
MPI4PY
also known as

«How to write MPI programs with Python»

Tiziano Flati

What is mpi4py
“mpi4py provides Python bindings
for the Message Passing Interface
(MPI) standard. It is implemented
on top of the MPI-1/2/3
specification and exposes an API
which grounds on the standard
MPI-2 C++ bindings.” [from https:
//pypi.python.org/pypi/mpi4py]

• Mmmmh...meaning?
• It means it is possible to call C

functions from python itself!

http://www.mpi-forum.org/
https://pypi.python.org/pypi/mpi4py
https://pypi.python.org/pypi/mpi4py
https://pypi.python.org/pypi/mpi4py

With python
•No need to handle memory explicitly
•No compilation and linking required

•Easier to read and write

•Rich environment modules
(sys, os, time, random, etc.)

•Useful if you do not care too much about execution
speed
(remember: python is interpreted!)

Why am I even here?
•You want to learn Python
(a little :-P)

•You want to write MPI
code without the burden
of writing C code which:

• needs to be recompiled and linked
every time we change the
architecture

• needs to handle memory allocation
explicitly (malloc, free…)

What do I need?
• Python 2.7.9

 module load python/2.7.9

• MPI (IntelMPI, openMPI, …)
 module load openmpi/1.8.4--gnu--4.9.2

• MPI4PY (MPI 4 python)
 module load mpi4py/1.3.1--openmpi--1.8.4--gnu--4.9.2

• If still alive: your brain :)

Python modules

Easy to install, remove and use
(an ‘import module_name’ is enough)

mpi4py os sys time

Python

Importing mpi4py
•MPI4PY is a python module which can be installed and
simply imported, just like any other module

import os
import time
import mpi4py
…
…
…

hello_world.py

How do I launch
a mpi4py script?

Assuming you are already in the script’s directory:
• module load python/2.7.9
• module load openmpi/1.8.4--gnu--4.9.2
• module load mpi4py/1.3.1--openmpi--1.8.4--gnu--4.9.2
• mpirun -np number_of_processes ./script.py

where number_of_processes is the number of MPI processes
you wish to launch and script.py is the script name

DO NOT FORGET the ‘./’ !!!
(otherwise mpirun will complain about missing input script)

MPI4PY primitives
•Broadcast

•Scatter

•Gather

•Send

•Receive

MPI Barrier

Send/Receive
• Send (data, dest, tag)

• data = Receive (source, tag, status)
where:

• data can be a python object (integer, string, list, array, dictionary, …)

• tag is an integer or MPI.ANY_TAG

• source is an integer or MPI.ANY_SOURCE

• status is an object containing futher info:
❑ Get_source() (in case we have not specified a source constraint)

❑ Get_tag() (in case we have not specified a tag constraint)

Scatter/Gather
• Scatter (data, root)

where
data is the data to send and
root is the rank of sending process

• received_data = Gather (send_data, root)
where
send_data is the data which has to be gathered,
root is the rank of sending process and
received_data is the data which is collected by root

Simple MPI4py Hello Program
#!/usr/bin/env python

import os
from mpi4py import MPI

if __name__ == '__main__':

Instantiate the communicator
comm = MPI.COMM_WORLD

Get the rank (id of the process)
rank = comm.Get_rank()

Get the size (# of processes)
size = comm.Get_size()

print("I am rank number " + str(rank))

if rank == 0:
 print("I am the master")

else:
 print("Hello master! I am slave number " + str(rank))

tflati@matrix:$ mpirun -np 10 ./hello_world.py
I am rank number 3
Hello master! I am slave number 3
I am rank number 0
I am the master
I am rank number 1
Hello master! I am slave number 1
I am rank number 2
Hello master! I am slave number 2
I am rank number 4
Hello master! I am slave number 4
I am rank number 9
Hello master! I am slave number 9
I am rank number 5
Hello master! I am slave number 5
I am rank number 8
Hello master! I am slave number 8
I am rank number 6
Hello master! I am slave number 6
I am rank number 7
Hello master! I am slave number 7

Simple MPI4py Hello Program
#!/usr/bin/env python

import os
from mpi4py import MPI

if __name__ == '__main__':

Instantiate the communicator
comm = MPI.COMM_WORLD

Get the rank (id of the process)
rank = comm.Get_rank()

Get the size (# of processes)
size = comm.Get_size()

print("I am rank number " + str(rank))

if rank == 0:
 print("I am the master")

else:
 print("Hello master! I am slave number " + str(rank))

Indicates to use the python executable
found in the user’s environment

Imports the mpy4py module

This command gives you access to the communicator

Gives you the rank of the process

Gives you the rank of the process

Execute a different code according to the process’
s rank.
Remember: each process executes exactly the
same program, so it’s up to us to differentiate the
behaviour of the processes by means of their rank

Print a different message for each process

But I do need to process big data!

