
Vectorization
V. Ruggiero (v.ruggiero@cineca.it)

Roma, 20 July 2016
SuperComputing Applications and Innovation Department

Outline

Topics

Introduction

Data Dependencies

Overcoming limitations to SIMD-Vectorization

Vectorization

Parallelism

Data
Vectorization
Automatic
Directives/Pragmas
Libraries

⇓
SIMD

Thread/Task
Multi-Threading
OpenMP
TBB, CilkTM Plus
OpenCL
pthreads

⇓
Multicore Manycore

Process
Message Passing
MPI

⇓
Cluster

Topics covered

I What are the microprocessor vector extensions or SIMD (Single
Instruction Multiple Data Units)

I How to use them
I Through the compiler via automatic vectorization

I Manual transformations that enable vectorization
I Directives to guide the compiler

I Through intrinsics
I Main focus on vectorizing through the compiler

I Code more readable
I Code portable

Outline

Topics

Introduction

Data Dependencies

Overcoming limitations to SIMD-Vectorization

Vectorization

What is Vectorization?

I Hardware Perspective: Specialized instructions, registers, or
functional units to allow in-core parallelism for operations on arrays
(vectors) of data.

I Compiler Perspective: Determine how and when it is possible to
express computations in terms of vector instructions

I User Perspective: Determine how to write code in a manner that
allows the compiler to deduce that vectorization is possible.

What Happened To Clock Speed?

I Everyone loves to misquote Moore’s Law:
I "CPU speed doubles every 18 months."

I Correct formulation:
I "Available on-die transistor density doubles every 18 months."

I For a while, this meant easy increases in clock speed
I Greater transistor density means more logic space on a chip

Clock Speed Wasn’t Everything
I Chip designers increased

performance by adding
sophisticated features to
improve code efficiency.

I Branch-prediction hardware.
I Out-of-order and speculative

execution.
I Superscalar chips.
I Superscalar chips look like

conventional single-core chips
to the OS.

I Behind the scenes, they use
parallel instruction pipelines to
(potentially) issue multiple
instructions simultaneously.

SIMD Parallelism

I CPU designers had, in fact, been exposing explicit parallelism for a
while.

I MMX is an early example of a SIMD (Single Instruction Multiple
Data) instruction set.

I Also called a vector instruction set.
I Normal, scalar instructions operate on single items in memory.

I Can be different size in terms of bytes, of course.
I Standard x86 arithmetic instructions are scalar. (ADD, SUB, etc.)

I Vector instructions operate on packed vectors in memory.
I A packed vector is conceptually just a small array of values in

memory.
I A 128-bit vector can be two doubles, four floats, four int32s, etc.
I The elements of a 128-bit single vector can be thought of as v[0], v[1],

v[2], and v[3].

SIMD Parallelism

I Vector instructions are handled by an additional unit in the CPU core,
called something like a vector arithmetic unit.

I If used to their potential, they can allow you to perform the same
operation on multiple pieces of data in a single instruction.

I Single-Instruction, Multiple Data parallelism.
I Your algorithm may not be amenable to this...
I ... But lots are. (Spatially-local inner loops over arrays are a classic.)

I It has traditionally been hard for the compiler to vectorise code
efficiently, except in trivial cases.

I It would suck to have to write in assembly to use vector instructions...

Vector units

I Auto-vectorization is transforming sequential code to exploit the
SIMD (Single Instruction Multiple Data) instructions within the
processor to speed up execution times

I Vector Units performs parallel floating/integer point operations on
dedicate SIMD units

I Intel: MMX, SSE, SSE2, SSE3, SSE4, AVX
I Think vectorization in terms of loop unrolling
I Example: summing 2 arrays of 4 elements in one single instruction

C(0) = A(0) + B(0)
C(1) = A(1) + B(1)
C(2) = A(2) + B(2)
C(3) = A(3) + B(3)

no vectorization vectorization

SIMD - evolution

I SSE: 128 bit register (Intel Core - AMD Opteron)
I 4 floating/integer operations in single precision
I 2 floating/integer operations in double precision

I AVX: 256 bit register (Intel Sandy Bridge - AMD Bulldozer)
I 8 floating/integer operations in single precision
I 4 floating/integer operations in double precision

I MIC: 512 bit register (Intel Knights Corner - 2013)
I 16 floating/integer operations in single precision
I 8 floating/integer operations in double precision

Executing Our Simple Example

I Processors: Intel Haswell 2.40 GHz per node
I Accelerators: 2 Intel Phi 7120p per node

S000

for (i=0; i<LEN; i++)
c[i] = a[i] + b[i];

intel 16.0.3
scalar: 3.45
vector: 2.18
s.up: 1.58

gnu 4.9.2
scalar: 3.43
vector: 2.14
s.up: 1.60

pgi 16.3
scalar: 3.41
vector: 2.27
s.up: 1.50

MIC 16.0.3
scalar: 74.18
vector: 8.94
s.up: 8.30

How do we access the SIMD units?

