
Code Parallelization
a guided walk-through

f.salvadore@cineca.it

2016

Code Parallelization

two stages to write a parallel code

– problem domain
➔ algorithm

– program domain
➔ implementation

two stages to write a parallel code

– problem domain
➔ algorithm

– program domain
➔ implementation

Code Parallelization

Problem domain

• Naive iterative solver of Laplace equation for a variable
T
– Start with a Gaussian field
– Iterate replacing each value with the mean value of the four

neighboring points
– Stop when either the maximum amount of iterations or the

convergence is reached

Problem domain

– Analyze the algorithm (trivial for the Laplace
example):
•Is the serial algorithm suitable for a a distribute

parallel MPI implementation?
•Is the serial algorithm still the best wrt

performances for an MPI version of the code?

– Identify the most computationally demanding
parts of the problem
•But remember that an MPI parallelization is

difficult to develop incrementally

Concurrency

Find concurrency:

– similar operations that can be applied to different parts of the data
structure

– domain decomposition: divide data into chunks that can be
operated concurrently

➔ a task works only its chunk of data
➔ map local to global variables

Dependencies

Handle dependencies among tasks:

– Tasks needs access to some portion of another task local data (data
sharing)

– Understand the kind and the amount of communications among
processes required to make anything consistent

iXX

iY

0 1 n n+1

1

n

n+1

Computational
Domain

● The shape of
the matrixes
include ghost
(or halo) points
to handle (the
neighbour of)
boundary points

iXX

iY

0 1 n n+1

1

n

n+1

● Use a Cartesian
communicator to
manage the processes
and easily map them to
rectangular
subdomains

● Subdomains need
ghost points too
● Some of them are

the original ghost
points

● In addition there
are ghost points
among inter-
process
boundaries

0,0

1,1

1,0

0,1

iXX

iY

0 1 n n+1

1

n

n+1

1D versus 2D
decomposition

● Why a 2D
decomposition?

● Data to be
exchanged:

● 1D: 2N
● 2D:

4N/√N_proc
0,0

1,1

1,0

0,1

Program domain

2 different stages to parallelize a serial code

– problem domain
➔ algorithm

– program domain
➔ Implementation (the fun part)

Program domain

2 different stages to parallelize a serial code

– problem domain
➔ algorithm

– program domain
➔ Implementation (the fun part)

The serial code: Laplace equation

program laplace
 [… variable declarations …
]
 [… input parameters ...]
 [… allocate variables …]
 [… initialize field …]
 [… print initial output …]

 [… computational core
…]

 [… print final output …]
 [… deallocate variables …]
end program laplace

do while (var > tol .and. iter <= maxIter)
 iter = iter + 1
 var = 0.d0
 do j = 1, n
 do i = 1, n
 Tnew(i,j) = 0.25d0 * (T(i-1,j)+T(i+1,j)+
 T(i,j-1)+T(i,j+1))
 var = max(var, abs(Tnew(i,j) - T(i,j)))
 end do
 end do

 Tmp =>T; T =>Tnew; Tnew => Tmp;

 if(mod(iter,100) == 0) &
 write(*,"(a,i8,e12.4)") ' iter, variation:', iter, var

 end do

The tasks

• (1) Develop an MPI parallel version of the
laplace.f90/laplace.c serial codes (init and save
functions are in init_save.f90/c files)

• (a) Start with a basic MPI implementation using a Cartesian
topology and blocking communications

• (b) Try to enhance the solution using advanced features

• (2) Add the OMP parallelization to the blocking MPI
version to finally develop an hybrid MPI-OMP
implementation of the code

• Explore the different thread support levels

 MPI Basic - Hints / 1
• First create the Cartesian communicator

– And find the ranks of the neighboring processes

• Define the sizes of the domain for each rank
– Also define the offsets of the sub-domains with respect to the global domain
– If possible try to handle the remainders, otherwise force a constraint

