
SuperComputing Applications and Innovation department

Parallel I/O

Giorgio Amati

g.amati@cineca.it

Roma, 22 July 2016

SuperComputing Applications and Innovation department

Agenda

I/O: main issues

 Parallel I/O: main issues

 Some examples

 Comments

SuperComputing Applications and Innovation department

Some questions

Which is the typical I/O size you work with?
 GB?

 TB?

 Is your code parallelized?

How many cores are you using?

Are you working in a small group or you need to
exchange data with other researchers?

Ever faced I/O problems?

Blocksize ? RAID?

SuperComputing Applications and Innovation department

I/O: some facts

I/O is a crucial issue in modern HPC applications:

 deal with very large datasets while running massively parallel

 applications on supercomputers

 amount of data saved is increased

 latency to access to disks is not negligible

 data portability (e.g. endianness)

HW solution: parallel filesystem (gpfs, lustre, ….)

SW solution: high level libraries (MPI I/O, HDF5,)

Keep in mind: I/O is very very very slow!!!!

SuperComputing Applications and Innovation department

“Golden” rules about I/O
 Reduce I/O as much as possible: only relevant data must be

stored on disks

 Save data in binary/unformatted form:

 asks for less space comparing with ASCI/formatted ones

 It is faster (less OS interaction)

 Save only what is necessary to save for restart or check-pointing,
everything else, unless for debugging or quality check, should be
computed on the fly.

 Dump all the quantities you need once, instead of using multiple
I/O calls: if necessary use a buffer array to store all the
quantities and the save the buffer using only a few I/O calls.

 Why?

SuperComputing Applications and Innovation department

What is I/O?

 Raw data (in RAM)

 fwritef, fscanf, fopen, fclose, WRITE, READ, OPEN, CLOSE

 Call to an external library: OS, MPI I/O, HDF5, NetCDF…

 Scalar/parallel/network Filesystems

1.I/O nodes and Filesystem cache

2.I/O network (IB, SCSI, Fibre, ecc..)

3.I/O RAID controllers and Appliance (Lustre, GPFS)

4.Disk cache

5.FLASH/Disk (one or more Tier)

…eventually write on tape

SuperComputing Applications and Innovation department

Latencies

 I/O operations involves

 OS & libraries

 IO devices (e.g. RAID controllers)

 Disks

 I/O latencies of disks are of the order of microseconds

 RAM latencies of the order of 100-1000 nanoseconds

 FP unit latencies are of the order of 1-10 nanoseconds

 I/O very very very slow compared to RAM of FP latencies

SuperComputing Applications and Innovation department

I/O Some figures

Real word CFD code

Time to dump

Serial performance

Marconi gpfs Filesystem

Size Time (sec) MB/s

20 MB 0.0715’’ 280

65 MB 0.15’’ 433

153 MB 0.25’’ 612

514 MB 0.58’’ 886

1.2 GB 1.5’’ 820

4.1 GB 4.2’’ 999

9.6 GB 9.6’’ 1024

33 GB 35’’ 965

SuperComputing Applications and Innovation department

Architectural trends/1

Number of cores 10^9

Memory x core

Memory BW/core 500GByte/sec

Memory hierachy Reg, L1, L2, L3, …

100Mbyte or less

2020 estimates

SuperComputing Applications and Innovation department

Architectural trends/2

Network links/node 100

Disk perf

Number of disks 100K

100Mbyte/sec

2020 estimates

Wire BW/core 1GByte/sec

SuperComputing Applications and Innovation department

I/O: ASCII vs. binary/1

 ASCII is more demanding respect binary in term of disk
occupation

 Numbers are stored in bit (single precision floating point
number 32 bit)

 1 single precision on disk (binary) 32 bit

 1 single precision on disk (ASCII) 80 bit

 10 or more char (1.23456e78)

 Each char asks for 8 bit

 Not including spaces, signs, return, …

 Moreover there are rounding errors, …

SuperComputing Applications and Innovation department

I/O: ASCII vs. binary/2

 Some figures from a real world application (openFOAM)

 Test case: 3D Lid Cavity, 200^3, 10 dump

 Formatted output (ascii)

 Total occupation: 11 GB

 Unformatted output (binary)

 Total occupation: 6.1 GB

 A factor 2 in disk occupation!!!!

