(write_flag)THEN

CALL write_on_file
ENDIF

ENDDO
CALL finalization

Initialize variables; calculate and write lattice positions;
Print to stdout simulation’s info

Computationally intensive;
Massive use of dgemm.

Mixing of the walkers’ weights. Based
on p2p communications

Dumping some information to
file

Dumping final information to
file

Program structure – pseudo code
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Application behaviour
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Strong scaling on Fermi (BG/Q) for 200 
electrons.
No. of walkers=8192. 
IBM XL Fortran + ESSL (2 OpenMP/MPI task)
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Weak Application behaviour on Xeon Phi
• The application does not scale well over 

multiple Xeon Phi nodes.

• Analysis with a profiler/trace tool (e.g. Extrae, 
Tau, Scalasca etc) can indicate problems with 
the communication pattern.
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Porting of TurboRVB to the DEEP 
architecture - 1

Optimisation on Xeon Phi.
‐ Vectorisation. 

 Few loops have been identified which would benefit from enhanced 
vectorisation.

‐ OpenMP support.
 Since MPI performance within MIC was expected to be poor this 

should bring benefits but the program style made this difficult and 
the effort was abandoned for DEEP (but continued for DEEP-ER).

‐ Reduce I/O.
 Not really a great worry for QMC, although task-level  restart files 

are inconvenient.  Parallel I/O strategies (e.g. SIONLIB) being 
pursued instead in DEEP-ER.

Cineca Winter School 2017 15

But in any case for many problems up to 90% of time may be spent in the linear 
algebra libraries so gains may be limited. 
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Porting of TurboRVB to the DEEP 
architecture - 2

Focus in DEEP on restructuring code to allow offload via OmPss
from the MPI-only version.

Cineca Winter School 2017 16

Master

worker

worker worker

workerwalkers are 
spawned on 
booster nodes via 
ompss tasks

• The  single MASTER node reads the input and  
starts the program by offloading the workers on 
the booster nodes.
• Each  worker is really one MPI task, but is 
wrapped by OmpSS. 
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Porting of TurboRVB to the DEEP 
architecture - 3
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CALL READ_INPUT

CALL DEEP_BOOSTER_ALLOC (MPI_COMM_SELF, nhosts, nboosters, comm_boosters)

!$OMP TASK in(itest,iopt,ngen,nw,nscra,iseedr,nelup,neldo,&

!$OMP nx,ny,nxp,nyp,pbcx,pbcy,tabflag,krepm,ncheck,errmax,release,& 

!$OMPavlast,power,trotter,ltab,U,lambda,gammat,gshift,mu,muwf,tprime,tprimewf,&

!$OMPcuteloc,ifstop,delta,deltaf,gutz,dtg,rmshort,swave,mesbcs,yesrew,epsreg,epsmach, &

....

!$OMPncore,iread,iskip,evalopar,yestwo,tpar,iboot,nweight,epsi,epsdgel,ieser,tbra,etria

l,& 

!$OMPktrial,btrial,nbra,nbrag,nbrat,typereg,recbra,fngutz,epscut,epscutg,cutrelease) 

ONTO(BOOSTERS,I)

call offloadcode

!$OMP end task

ENDDO

!$OMP taskwait

CALL DEEP_BOOSTER_FREE(comm_boosters)

CALL nanos_mpi_finalizef()

• Porting was not trivial since not only does the code need re-arranging but OmPss
requires that allocatablearrays are allocated before being offloaded (in the 
original code the allocations were spread out through the program).
• But the process with OmpSS still easier than with OpenMP/MPI or Intel directives.

16/02/2017

Wraps 
MPI_Spawn



Offload TurboRVB results on DEEP
• The DEEP Cluster/Booster was not available before 

the end of the project so the applications were 
tested instead on the MIC partition on Mare 
Nostrum.

• OmPss offload compared well with Native mode in 
one node – but no so well over multiple nodes.

• Analysis revealed bottlenecks in the branching 
routines (collectives + point-to-point).

• Without the DEEP cluster/booster difficult to draw 
conclusions other than the approach appears 
feasible.
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DEEP Summary

• Engineering delays unfortunately  meant that the machine was not ready before the end 
of the project (one application did run shortly after the project finished).