• After that, init_field is easy to parallelize: ind2pos (the function
which maps the index to the position in the grid) remains
unchanged provided that the global indexes are passed to it

• The print function (save_gnuplot) parallelization
– might be postponed: check the error at each time step to know if the results are

correct
– to parallelize it, let the rank=0 collect all the fields and print (just for didactic

purposes) but the right way is using MPI I/O

• At each iteration update the ghost points with the boundary
points of the neighboring processes
– MPI_Sendrecv may be a good choice
– Declare, allocate and use buffers to perform the communications

MPI Basic - Hints / 2
• Initialize MPI:

– MPI_Init / MPI_Comm_rank / MPI_Comm_size

• Input
– Make only rank=0 read from input
– MPI_Bcast the 3 input numbers to all the processes

• Cartesian topology for processes
– MPI_Dims_create – decompose the number of processes in a rectangular way cart_dims(:)
– MPI_Cart_create – create the Cartesian communicator
– MPI_Comm_rank on the Cartesian communicator
– MPI_Cart_coords – find the coordinates of my process cart_coord(:)
– MPI_Cart_shift (in x and y) – find the ranks of neighboring processes

• Associate the cartesian topology to the computational grid
– Find for each process the sub-domain size and the start indexes wrt to the global domain (in x and

y): mymsize_x, mymsize_y, mystart_x, mystart_y
• mymsize_x = n/cart_dims(1)
• mystart_x = mymsize_x *cart_coord(1)

– Handle the remainders or force to be multiple (...)

• Allocate T, Tnew, and the buffers (4 send and 4 receive buffers), including the
ghost points (size=mymsize_x+2). Ghosts not needed for buffers.

• Declare everything you need!

MPI Basic - Hints / 3

• Parallelize init_fields
– Pass mystart_x,mystart_y,mymsize_x,mymsize_y as arguments
– Modify the loop bounds from 0 to mymsize_x/y+1
– Modify the call to ind2pos (pass ix+mystart_x instead of ix)

• Parallelize print function (save_gnuplot) parallelization
– to parallelize it, let the rank=0 collect all the fields and print ASCII

(just for didactic purposes)
– the right way would be MPI I/O

• To focus on MPI advanced features, parallel
versions of init_fields and save_gnuplot are
already provided

MPI Basic - Hints / 3

• Parallelize init_fields
– Pass mystart_x,mystart_y,mymsize_x,mymsize_y as arguments
– Modify the loop bounds from 0 to mymsize_x/y+1
– Modify the call to ind2pos (pass ix+mystart_x instead of ix)

• Parallelize print function (save_gnuplot) parallelization
– to parallelize it, let the rank=0 collect all the fields and print ASCII

(just for didactic purposes)
– the right way would be MPI I/O

• To focus on MPI advanced features, parallel
versions of init_fields and save_gnuplot are
already provided

MPI Basic - Hints / 4

• Main compute loop:
– Modify the loops bounds (from 1 to mymsize_x/y)
– MPI_Allreduce to the error variable (max among all the processes)
– You are ready to check the first results, just print the error variable

after one step: serial and parallel codes must give the same results

• To focus on MPI advanced features, the parallel
versions (except for communications) are already
provided

• Now you can start adding the communications
– Inside the main compute loop
– Usually just before the updates

MPI Basic - Hints / 5

• Communications
– 4 MPI_Sendrecv are enough: send to left + recv from right, send to

right + recv from left, send to top + recv from bottom, send to
bottom + recv from top

• E.g., send to left + recv from right
– Copy left boundary to a buffer
– Send to left and receive from right

• Copy back the received buffer
– A conditional statement is required: where and why?