SuperComputing Applications and Innovation department

I/O: blocksize
 The blocksize is the basic (atomic) storage size

 One file of 100 bit will occupy 1 blocksize, that could be > 4MB
ls -lh TEST_1K/test_1

-rw-r--r-- 1 gamati01 10K 28 gen 11.22 TEST_1K/test_1

…

du -sh TEST_1K/test_1

512KTEST_0K/test_1

…

du -sh TEST_1K/

501M TEST_10K/

…

 Always use tar commando to save space

-rw-r--r-- 1 gamati01 11M 5 mag 13.36 test.tar

SuperComputing Applications and Innovation department

I/O: endianess

 IEEE standard set rules for floating point operations

 But set no rule for data storage

 Single precision FP: 4 bytes (B0,B1,B2,B3)

 Big endian (IBM): B0 B1 B2 B3

 Little endian (INTEL): B3 B2 B1 B0

 Solutions:

 Hand made conversion

 Compiler flags (intel, pgi)

 I/O libraries (HDF5)

SuperComputing Applications and Innovation department

Agenda

I/O: main issues

Parallel I/O: main issues

 Some examples

 Comments

SuperComputing Applications and Innovation department

What is parallel I/O?

 Serial I/O

Master task writes all the data

 Parallel I/O

Distributed IO on local files: tasks write its own data in a different
file

 high level libraries: MPI/IO, HDF5, NetCDF, CGNS

No performance gain if thers’s no parallel filesystem!!!!

SuperComputing Applications and Innovation department

Why parallel I/O?

 New Architectures: many-many core (up to 10^9)

 As the number of task/threads increases I/O overhead start to
affect performance

 I/O (serial) will be a serious bottleneck

 Parallel I/O is mandatory else no gain in using many-many core

 Other issues:

 domain decomposition

 data management

SuperComputing Applications and Innovation department

Master-Slave approach: only 1 processor performs I/O

Pe1

Pe2

Pe3

Pe0 Data File

No scalability

Extra communications

Usability

no parallel FS needed

Managing I/O in Parallel
Applications

SuperComputing Applications and Innovation department

Distributed IO on local files: all the processors read/writes their own files

Scalable

No extra communication

Usability

Pe1

Pe2

Pe3

Data File 0
Pe0

Data File 3

Data File 2

Data File 1

Managing I/O in Parallel
Applications

SuperComputing Applications and Innovation department

I/O Library (MPI I/O or other) : MPI functions perform the
IO. Asynchronous IO is also supported.

Scalable

Avoid communication

Usability

Pe1

Pe2

Pe3

Pe0

Data File

MPI2

Managing IO in Parallel
Applications

SuperComputing Applications and Innovation department

I/O: Domain Decomposition

 I want to restart a simulation using a different number of
tasks: three possible solutions

 pre/post processing (merging & new decomposition)

 serial dump/restore (memory limitation)

 Parallel I/O (single restart file)

SuperComputing Applications and Innovation department

Some figures/1

 Simple CFD program, just to give you an idea of performance loss due to I/O.

 2D Driven Cavity simulation: size 2048*2048, double precision (about 280
MB), 1000 timestep

 Serial I/O = 1.5’’

 1% of total serial time

 16% of total time using 32 Tasks (2 nodes) 1 dump ≈ 160 timestep

 Parallel I/O = 0.3’’ (using MPI I/O)

 3% of total time using 32 Tasks (2 Nodes) 1 dump ≈ 30 timestep

 And using 256 or more tasks?

SuperComputing Applications and Innovation department

Some figures/2

 Performance to dump huge files using Galileo: same code with
different I/O strategies….

 RAW (512 files, 2.5GB per file)

 Write: 3.5 GB/s

 Read: 5.5 GB/s

 HDF5 (1 file, 1.2TB)

 Write: 2.7 GB/s

 Read: 3.1 GB/s

 MPI-IO (19 files, 64GB per file)

 Write: 3.1 GB/s

 Read: 3.4 GB/s

SuperComputing Applications and Innovation department

Some figures/3

Parallel performance/HDF5

Marconi Filesystem

Size 1 task 2 task 4 task 8 task 16 task

33 GB .99 GB/s 1.8 GB/s 3.6 GB/s 4.5 GB/s 3.8 GBs

Size 4 task 8 task 16 task 32 task 64 task

77 GB 2.1 GB/s 4.8 GB/s 7 GB/s 7.7 GB/s 5.4 GBs

SuperComputing Applications and Innovation department

Agenda

I/O: main issues

Parallel I/O: main issues

Some examples
An example with I/O

Few info about HDF5

Comments

SuperComputing Applications and Innovation department

MPI-2.x: features for Parallel I/O

• MPI-IO: introduced in MPI-2.x standard (1997)
allow non-contiguous access in both memory and file
reading/writing a file is like send/receive a message from a MPI

buffer
optimized access for non-contiguous data
collective/non-collective access operations with communicators
blocking/non-blocking calls
data portability (implementation/system independent)
good performance in many implementations

• Why do we start to use it ???