I C or fortran code and
vectorizing compiler

I Macros or Vector Intrinsics

I Assembly Language

for (i=0; i<LEN; i++)
c[i] = a[i] + b[i];

void example(){
__m128 rA, rB, rC;
for (int i = 0; i <LEN; i+=4){
rA = _mm_load_ps(&a[i]);
rB = _mm_load_ps(&b[i]);
rC = _mm_add_ps(rA,rB);
_mm_store_ps(&C[i], rC);
}}

..B8.5
movaps a(,%rdx,4), %xmm0
addps b(,%rdx,4), %xmm0
movaps %xmm0, c(,%rdx,4)
addq $4, %rdx
cmpq $rdi, %rdx
ji ..B8.5

Vector-aware coding

I Know what makes vectorizable at all
I "for" loops (in C) or "do" loops (in fortran) that meet certain constraints

I Know where vectorization will help
I Evaluate compiler output

I Is it really vectorizing where you think it should?
I Evaluate execution performance

I Compare to theoretical speedup
I Know data access patterns to maximize efficiency
I Implement fixes: directives, compilation flags, and code changes

I Remove constructs that make vectorization impossible/impractical
I Encourage and (or) force vectorization when compiler doesn’t, but

should
I Better memory access patterns

Writing Vector Loops

I Basic requirements of vectorizable loops:
I Countable at runtime

I Number of loop iterations is known before loop executes
I No conditional termination (break statements)

I Have single control flow
I No Switch statements
I ’if’ statements are allowable when they can be implemented as masked

assignments
I Must be the innermost loop if nested

I Compiler may reverse loop order as an optimization!
I No function calls

I Basic math is allowed: pow(), sqrt(), sin(), etc
I Some inline functions allowed

When vectorization fails

I Not Inner Loop: only the inner loop of a nested loop may be
vectorized, unless some previous optimization has produced a
reduced nest level. On some occasions the compiler can vectorize
an outer loop, but obviously this message will not then be generated.

I Low trip count:The loop does not have sufficient iterations for
vectorization to be worthwhile.

I Vectorization possible but seems inefficient:the compiler has
concluded that vectorizing the loop would not improve performance.
You can override this by placing #pragma vector always (C C++)
or !dir$ vector always (Fortran) before the loop in question

I Contains unvectorizable statement: certain statements, such as
those involving switch and printf , cannot be vectorized

When vectorization fails
I Subscript too complex: an array subscript may be too complicated for

the compiler to handle. You should always try to use simplified
subscript expressions

I Condition may protect exception: when the compiler tries to vectorize
a loop containing an if statement, it typically evaluates the RHS
expressions for all values of the loop index, but only makes the final
assignment in those cases where the conditional evaluates to TRUE.
In some cases, the compiler may not vectorize because the condition
may be protecting against accessing an illegal memory address. You
can use the #pragma ivdep to reassure the compiler that the
conditional is not protecting against a memory exception in such
cases.

I Unsupported loop Structure: loops that do not fulfill the requirements
of countability, single entry and exit, and so on, may generate these
messages

https://software.intel.com/en-us/articles/
vectorization-diagnostics-for-intelr-c-compiler-150-and-above

When vectorization fails

I Operator unsuited for vectorization: Certain operators, such as the %
(modulus) operator, cannot be vectorized

I Non-unit stride used: non-contiguous memory access.
I Existence of vector dependence: vectorization entails changes in the

order of operations within a loop, since each SIMD instruction
operates on several data elements at once. Vectorization is only
possible if this change of order does not change the results of the
calculation

Vectorized loops? (intel compiler)

I Vectorization is enabled by the flag -vec and by default at -O2.

-vec-report[N] (deprecated)
-qopt-report[=N] -qopt-report-phase=vec

N Diagnostic Messages
0 No diagnostic messages; same as not using switch

and thus default
1 Tells the vectorizer to report on vectorized loops.
2 Tells the vectorizer to report on vectorized

and non-vectorized loops.
3 Tells the vectorizer to report on vectorized

and non-vectorized loops and any proven
or assumed data dependencies.

