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Learning Algorithm

Definition of Learning Algorithm [Mitchell 1997]1

A computer program is said to learn from experience E with respect to some class of tasks T
and performance measure P, if its performance at tasks in T, as measured by P, improves with
experience E.

So we need to identify:

I the class of tasks T
I the measure of performance P
I the source of experience E
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Example: checkers game

I task class T: playing checkers
I performance measure P: fraction of games won

against opponents
I training experience E: playing practice games

against itself
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Example: handwritten characters recognition

I task class T: recognizing and classifying
handwritten characters within images

I performance measure P: fraction of characters
correctly classified

I training experience E: a database of handwritten
characters with given classifications
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Example: supervised learning

I training experience E: a number of traininig examples E = {z1,z2,z3 . . .}
each example is a (input,target) pair: Zi = (Xi,Yi)

I task class T: a decision function f able to predict unknown Y from known X
I performance measure P: a loss function L to measure the (non-symmetric) distance

L(f ,Zi) = d (f (Xi) ,Yi)

Examples:
I regression

I X is a real-valued scalar or vector
I Y is a scalar real value
I f is able to predict Yi value from Xi
I L is usually the euclidean norm

I classification
I X is a real-valued scalar or vector (features)
I Y is an integer (label) corresponding to a class index
I f is able to provide the probability of Xi being in class Yi
I L is usually the negative log-likelihood
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Machine Learning

I Application of computer-enabled algorithm to a data set to find a pattern
I Wide range of tasks: segmentation. classification, clustering, supervised/unsupervised

learning
I Various algorithms: association rules, decision trees, SVM
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Deep Learning

I Application of an Artificial Neural Network to a data set to find a pattern
I Multiple hidden layers (to mimic human brain processes associated to vision/hearing)
I Big data sets and relevant number of variables
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Framework desired features

We are interested in:
I classical machine learning algorithms
I deep learning approach (especially convolutional neural network)

I high level language (Python)
I little/no programming effort
I integration with existing pipelines
I multi-core CPU and/or many-core GPU support
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Intel Data Analytics Acceleration Library (DAAL)

I Functions for machine learning, deep learning, data analytics
I Optimized for Intel architecture devices (processors, coprocessors, and compatibles)
I C++, Java and Python APIs
I Connectors to popular data sources including Spark and Hadoop
I Open source version under Apache 2.0 license
I Paid versions include premium support.
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Algorithms

Statistics: min, max, mean, standard deviation, correlation, covariance matrix,
correlation distance matrix, cosine distance matrix

Factorizations: Cholesky, QR, SVD

Dimensionality Reduction: PCA

Classification: Naive Bayes, K-Nearest Neighbors, SVM, multiclass classification

Neural Networks: layers of type: fully-connected, activation, convolutional, normalization,
concat, split, softmax, loss function

Clustering: K-Means, EM for GMM
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Processing Modes

Batch processing
All data is stored in the memory of a single node. An Intel DAAL
function is called to process the data all at once.

Streaming processing
All data does not fit in memory, or when data is arriving piece by
piece. Intel DAAL can process data chunks individually and
combine all partial results at the finalizing stage.

Distributed processing
Intel DAAL supports a model similar to MapReduce. Slaves in a
cluster process local data (map stage), and then the master process
collects and combines partial results from slaves (reduce stage).
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DAAL data flow

Data sources:
I file based (CSV, binary)
I database query (ODBC, SQL)
I Python: numpy array interoperability

Data structures:
I numeric tables

I homogeneous data: dense, sparse, packed, triangular matrix, symmetric matrix
I heterogeneous data: SOA vs AOS

I tensors (n-dimensional matrix)
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Official Intel benchmark results (I)

Skt-Learn* Optimizations With Intel® MKL... And Intel® DAAL

0x
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9x

Approximate

neighbors

Fast K-means GLM GLM net LASSO Lasso path Least angle

regression,

OpenMP

Non-negative

matrix

factorization

Regression by

SGD

Sampling

without

replacement

SVD

Speedups of Scikit-Learn Benchmarks
Intel® Distribution for Python* 2017 Update 1 vs. system Python & NumPy/Scikit-Learn

System info: 32x Intel® Xeon® CPU E5-2698 v3 @ 2.30GHz, disabled HT, 64GB RAM;  Intel® Distribution for Python* 2017 Gold; Intel® MKL 2017.0.0; Ubuntu 14.04.4 LTS; Numpy 1.11.1; scikit-learn 0.17.1. 

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.  Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions.  Any 

change to any of those factors may cause the results to vary.  You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.   * Other brands 

and names are the property of their respective owners.   Benchmark Source: Intel Corporation

K��]u]Ì��]}v�E}�]��W�/v��o[���}u�]o����u�Ç�}��u�Ç�v}��}��]u]Ì���}��Z����u����P����(}��v}v-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not 

guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel 

microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.  Notice revision #20110804 . 

Effect of Intel MKL 

optimizations for 

NumPy* and SciPy*

1 1.11

54.13
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Potential Speedup of Scikit-learn* due to 

PyDAAL
PCA, 1M Samples, 200 Features

Effect of DAAL 

optimizations for 

Scikit-Learn*

Intel® Distribution for Python* ships Intel® Data 

Analytics Acceleration Library with Python 

interfaces, a.k.a. pyDAAL

[Supercomputing 2016 (SC16), November 13-18, 2016, Salt Lake City]
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Official Intel benchmark results (II)

Distributed Parallelism

� Intel® MPI* accelerates Intel® 
Distribution for Python (mpi4py*, 
ipyparallel*)

� Intel Distribution for Python also 
supports
± PySpark* - Python* interfaces for Spark*, an 

engine for large-scale data processing

± Dask* - flexible parallel computing library for 
numerical computing 1.7x 2.2x 3.0x 5.3x

0x

1x

2x

3x

4x

5x

6x

2 nodes 4 nodes 8 nodes 16 nodes

PyDAAL Implicit ALS with Mpi4Py*

Scales with MPI, Spark, Dask and 

other distributed computing 

engines

Configuration Info: Hardware (each node): Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30GHz, 2x18 cores, HT is ON, RAM 128GB; Versions: Oracle Linux Server 6.6, Intel® DAAL 2017 Gold, Intel® MPI 5.1.3; Interconnect: 1 GB Ethernet.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.  Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions.  

Any change to any of those factors may cause the results to vary.  You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.   * 

Other brands and names are the property of their respective owners.   Benchmark Source: Intel Corporation

K��]u]Ì��]}v�E}�]��W�/v��o[���}u�]o����u�Ç�}��u�Ç�v}��}��]u]Ì���}��Z����u����P����(}��v}v-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel 

does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to 

Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.  Notice revision #20110804 . 

[Supercomputing 2016 (SC16), November 13-18, 2016, Salt Lake City]
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pyDAAL installation

Requirements:
I Intel Math Kernel Library (MKL): for BLAS and LAPACK
I Integrated Performance Primitives (IPP) for data compression/decompression
I Threading Building Blocks (TBB) for multicore and many-core parallelism

Installation methods:

1. anaconda Intel channel (Linux)

2. Intel distribution (Windows, Linux, OS X)

3. build from source
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