• syntax and semantic are very (???) simple to use

SuperComputing Applications and Innovation department

• MPI-IO provides basic IO operations:
open, seek, read, write, close (etc.)

• open/close are collective operations on the same file
many modalities to access the file

• read/write are similar to send/recv of data to/from a
buffer
each MPI process has its own local pointer to the file

(individual file pointer) for seek, read, write operations

offset variable is a particular kind of variable and it is given in
elementary unit (etype) of access to file (default in byte)

 it is possible to know the exit status of each subroutine/function

Starting with MPI-I/O

SuperComputing Applications and Innovation department

 Create the correct datatype
 MPI_Type_create_subarray

 MPI_Type_commit

 Define file offset/size
 MPI_File_seek

 MPI_File_get_size

 define fileview
 MPI_File_set_view

 Write or Read file
 MPI_File_write/MPI_File_read

 File sync (flush any caches/buffer)
 MPI_File_sync

MPI I/O in a nutshell

SuperComputing Applications and Innovation department

There are different way to file positioning (file access)

 Explicit offset: each task computes explicitly the offset (i.e. the
physical starting point of the file where to write/read)

 Individual file point: each task has its own file pointer on the file
where to start write/read

 Shared file point: each task share the same file pointer once one
task has finisher his work all other tasks know where to write

MPI I/O: file positioning

SuperComputing Applications and Innovation department

MPI_FILE_OPEN
 MPI_MODE_RDONLY: read only

 MPI_MODE_RDWR: reading and writing

 MPI_MODE_WRONLY: write only

 MPI_MODE_CREATE: create the file if it does not exist

 MPI_MODE_EXCL: error if creating file that already exists

 MPI_MODE_DELETE_ON_CLOSE: delete file on close

 MPI_MODE_UNIQUE_OPEN: file will not be concurrently opened elsewhere

 MPI_MODE_SEQUENTIAL: file will only be accessed sequentially

 MPI_MODE_APPEND:

MPI_File_close

MPI I/O in a nutshell 2

SuperComputing Applications and Innovation department

Data Access

SuperComputing Applications and Innovation department

PROGRAM main

use mpi

implicit none

integer, parameter :: filesize=8

!

integer buf(filesize)

integer rank,ierr,fh,nprocs,nints,intsize,count,i

integer status(MPI_STATUS_SIZE)

integer(kind=MPI_OFFSET_KIND) offset

!

! mpi stuff

call MPI_INIT(ierr)

call MPI_COMM_RANK(MPI_COMM_WORLD,rank,ierr)

call MPI_COMM_SIZE(MPI_COMM_WORLD,nprocs,ierr)

call MPI_TYPE_SIZE(MPI_INTEGER,intsize,ierr)

!

! set #of elements for task

count=filesize/nprocs

Example:
Individual file pointers/1

SuperComputing Applications and Innovation department

! set file offset for task

offset=rank*count*intsize

!

do i=1, count

! buf(i) = rank*count + i

buf(i) = rank

enddo

!

write(6,*) "Task ", rank, " write ", buf(1), " from ", offset

!

call MPI_FILE_OPEN(MPI_COMM_WORLD,'out.bin',MPI_MODE_WRONLY+MPI_MODE_CREATE, &

MPI_INFO_NULL,fh,ierr)

call MPI_FILE_SEEK(fh,offset,MPI_SEEK_SET,ierr)

call MPI_FILE_WRITE(fh,buf,count,MPI_INTEGER,status,ierr)

call MPI_FILE_CLOSE(fh,ierr)

call MPI_FINALIZE(ierr)

END PROGRAM main

Example:
Individual file pointers/2

SuperComputing Applications and Innovation department

call MPI_FILE_OPEN(MPI_COMM_WORLD,'out.bin',MPI_MODE_RDONLY, &

MPI_INFO_NULL,fh,ierr)

if(ierr == 0) then

write(6,*) "file exists....."

else

write(6,*) "Huston we have a problem!"

call MPI_FINALIZE(ierr)

endif

!

call MPI_FILE_READ_AT(fh,offset,buf,count,MPI_INTEGER,status,ierr)

call MPI_FILE_CLOSE(fh,ierr)

call MPI_FINALIZE(ierr)