• The TurboRVB application probably wouldn’t have ported too well on he DEEP cluster 
given the poor performance over multiple KNC nodes. But  much was learnt about the 
application and the communication patterns affecting performance. An OpenMP version 
might have been useful but would have required too much effort.

• The OmpSs offload mechanism was successful although inefficient on KNC.

• Other applications benefited significantly from the efforts in optimisation and 
vectorisation and some probably would have exploited well the Cluster/Booster design.

• Currently, the machine is up and (sometimes) running at the Juelich Supercomputer 
Centre.
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DEEP-ER (DEEP – Extended Reach)

Similar goals to DEEP: construction and testing of a 
Booster-Cluster architecture (this time based on 
KNL), but more emphasis on experimenting with 
hardware and software technologies.

Strong promotion for the idea of Co-Design, i.e. 
design hardware, middleware and software 
applications together to improve integration.
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DEEP-ER Cluster and Applications
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7 Applications

• Human Exposure to Electromagnetic Fields (Inria)
• Radio Astronomy(Astron)
• Earthquake Source Dynamics (LRZ)
• Enhancing Oil Exploration (BSC)
• Lattice QCD (UREG)
• Space Weather (KU Leuwen)
• High Temperaure Superconductivity (Quantum 

Monte Carlo, Cineca)



DEEP-ER technologies

• Cluster-Booster based on KNLs and EXTOLL
network.

• Non-Volatile Memory(NVM) and Network 
Attached Memories (NAM)

• BeeGFS filesystem and SIONlib + Exascale 10 
libraries for fast parallel I/O.

• Task based resiliency with OmpPs and SCR
(scalable checkpoint and restart)

• Parastation MPI 

• Application tools such as JUBE (benchmarking), 
Extrae/Paraver (profiling and traces)
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To allow hardware, software 
and application developers to 
do the co-design effectively  a 
small prototype (Software 
Development Vehicle or SDV) 
was made available early on in 
the project.

Xeon part (or SDV-Cluster)
16 dual-socket Intel® Xeon® E5-2680 nodes
16 NVMe cards Intel DC P3400, 400 GB each (one in each
server)

Xeon Phipart (or SDV-Booster)
8 Intel® Xeon Phi (KNL) nodes
2 NVMe cards Intel DC P3400 (integrated in two of the KNL 
boards)
Storage

2 storage servers (spinning disks, 57 TB) and
1 metadata server (SSDs)

Additionally, the SDV has also one NAM (network attached
memory) board integrated.

http://www.deep-er.eu/press-corner/glossary/13-knl.html
http://www.deep-er.eu/press-corner/glossary/15-nam.html


Cineca Applications for DEEP-ER

TURBORVB
‐ As for DEEP but concentrate on technologies for I/O and resilience (SIONLIB, 

SCR)

2degas (“the mock-up”)
‐ Because of poor performance on Xeon Phi Cineca was asked to try an 

alternative QMC code.

‐ Chose 2degas, a similar application to TURBORVB but with a simpler 
communication pattern
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2degas Mock-up 

2Degas is a QMC for the simulation of a two-dimensional electron gas based on a Jastrow-Slater 
basis function.

Developed in the Physics dept. of University of Rome “La Sapienza” by Moroni and coworkers.

Written in plain Fortran77+MPI. Very scalable (minimal MPI communications), but only weak-scaling 
(unlike Turbo). Each MC walker is represented by 1 MPI process.

Advantages

Smaller and easier code.

The internal kernel is lightweight and the communication pattern is simpler.

Disadvantages

Quite an “old” code(12 yrs), certainly requires some modernisation.

No OpenMP version
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2degas program structure for standard input
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Read control input and coords

Outer theta loop

Inner theta loop

End block loop

End Inner theta loop

Start block loop

End Outer theta loop

End Program 

MC cycle loop
Reduce and calc averages
Store coord data for next block
Write restart files

“twist” angle of spins

Blocks for calculating  
statistical averages

MC loop main number 
crunching part.
Average calculation 
requires collectives 
(e.g. MPI_Reduce)



Performance of mock-up on various 
architectures
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Very high parallel efficiency, 
even with MPI on KNC.
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Porting of mock-up to SDV

Original intention to port directly the F77 version onto the SDV and 

modernise the code later.