MPI paradigms:
indipendent processes
• No master, n indipendent processes
• Each process takes the same, single input and calculates the fraction
of the input it should elaborate

3 5 10 2 5 12 45 76 27 11 89 4 5 5 28

P1 P2 P3 P4 P5

MPI paradigms:
indipendent processes
• No master, n indipendent processes
• A “master” process scatters the input across the available processes

3 5 10 2 5 12 45 76 27 11 89 4 5 5 28

P1 P2 P3 P4 P5

If using the primitive
‘scatter’ the input must
divide the MPI size!

MPI paradigms:
indipendent processes: scatter
• No master, n indipendent processes
• A “master” process scatters the input across the available processes

3 5 10 2 5 12 45 76 27 11 89 4 5 5 28

P1 P2 P3 P4 P5

What if the execution time depends
on the value of the input? (e.g.,
factorial, factorization, etc.)

MPI paradigms:
indipendent processes

It would be better if we could
assign/distribute new work to
processes which have already
finished their own computation

time

P1

P2

P3

P4

P5

MPI paradigms:
centralized dispatcher

• 1 master process, n-1 slaves
• The master process computes the set of objects to work on and sends a single
object to the available slave processes with a tag ‘PROCESS’

• On completion, each slave signals the master process with a special tag ‘IM_FREE’
• When all the input has been processed, the master sends a ‘STOP_WORKING’ tag
to all the slaves

3 5 10 2 5 12 45 76 27 11 89 4 5 5 28

M

P2 P3 P4 P5

3
5 10

2

PROCESS

PROCESS PROCESS

PROCESS

MPI paradigms:
centralized dispatcher

• 1 master process, n-1 slaves
• The master process computes the set of objects to work on and sends a single
object to the available slave processes with a tag ‘PROCESS’

• On completion, each slave signals the master process with a special tag ‘IM_FREE’
• When all the input has been processed, the master sends a ‘STOP_WORKING’ tag
to all the slaves

3 5 10 2 5 12 45 76 27 11 89 4 5 5 28

M

P2 P3 P4 P5

5 10
2

IM_FREE

PROCESS PROCESS

PROCESS

MPI paradigms:
centralized dispatcher

• 1 master process, n-1 slaves
• The master process computes the set of objects to work on and sends a single
object to the available slave processes with a tag ‘PROCESS’

• On completion, each slave signals the master process with a special tag ‘IM_FREE’
• When all the input has been processed, the master sends a ‘STOP_WORKING’ tag
to all the slaves

3 5 10 2 5 12 45 76 27 11 89 4 5 5 28

M

P2 P3 P4 P5

5
5 10

2

PROCESS

PROCESS PROCESS

PROCESS

MPI paradigms:
centralized dispatcher

• 1 master process, n-1 slaves
• The master process computes the set of objects to work on and sends a single
object to the available slave processes with a tag ‘PROCESS’

• On completion, each slave signals the master process with a special tag ‘IM_FREE’
• When all the input has been processed, the master sends a ‘STOP_WORKING’ tag
to all the slaves

3 5 10 2 5 12 45 76 27 11 89 4 5 5 28

M

P2 P3 P4 P5

5
5 10

PROCESS

PROCESS PROCESS

IM_FREE

MPI paradigms:
centralized dispatcher

• 1 master process, n-1 slaves
• The master process computes the set of objects to work on and sends a single
object to the available slave processes with a tag ‘PROCESS’

• On completion, each slave signals the master process with a special tag ‘IM_FREE’
• When all the input has been processed, the master sends a ‘STOP_WORKING’ tag
to all the slaves

3 5 10 2 5 12 45 76 27 11 89 4 5 5 28

M

P2 P3 P4 P5

5
5 10

12

PROCESS

PROCESS PROCESS

PROCESS

MPI paradigms:
centralized dispatcher

• 1 master process, n-1 slaves
• The master process computes the set of objects to work on and sends a single
object to the available slave processes with a tag ‘PROCESS’

• On completion, each slave signals the master process with a special tag ‘IM_FREE’
• When all the input has been processed, the master sends a ‘STOP_WORKING’ tag
to all the slaves

M

P2 P3 P4 P5

45
76

3 5 10 2 5 12 45 76 27 11 89 4 5 5 28

PROCESS
PROCESS5

12

PROCESS

PROCESS

MPI paradigms:
centralized dispatcher

• 1 master process, n-1 slaves
• The master process computes the set of objects to work on and sends a single
object to the available slave processes with a tag ‘PROCESS’

• On completion, each slave signals the master process with a special tag ‘IM_FREE’
• When all the input has been processed, the master sends a ‘STOP_WORKING’ tag
to all the slaves