END PROGRAM main

Example:
explicit offset/3

SuperComputing Applications and Innovation department

gamati01@node001.pico:[SE2016]$ mpirun -n 1 ./MPIwrite.x

Task 0 write 1 from 0

Total IO time 2.035156

gamati01@node001.pico:[SE2016]$ mpirun -n 2 ./MPIwrite.x

Task 1 write 134217729 from 536870912

Task 0 write 1 from 0

Total IO time 1.203125

gamati01@node001.pico:[SE2016]$ mpirun -n 4 ./MPIwrite.x

Task 2 write 134217729 from 536870912

Task 3 write 201326593 from 805306368

Task 0 write 1 from 0

Task 1 write 67108865 from 268435456

Total IO time 0.7070312

MPI I/O: some figures

SuperComputing Applications and Innovation department

Basic MPI-IO features are not useful when

 Data distribution is non contiguous in memory and/or in the file

 ghost cells

 block/cyclic array distributions

 Multiple read/write operations for segmented data generate poor
performances

MPI-IO allow to access to data in different way:

 non contiguous access on file: providing the access pattern to file (fileview)

 non contiguous access in memory: setting new MPI derived datatype

MPI I/O: advanced issues

SuperComputing Applications and Innovation department

MPI-I/O: File View
A file view defines which portion of a file is “visible” to a process: needs three

components

 displacement : number of bytes to skip from the beginning of file

 etype : type of data accessed, defines unit for offsets

 filetype : base portion of file visible to a process

The pattern described by a file-type is repeated, beginning at the displacement, to define the
view, as it happens when creating MPI_CONTIGUOUS or when sending more than one MPI
datatype element: HOLES are important!

etype filetype

displacement filetype filetype
and so on...

FILEhead of file

holes

SuperComputing Applications and Innovation department

MPI I/O: complex pattern

MPI fileview allow complex replicated pattern access (e.g.
struct)

filetype n replicationsdis

FILEhead of file

process 0 process 1 process 2

SuperComputing Applications and Innovation department

MPI I/O: 3D decomposition/1

gsize(1)=lx !global size

gsize(2)=ly

gsize(3)=lz

lsize(1)=l ! Local size (for each task)

lsize(2)=m

lsize(3)=n

offset(1) = mpicoords(1)*l ! offset

offset(2) = mpicoords(2)*m

offset(3) = mpicoords(3)*n

buffersize = l*m*n

SuperComputing Applications and Innovation department

MPI I/O: 3D decomposition/2

42

call MPI_TYPE_CREATE_SUBARRAY(mpid,gsize,lsize,offset,MPI_ORDER_FORTRAN, &

MYMPIREAL,dump3d,ierr)

Call MPI_TYPE_COMMIT(dump3d,ierr)

call MPI_FILE_OPEN(LBMCOMM,filename01,MPI_MODE_WRONLY+MPI_MODE_CREATE, &

MPI_INFO_NULL,myfile,ierr)

call MPI_FILE_SET_VIEW(myfile,file_offset,MYMPIREAL,dump3d,’native’, &

MPI_INFO_NULL,ierr)

call MPI_FILE_WRITE_ALL(myfile,buffer,buffersize,MUMPIREAL, &

MPI_STATUS_IGNORE, ierr)

SuperComputing Applications and Innovation department

HFD5: some history…
 Hierarchical Data Format

 is a set of file formats and libraries designed to store and organize
large amounts of numerical data

 It is a hierarchical, filesystem-like data format. Resources in an HDF5
file are accessed using the syntax /path/to/resource. Metadata are
stored in the form of user-defined, named attributes attached to
groups and datasets

 Originally developed at the NCSA, it is supported by the non-profit
HDF Group (www.hdfgroup.org), whose mission is to ensure
continued development of HDF5 technologies

 Last HDF5 releases:

 1.10.0 (first release of the new minor revision 1.10)

 1.8.16 (last release of the minor revision 1.8)

SuperComputing Applications and Innovation department

HDF5 file

 An HDF5 file is a “container” for storing a variety of (scientific)
data

 Is composed of two primary types of objects:
 Groups: a grouping structure containing zero or more HDF5 objects,

together with supporting metadata

 Datasets: a multidimensional array of data elements, together with
supporting metadata

 Any HDF5 group or dataset may have an associated attribute list
 Attribute: a user-defined HDF5 structure that provides extra information

about an HDF5 object.