Decided to bring forward the modernisation activity to a partial F90 version:

‐ F77 version did not compile on MICs due to unaligned COMMON blocks. Rather than 

re-align COMMONs, decided to replace with F90 modules. 

‐ Some hard limits in the number of walkers were best resolved with F90 constructs.

‐ Original version used inbuilt LAPACK and LINPACK routines for matrix determinants. 

Replaced with LAPACK calls for compatibility with MKL.

Little performance difference, but code now easier to modify.
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Performance of MPI mock-up on SDV
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Poor parallel scaling of 
mockup on SDV was 
attributed to the /sdv-work 
filesystem on the SDV.
Changing directories to the 
/NVME/tmp alternative 
filesystem (requiring code 
changes for task-local 
directories)
removed the performance 
problem.
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OpenMP Port of 2degas

• One reason for adopting the 2degas  
mock-up was to investigate QMC on 
MIC with OpenMP, something deemed 
to difficult with TurboRVB (complex 
communication pattern).

• Initial Vtune analysis of MPI version on 
Haswell looked promising…
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..but this is misleading 
because this is an average 
over 800,000 MC cycles

Initialising a 
large array



OpenMP port of 2degas

• A hybrid approach of threading each MPI task (i.e. 
each MC walker) with OpenMP was abandoned:

‐ Most loops are a function of the number of electrons 
(in our case 26 in total), so are quite short and often 
very nested.

‐ The sequential nature of the MC algorithm does not 
easily allow OpenMP tasks within each walker.

• Opted instead to convert pure MPI version to pure 
OpenMP version. Not expected to gain much in the 
short term, even on MIC, because of low MPI 
communications but (maybe) useful for MIC 
implementations.
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Re-factoring of 2degas code

• For OpenMP conversion 

decided to do major 

refactoring of the code, 

involving subroutines used in 

the benchmark input, 

converting everything to f90.

• Used Photran re-factoring 

tools + custom scripts to 

perform the conversion.
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reptation.f (10K lines) → 
reptation.f90 (5859 lines)



OpenMP mock-up v1.0

• Final seg fault resolved 
mid- August (thanks to 
Totalview)

• Initial tests on Galileo 
(Haswell) node 
disappointing when 
compared to MPI version.
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OpenMP v1.0 – Vtune Analysis 
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• Vtune confirmed poor 
performance and scaling due to 
omp critical. 

• In particular in the routine which 
uses scratch files to store 
coordinates between Monte 
Carlo trial moves



OpenMP v2.0

• Scratch files 
“removed” to 
memory.

• Better performance 
and scaling on 
Haswell, but 
performance and 
scaling still poor on 
KNC.
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OMP v2.0 on KNL

• Same story on SDV/KNL.

• Vtune analysis again points the finger at an 
OMP critical region. 

• But this time in the routine which writes 
restart files
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OMP v2.0 on KNC
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• In FORTRAN, need to use 
unit numbers which are 
distinct for each thread.

• If this is done can remove 
the $OMP critical.

• Scaling much better, 
although performance still 
less than MPI.



OMP v2.0 on KNL

• Same story on KNL, but if we push up 
the number of threads, OpenMP
starts to beats MPI (single node)
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KNL optimisations
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no HBM HBM

• Because of short loops, little scope for 
vectorisation.

• Using the MCDRAM (High Bandwidth 
memory)

• HBM used with numactl but could 
consider memkind library.

• Small influence of HBM, not suprising
given low memory footprint of this 
input.

• Other applications have reported greater 
speed-ups (e.g. 2x).

numactl --membind 1 ./rept.x



OpenMP conversion summary

• OpenMP threading of original MPI  Walkers not viable due to small loops and 

lack of tasking possibilities (sequential algorithm).

• Decided instead to convert MPI tasks into OpenMP threads. No great speedup 

expected with current input on MIC because MPI communications low.