MPI Basic - Hints / 6

• Now probably you will face problems
– Errors when compiling: check the arguments of MPI calls, the MPI

types, and for Fortran the kinds
– Start verifying that the MPI code still works using 1 processor

(mpirun -np 1 …)
– Then try to add the decomposition only on one dimension (mpirun

-np 2 …)
– You can check the residuals or you can also check the field to

understand the origin of the error

• Do not discourage! Parallelizing a code –even
simple – is not straightforward

MPI Advanced - Improvements

• So far we have a basic MPI parallelization of the original serial code
• Actually many improvements are possible

– which may be possibly mixed
– two common possibilities

Derived datatypes
Avoid copies on buffers
even for not contiguous

memory regions

Use non-blocking
Communications and

overlap them with
computations

MPI Advanced - (1) Overlap

communications with computations
• In spite of MPI_Sendrecv, non blocking MPI calls can

be employed
– MPI_Isend, MPI_Irecv, …

• But, how to make them useful to enhance the
scalability?
– Since the MPI communications are needed only for ghost nodes some

operations can be performed simultaneously
– Which operations? The operations which do not involve the ghost

points...

• As always, man (and the web, of course) is your friend:
man MPI_Init

(2) Using derived datatypes

• Restart from basic MPI version
• So far we have been using buffers as temporary storage for non-

contiguous memory regions to send/recv (rows for Fortran and
columns for C)

• But this can be avoided making the code more readable and
possibly improving the performances

• Create two MPI derived datatypes (actually just one is really
mandatory)
– A type for a matrix row: which type is needed in Fortran? And in C?
– A type for a matrix column: which type is needed in Fortran? And in C?

• Then send/recv only 1 element of this type
– No buffer is needed!
– Just pass to MPI_Sendrecv the first element of the submatrix to pass and specify

one element of the derived types to pass
– Hint: do not forget to commit the type after creation!

(1) MPI + OpenMP – Hints

• To mix MPI and OpenMP the simplest way is to open the OMP
parallel region just around the main computing loop (the
update iteration loop from T to Tnew)
– No direct interaction between MPI and OpenMP
– But MPI_THREAD_FUNNELED should be required according to the standard
– Actually MPI_THREAD_SINGLE (i.e., MPI_Init) also usually works (at least for

OpenMPI)
– 5 minutes should be enough to complete the hybridization

• Remember to add the openmp compilation option

(2) MPI + OpenMP – Hints

• But the parallel region may be enlarged to include the
MPI communications
– If the communications are performed by the master threads,

MPI_THREAD_FUNNELED is enough
– The communications may overlap with the computations: master

threads performs the communications and then update the
boundaries

– At the same time, the other threads start doing bulk updating
– Probably master threads collaborate after a while in doing that
– The OMP schedule should be modified accordingly

• Remember
– OMP master forces the code to be executed only by master thread
– And the other threads go on

(3) MPI + OpenMP – Hints

• The parallel region may be further enlarged
including the entire while loop
– MPI_THREAD_SERIALIZED must be employed
– Now we can overlap pointer exchange and the MPI reduction

for the error

• Some OMP barriers are needed: where and why?
• Use OMP single

– to do tasks which must be executed only by one thread: e.g.
“iter=iter+1”

– Or for the MPI_Allreduce

(4) MPI + OpenMP – Hints

• What about “each thread executing an MPI
communication”?
– You need MPI_THREAD_MULTIPLE support
– Each thread performs a send/recv: how to implement in OpenMP?
– The other threads immediately start the core updating loop...
– Then wait for the other threads to finish (how?) and update the

boundaries

Evaluating performances

• The different versions can lead to different results in
term of performances
– But the actual improvements depend on several factors
– And are probably limited for such a didactic example
– Testing in realistic scenarios is mandatory
– For our case let us consider a 5000x5000 grid

1 2 ... 256

MPI basic

Overlap

DDT

Evaluating performances / 2

• To evaluate the improvement given by the hybrid
programming the scaling evaluation can be more complex
– No improvement expected for such a simple case

 N_MPI
 /
N_OpenMP

1 2 ... 256

1

2

4

8

16