SuperComputing Applications and Innovation department

A look inside an hdf5 file

 h5dump -H u_00001000.h5

HDF5 "u_00001000.h5" {

GROUP "/" {

GROUP "field" {

DATASET "rho" {

DATATYPE H5T_IEEE_F32LE

DATASPACE SIMPLE { (64, 1, 64) / (64, 1, 64) }

}

DATASET "u" {

DATATYPE H5T_IEEE_F32LE

DATASPACE SIMPLE { (64, 1, 64) / (64, 1, 64) }…

SuperComputing Applications and Innovation department

Agenda

I/O: main issues

Parallel I/O: main issues

Some examples

Comments

SuperComputing Applications and Innovation department

I/O: managing data

 TB of different data sets

 Hundreds of different test cases

 Metadata

 Share data among different researchers

 different tools (e.g. visualization tools)

 different analysis/post processing

 You need a common “language”

 Use I/O libraries

 Invent your own data format

SuperComputing Applications and Innovation department

Some strategies

• I/O is the bottleneck avoid when possible
• I/O subsystem work with locks simplify application
• I/O has its own parallelism use MPI-I/O
• I/O is slow compress (to reduce) output data
• Raw data are not portable use library
• I/O C/Fortran APIs are synchronous use dedicated I/O tasks

• Application DATA are too large analyze it “on the fly”, (e.g.

re-compute vs. write)

SuperComputing Applications and Innovation department

At the end: moving data

 Now I have hundreds of TB. What I can do?

 Storage using Tier-0 Machine is limited in time (e.g. PRACE
Project data can be stored for 3 Month)

 Data analysis can be time consuming (eyen years)

 I don’t want to delete data

 I have enough storage somewhere else?

How can I move data?

SuperComputing Applications and Innovation department

Moving data: theory

 BW requirements to move Y Bytes in Time X

SuperComputing Applications and Innovation department

Moving data: practice/1

 Moving outside CINECA

 scp 10 MB/s

 rsync 10 MB/s

 I must move 50TB of data:

 Using scp or rsync 60 days

 No way!!!!!

 Bandwidth depends on network you are using. Could be
better, but in general is even worse!!!

SuperComputing Applications and Innovation department

Moving Data: practice/2

 Moving outside CINECA

 gridftp 100 MB/s

 globusonline 100 MB/s

 I must move 50TB of data:

 Using gridftp/globusonline 6 days

 Could be a solution…

 Note

 We get these figures between CINECA and a remote
cluster using a 1Gb Network

SuperComputing Applications and Innovation department

Moving Data: some hints

 Size matters: moving many little files cost more then moving few
big files, even if the total storage is the same!

 Moving file from Fermi to a remote cluster via Globusonline

 You can loose a factor 4, now you need 25 days instead of 6 to
move 50TB!!!!!

Size Num. Of files Mb/s

10 GB 10 227

100 MB 1000 216

1 MB 100000 61

SuperComputing Applications and Innovation department

Moving Data: some hints
 Plan your data-production carefully

 Plan your data-production carefully (again!)

 Plan your data-production carefully (again!!!!!)

 Clean your dataset from all unnecessary stuff

 Compress all your ASCII files

 Use tar to pack as much data as possible

 Organize your directory structure carefully

 Syncronize with rsync in a systematic way

 One example:

 We had a user who wants to move 20TB distributed over more then 2’000’000
files…

 rsync asks many hours (about 6) only to build the file list, without any
synchronization at all

SuperComputing Applications and Innovation department

 When designing your code, think I/O carefully!

maximize the parallelism

 if possible, use a single file (of few) as restart file and simulation output

 avoid the usage of formatted output (do you actually need it?)

 Minimize the latency of file-system access

maximize the sizes of written chunks

 use derived datatypes for non-contiguous access

 If you are patient, read MPI standards, MPI-2.x or highier or libraries
(based on MPI-I/O) like HDF5 or NetCDF

Best Practices

SuperComputing Applications and Innovation department

MPI – The Complete Reference vol.2, The MPI Extensions
(W.Gropp, E.Lusk et al. - 1998 MIT Press)

Using MPI-2: Advanced Features of the Message-Passing
Interface (W.Gropp, E.Lusk, R.Thakur - 1999 MIT Press)

Standard MPI-3.x: http://www.mpi-forum.org/docs

The HDF Group Page: http://hdfgroup.org/

HDF5 Home Page: http://hdfgroup.org/HDF5/

HDF tutorial: http://hdf.ncsa.uiuc.edu/HDF5/doc/Tutor

corsi@cineca.it: http://www.hpc.cineca.it

 ...practice practice practice

Useful links

http://www.mpi-forum.org/docs
http://hdfgroup.org/
http://hdfgroup.org/HDF5/
http://hdf.ncsa.uiuc.edu/HDF5/doc/Tutor
mailto:corsi@cineca.it
http://www.hpc.cineca.it/

SuperComputing Applications and Innovation department

Acknowledgments

 Luca Ferraro

 Francesco Salvadore