4 Tells the vectorizer to report on non-vectorized loops.
5 Tells the vectorizer to report on non-vectorized loops

and the reason why they were not vectorized.
6 Tells the vectorizer to use greater detail when reporting

on vectorized and non-vectorized loops and any proven
or assumed data dependencies.

7 Tells the vectorizer to emit vector code quality message ids
and corresponding data values for vectorized loops.
It provides information such as the expected speedup,
memory access patterns, and the number of vector idioms
for vectorized loops.

Vectorized loops?

gnu compiler

I Vectorization is enabled by the flag -ftree-vectorize and by default at
-O3.

-ftree-vectorizer-verbose=[N] (deprecated)
-fopt-info-vec

pgi compiler

I Vectorization is enabled by the flag -Mvec and by default at -fast or
-fastsse .

-Minfo-vec

Vectorization Report (intel compiler):example

ifort -O3 -qopt-report=5

LOOP BEGIN at matmat.F90(51,1)
remark #25427: Loop Statements Reordered
remark #15389: vectorization support: reference C has unaligned access
remark #15389: vectorization support: reference B has unaligned access

[matmat.F90(50,1)]
remark #15389: vectorization support: reference A has unaligned access

[matmat.F90(49,1)]
remark #15381: vectorization support: unaligned access used inside loop body

[matmat.F90(49,1)]
remark #15301: PERMUTED LOOP WAS VECTORIZED
remark #15451: unmasked unaligned unit stride stores: 3
remark #15475: --- begin vector loop cost summary ---
remark #15476: scalar loop cost: 229
remark #15477: vector loop cost: 43.750
remark #15478: estimated potential speedup: 5.210
remark #15479: lightweight vector operations: 24
remark #15480: medium-overhead vector operations: 2
remark #15481: heavy-overhead vector operations: 1
remark #15482: vectorized math library calls: 2
remark #15487: type converts: 2
remark #15488: --- end vector loop cost summary ---
remark #25015: Estimate of max trip count of loop=28

LOOP END

When vectorization fails

I Programmers need to provide the necessary information
I Programmers need to transform the code

I Add compiler directives
I Transform the code
I Program using vector intrinsics

Example code

I Added an outer loop that runs (serially)
I to increase the running time of the loop

I Call a dummy () function that is compiled separately
I to avoid loop interchange or dead code elimination

I Access the elements of one output array and print the result
I to avoid dead code elimination

time1 = time();

for (j=0; j<200000; j++){

for (i=0; i<32000; i++)
c[i] = a[i] + b[i];

dummy()
}

time2 = time();

for (j=0; j<32000; j++)
ret+= a[i];
printf (" Time %f , result %f ", (time2-time1), ret) ;

Example code

I Added an outer loop that runs (serially)
I to increase the running time of the loop

I Call a dummy () function that is compiled separately
I to avoid loop interchange or dead code elimination

I Access the elements of one output array and print the result
I to avoid dead code elimination

time1 = time();
for (j=0; j<200000; j++){
for (i=0; i<32000; i++)
c[i] = a[i] + b[i];

dummy()

}
time2 = time();

for (j=0; j<32000; j++)
ret+= a[i];
printf (" Time %f , result %f ", (time2-time1), ret) ;

Example code

I Added an outer loop that runs (serially)
I to increase the running time of the loop

I Call a dummy () function that is compiled separately
I to avoid loop interchange or dead code elimination

I Access the elements of one output array and print the result
I to avoid dead code elimination

time1 = time();
for (j=0; j<200000; j++){
for (i=0; i<32000; i++)
c[i] = a[i] + b[i];
dummy()
}
time2 = time();

for (j=0; j<32000; j++)
ret+= a[i];
printf (" Time %f , result %f ", (time2-time1), ret) ;

Example code

I Added an outer loop that runs (serially)
I to increase the running time of the loop

I Call a dummy () function that is compiled separately
I to avoid loop interchange or dead code elimination

I Access the elements of one output array and print the result
I to avoid dead code elimination

time1 = time();
for (j=0; j<200000; j++){
for (i=0; i<32000; i++)
c[i] = a[i] + b[i];
dummy()
}
time2 = time();
for (j=0; j<32000; j++)
ret+= a[i];
printf (" Time %f , result %f ", (time2-time1), ret) ;