• Initial performance results disappointing due to two omp critical regions. One can 

be removed by using memory instead of scratch files. The second removed but 

localising FORTRAN input unit numbers.

• Performance and scaling broadly similar to MPI version upto 60 threads/tasks at 

which point OpenMP becomes much better. 
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Beyond OpenMP

• . Would need to re-introduce MPI in order to re-enable internode 
communications (e.g. MPI_Bcast at the beginning and MPI_Reduce during 
the run).

• Alternatively, use the NAM which acts as a fast, shared memory for all the 
nodes in the SDV. At the moment, only low-level API available and a 
planned MPI_Reduce wrapper for the NAM will not be ready in time.

• Unfortunately, OmpSs cannot be used because $OMP threadprivate
variables not supported
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Resilience technologies and TURBORVB -
SIONLib

• Library developed by Juelich Supercomputing Centre and and others to 
enable the reading and writing of binary data to/from many task-local files 
to one or a small number of files.

• Very useful if you have MPI programs where each rank writes/reads its own 
file (task local). Avoids having thousands of restart files.

• For parallel access, opening and closing files are collective calls but 
reads/writes can be asynchronous. Also possible to use a serial interface.

• Simple API which mimics usual C or FORTRAN I/O commands: fopen -> 

sion_open, fwrite -> sion_fwrite, etc.  
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SIONLIB API overview
• API resembles logical task-local files

‐ Simple integration into application code

• Internal mapping to single or few large files
‐ Reduces load of meta data server

…

Application

Tasks

Logical 

task-local

files

Parallel file system

Physical

multi-file

t1 t2 t3 tn-2 tn-1 tn

SIONlib

Serial
program
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SIONlib API overview: code example
• For basic cases direct translation of serial task-local calls to calls using MPI

• Interfaces for MPI, OpenMP, hybrid (MPI + OpenMP) and generic 
communication

‐ Individual communication call backs can be used

C

/* fopen()  */
sid=sion_paropen_mpi( filename , “bw“,

&numfiles, &chunksize,

gcom, &lcom, ...);

/* fwrite(bindata,1,nbytes, fileptr)  */
sion_fwrite(bindata, 1, nbytes, sid);

/* fclose()  */
sion_parclose_mpi(sid)

chunksize – defines the block range in the file over 
which each task reads or writes. Used to ensure 
contention-free access. Normally set as the largest 
variable in a read/write.

16/02/2017 Cineca Winter School 2017 43



SIONLib and TurboRVB

Original version of the code does 
not checkpoint – task-local 
restart files only written at the 
end of program.

First task – modify program to 
allow restarts (either task-local or 
Sionlib) to be dumped at user-
selected intervals.

Then replace Fortran calls with 
SIONlib equivalents.
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/
&checkpoint

idumpfreq=10      

checkp_enabled=.true.

siondump=.false.

/

call fsion_paropen_mpi(trim(checkpfilebase), 

mode, nfiles, comm, lComm,chunksize, fsblksize, 

rank, newfname, sid)

isize=kind(irece)

nelem=1

call fsion_write(irece,isize,nelem,sid,ierr)

call fsion_parclose_mpi(sid,ierr)



SIONlib and TURBORVB

• SIONlib utility provides compile and load 
flags for the make.

• Program is run as usual but env variables 
can control execution and provide debug 
info

‐ SION_COLLSIZE

• No. of collectors, i.e. no. of tasks involved in 
collecting data and writing the file (cf. MPI-IO).

‐ SION_DEBUG

• Debug information

• Other utilities also available

‐ sionsplit, sioncat, siondump, siondefrag.
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SIONCONFIG=/usr/local/bin/sionconfig

SION_FLAGS=$(shell $(SIONCONFIG) --mpi --cflags --f77 --32)

SION_CFLAGS=$(shell $(SIONCONFIG) --mpi --cflags --gcc --32)

SION_LIBS=$(shell $(SIONCONFIG) --mpi --libs --f77 --32)
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SIONlib and TURBORVB

• Turbo with Sionlib when tested on various 
clusters showed no particular performance 
speed-up when writing checkpoints, but since 
Turbo is not I/O intensive did not expect this.