M

P2 P3 P4 P5

3 5 10 2 5 12 45 76 27 11 89 4 5 5 28

STOP
STOP

STOP

STOP

Toy example: sum of array
•Input: an array of integers

•Goal: calculate the sum of the integers

•Output: an integer

3 5 10 2 5 12 45 76 27 11 89 4 5 5 28

18 19 148 104 39

gather

1

18 19 148 104 39

328

Constant number of
items to process! (i.
e., the MPI size)18 19 148 104 39 =

Real life problems: wc -l

•The serial program:
• opens the file
• reads one line at a time, incrementing a counter by 1

•A parallel implementation:
• “Split” the file into n chunks
• Identify a master process
• Each MPI process counts lines indipendently
• Finally, the master process sums the partial counts (gather)

Real life problems: wc -l

•A parallel implementation:
• “Split” the file into n chunks
• Identify a master process
• Each MPI process counts lines indipendently
• Finally, the master process sums the partial counts (gather)

Real life problems: wc -l

•A parallel implementation:
• “Split” the file into n chunks
• Identify a master process
• Each MPI process counts lines indipendently
• Finally, the master process sums the partial counts (gather)

• Get the size N of the file in
bytes

• Calculate n offsets N/(i+1)
(for i=0, 1, … n-1)

• Each slave process opens
the file, moves the file
pointer to the N/(i+1)-th
byte with a fseek

Real life problems: wc -l
rank = 0

rank = 1

rank = 2

rank = n -1

rank = n-2

rank = n-3

rank = n-4

...

count ‘\n’ characters

count ‘\n’ characters

count ‘\n’ characters

count ‘\n’ characters

count ‘\n’ characters

count ‘\n’ characters

count ‘\n’ characters

ci
split -d -l 10000

INPUT
TEXT
FILE

Real life problems: wc -l (optimization)

Rank 0

Rank i

Rank n-1

count ‘\n’ characters in
the virtual chunk

count ‘\n’ characters in
the virtual chunk

count ‘\n’ characters in
the virtual chunk

Real life problems: execution time
comparison

Real life problems: execution time
comparison

Real life problems: execution time
comparison

Real life problems: DNA alignment
Goal: Align reads to the human genome

Real life problems: DNA alignment

• Input:

• A genome (.fa)
• A collection of reads (short sequences of ATCG bases) (.fastq)

• Output:

• A binary file containing the positions of aligned reads (.bam)

• Usually a simple problem:
bowtie2 -1 $INPUT1 -2 $INPUT2 -S $OUTPUT -x $BOWTIE2_INDEX/genome \

-I 0 -X 2500 -p 20 --sam-RG SM:D754 --sam-RG LB:754 --sam-RG PU:P754 --sam-RG PL:Illumina-Nextseq --sam-RG ID:
id754

• Typical running time: ~1-2 hours

Real life problems: DNA alignment

• What if we have files
of +200 GB or
thousands of files
(unfortunately the
common case…)?

• How long?

Real life problems: DNA alignment

•But wait! Since the alignment of one read is indipendent
of the alignment of another read, the alignments can be
done in parallel!

Real life problems: DNA alignment

rank = 0

rank = 1

rank = 2

rank = n -1

rank = n-2

rank = n-3

rank = n-4

bowtie2 -1 chunk0

bowtie2 -1 chunk1

bowtie2 -1 chunk2

bowtie2 -1 chunkn-4

bowtie2 -1 chunkn-3

bowtie2 -1 chunkn-2

bowtie2 -1 chunkn-1

split -d -l 10000
samtools
merge

FASTQ
FILE

Further exercises
1. Re-implement wc -w

Given a file in input outputs the total number of words in the file

2. Re-implement grep ‘search_string’
Given a file in input outputs all the lines which match the search_string

3. Re-implement find -iname ‘search_pattern’
Given a directory outputs all the files whose name matches the search_pattern

4. Compress all files under a directory (e.g., by using zip)

5. Decompress all files under a directory (e.g., by using unzip)

6. Re-implement xargs command
Given a list of objects, applies command to each object (e.g., ‘ls | xargs cat’ concatenates all the files in the current
directory)

What if I want to have
mpi4py installed on my
own machine?

From a terminal:

pip install mpi4py

That’s it!

Thanks!
:-)

Clapping sound in the background...

Data
Where to get the material for this session:

/gpfs/scratch/userexternal/tflati00/summer_school/mpi4py

/gpfs/scratch/userexternal/tflati00/summer_school/mpi4py

├── data

│ ├── big_file.fastq

│ ├── huge_file.fastq

│ ├── little_file.txt

│ └── medium_file.fastq

├── hello_world

│ └── hello_world.py

└── wc

├── wc.py

└── wc.sh