• Main advantage for Turbo is to minimise the 
number of restart files needed, although 
some partners did report significant speed-
ups.
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Real 0m0.003s 0m33.794s

User 0m0.001s 0m0.896s

Sys 0m0.002s 0m1.506s



SIONLib restarts

SIONLib on the other hand greatly 
reduces the time needed to perform 
restarts
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restart time/s

nodes Sionlib
Rank-
local

1 0.43 18.01

2 0.47 144.53

3 1.97 299.29

4 1.35 508.78

5 2.42 501.32

Direct

SSD

GPFS 

SSD

GPFS

SIONlib 0.07 3.18 1.60

Rank local 1.11 551.00 515.00

Using SSD disks (PICO) can lead to further 
improvements in start up times.
Note that I/O results vary quite considerably 
so more correct to do many runs and estimate 
an average value.



Scalable Checkpoint and Restart (SCR)
In DEEP-ER  based on the library developed at the 
Lawrence Livermore National Library (LLNR).

Based on observations that often only 1 node 
fails and that task-based checkpointing for 
example does not scale on global filesystems such 
as GPFS.

By inserting commands in the source on what is 
to be checkpointed, SCR can store checkpoints on 
local disks which can be automatically and 
transparently migrated to the GPFS (or other 
filesystem). 
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SCR_USER_NAME=deep70

SCR_JOB_NAME=cp

SCR_FLUSH=10 #SCR flush node-local dir to global fs every X 

checkpoints

SCR_FETCH=1 # enable or disable fetching from global file system

during restart.

SCR_CACHE_SIZE=2

STORE=/tmp

STORE=/mnt/beeond COUNT=10 TYPE=BEEGFS

CKPT=1 STORE=/mnt/beeond INTERVAL=1 TYPE=SINGLE



SIONlib and SCR

SCR_Start_checkpt()

SCR_Complete_checkpt()

sid=sion_paropen_mpi(fn_scr, “wb,buddy“ ...)

SCR_Route_file(fn, &fn_scr)

fn =“check1”

fn_scr=“/abspath/check1”

(node0) “/abspath/check1”

(node1) “/abspath/check1.00001”
…

(node0) “/abspath/check1_buddy”

(node1) “/abspath/check1_buddy.00001”
…

sion_parclose_mpi(sid)

info=sion_get_io_info(sid)
- List of filename opened on this task
- Bytes written

SCR_update_filename(info)
SCR also integrates with SIONlib, but 
currently the API has only been 
updated in C.
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Non-volatile Memory (NVM)

Memory than can retain information even after being 
powered-off.

Typical examples include Flash memory or standard hard 
disks (“spinning disks”) but usually these technologies are 
not suitable for replacing DDR RAM due to performance 
(disks) or low write endurance (Flash).

Now available NVM devices to replace disks in HPC clusters.

In DEEP-ER many SDV nodes have been equipped with 
NVM disks and NVMe for local storage. Can be combined 
with SCR. Aim is to connect to Booster nodes.

TurboRVB is not I/O intensive so only modest speedups 
obtained but other partners reported performance 
improvements.
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node node node node node

2 x CPUs
Intel Xeon E5-2680v3, 12-
Core (Haswell) 

RAM 
128 GB (DDR4 , PC2133 
ECC) 

1 x SSD 
400 GB NVMe Intel DC 
P3700 

2 x HDD 1.0 TB S-ATA 6 Gb/s 



Network Attached Memory (NAM)

Recent technology which allows memory to be 
directly attached to the network (as opposed to 
a node with a processor). 

The idea is to reduce the HPC bottleneck of 
moving data around the system to be 
processed by processing data as it passes 
through the network → near data computing.

In the DEEP-ER project the NAM  is based on 
PCIe with FPGA and a hybrid memory cube 
(4Gb in total).
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NAM usage
As well as being memory, the NAM can perform 
limited operations.

For DEEP-ER the NAM is predicted to have two 
main uses:

1. Checkpoints and Restarts. The NAM can be used 
to store (incremental) system and checkpoints for 
restarting in case of processor fails.

2. For MPI Global operations such as SUM, MIN, 
MAX etc. (e.g. MPI_Reduce). The NAM thus acts 
as a sort of global, shared memory on which 
simple operations can be applied.

The complication is that the current API in DEEP-ER 
is based on low-level network (i.e. EXTOLL) GET and 
PUT requests.  To simplify the life of C/FORTRAN 
programmers a library (libnam ) is being developed.  
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double op[] = {1.0, 2.0, 3.0, 4.0, 5.0};

double result; 

nam_allocation_t *my_alloc;

my_alloc = nam_malloc(sizeof(double) * 6);

nam_put

(op, 0, sizeof(double) * 5, my_alloc);

nam_reduce_op

( 0, 5, 5, &result, DOUBLE , SUM, NULL, 

NAM_RETURN, my_alloc);

nam_free(my_alloc);



JUBE  - Juelich Benchmark Environment

A Python/XML based system for systematically performing benchmarks developed by JSC.

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/JUBE/_node.html

The philosophy is that the platform-dependent configuration files (e.g. hardware details 
such as nodes/core or batch system) are separated from application and benchmark run 
parameters. 

In this was easy to benchmark the same application on a different platform, or a different 
application on the same platform.

As well as running the benchmark runs also allows the application performance data to be 
analysed, collected and displayed. 
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JUBE - benchmarking

Particularly convenient the facility to 
automatically loop over any benchmark 
parameter (e.g. node, threads, etc) thus 
avoiding complicated loops in shell scripts.

Also useful the ability to define new variables 
and more complicated (python-based) 
scripted manipulations. 

The main difficulty lies in the initial 
customization of the application and platform 
files. 
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this will run 
benchmarks for 
1,2,4,6,8, and 10 
nodes.



DEEP/DEEP-ER Summary

• Many of technologies used and developed in the project are freely 
available:

‐ OmPSs

‐ SIONlib

‐ SCR

‐ JUBE etc.

• The DEEP-ER Cluster/Booster itself is expected to be available via 
PRACE in late 2017.

16/02/2017 Cineca Winter School 2017 55



Mont Blanc - 1,2 and 3
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Exascale project with the aim of 
building Energy efficient Exascale
systems, for example using processors 
normally used in mobile systems such 
as ARM .

Extensive use of OmPSs as the 
programming model.



Mont-Blanc projects in a glance

57

Vision: to leverage the fast growing market of mobile technology 

for scientific computation, HPC and non-HPC workload.

Mont-Blanc

2012 2013 2014 20162015

Mont-Blanc 3

Mont-Blanc 2
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QuantumESPRESSO

Weak & Strong scalability on MB prototype – OmpSs(SMP)

 <60% efficiency above ca. 512 cores
 With the new ETH driver:

 Higher limit in scalability
 2-2.5x better perfomance
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QuantumESPRESSO

Power consumption on MB prototype – OmpSs(SMP)

 Reproducible power
consumption
mesurement up to 
512 SDBs

 5.5 kJ @ 256 SDBs
 E2S decrease as

#core increase



Oprecomp – OPen TransPrecision
COMPuting

Again main emphasis to reduce the energy required in order to do 
computing. 

But here among some of the key ideas will be the use of transprecision
computing, in other words using appropriate floating point accuracy 
(not only double precision!).

Algorithms and (micro)benchmarks will be tested on two different 
classes of hardware:  

mW – PULP processors

MW – IBM Power
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This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 732631. 



Oprecomp – hardware + software
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PULP – Parallel Ultra Low 
Power Processor.
32 bit chip RISC-V core 
developed at ETH Zurich
and Universita’ di Bologna.

Normally used in embedded 
systems: sensors, low-
resolution cameras, 
accelerometers etc.



Summary

Many Exascale projects are concentrating on reducing the power required to perform HPC, 
combining innovative hardware  and software approaches.

The important feature relies on co-design, develop hardware, middleware and application 
software together.

For application developers good software design is important: in the DEEP/ER projects 
much time was lost re-factoring code.

Communication is important, particularly between hardware and software engineers.
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