Compiler directives

void test(float*

__restrict__

A,
float*

__restrict__

B,
float*

__restrict__

C,
float*

__restrict__

D,
float*

__restrict__

E)
{
for (int i = 0; i <LEN; i++){
A[i]=B[i]+C[i]+D[i]+E[i];
}

}

Compiler directives

void test(float* __restrict__ A,
float* __restrict__ B,
float* __restrict__ C,
float* __restrict__ D,
float* __restrict__ E)

{
for (int i = 0; i <LEN; i++){
A[i]=B[i]+C[i]+D[i]+E[i];
}

}

Compiler directives

S1111

void test(float* __restrict__ A,
float* __restrict__ B,
float* __restrict__ C,
float* __restrict__ D,
float* __restrict__ E)

{
for (int i = 0; i <LEN; i++){
A[i]=B[i]+C[i]+D[i]+E[i];
}

}

intel 16.0.3
scalar: 2.41
vector: 1.36
s.up: 1.77

gnu 4.9.2
scalar: 2.41
vector: 1.41
s.up: 1.71

pgi 16.3
scalar: 2.41
vector: 1.33
s.up: 1.81

MIC 16.0.3
scalar: 47.97
vector: 30.51
s.up: 1.57

Loop Transformations

S136

for (int i = 0; i < LEN2; i++){
float sum = (float)0.0;
for (int j = 0; j < LEN2; j++){
sum += aa[j][i];

}
e[i] = sum;

}

intel 16.0.3
scalar: 2.50
vector: 2.74
s.up: 0.91

gnu 4.9.2
scalar: 2.61
vector: 0.66
s.up: 3.95

pgi 16.3
scalar: 2.94
vector: 2.15
s.up: 1.37

MIC 16.0.3
scalar: 43.62
vector: 129.34
s.up: 0.33

Loop Transformations

S136_1

for (int i = 0; i < LEN2; i++){
sum[i] = (float)0.0;
for (int j = 0; j < LEN2; j++){
sum[i] += aa[j][i];

}
e[i] = sum[i];

}

intel 16.0.3
scalar: 2.65
vector: 2.76
s.up: 0.96

gnu 4.9.2
scalar: 2.61
vector: 0.65
s.up: 4.01

pgi 16.3
scalar: 3.07
vector: 0.27
s.up: 11.37

MIC 16.0.3
scalar: 43.72
vector: 129.88
s.up: 0.33

Loop Transformations

S136_2

for (int i = 0; i < LEN2; i++)
e[i] = (float)0.0;

for (int j = 0; j < LEN2; j++){
for (int i = 0; i < LEN2; i++){
e[i] += aa[j][i];

}
}

intel 16.0.3
scalar: 1.01
vector: 0.29
s.up: 3.48

gnu 4.9.2
scalar: 1.00
vector: 0.37
s.up: 2.70

pgi 16.3
scalar: 0.98
vector: 0.27
s.up: 3.63

MIC 16.0.3
scalar: 21.93
vector: 2.66
s.up: 8.24

Intrinsics (SSE)
#define n 1024
__attribute__ ((aligned(16))) float a[n], b[n], c[n];
int main() {
for (i = 0; i < n; i++) {
c[i]=a[i]*b[i];
}
}

⇓

#include <xmmintrin.h>
#define n 1024
__attribute__((aligned(16))) float a[n], b[n], c[n];
int main() {
__m128 rA, rB, rC;
for (i = 0; i < n; i+=4) {
rA = _mm_load_ps(&a[i]);
rB = _mm_load_ps(&b[i]);
rC= _mm_mul_ps(rA,rB);
_mm_store_ps(&c[i], rC);
}}

Outline

Topics

Introduction

Data Dependencies

Overcoming limitations to SIMD-Vectorization

Vectorization

Data Dependencies

I The notion of dependence is the foundation of the process of
vectorization.

I It is used to build a calculus of program transformations that can be
applied manually by the programmer or automatically by a compiler

Definition of Dependencies

I Statement S is said to be data dependent on statement T if
I T executes before S in the original sequential/scalar program
I S and T access the same data item
I At least one of the accesses is a write

Data Dependencies

I Read after write: When a variable is written in one iteration and read
in a subsequent iteration, also known as a flow dependency:

A[0]=0;
for (j=1; j<MAX; j++)
A[j]=A[j-1]+1;
// this is equivalent to:
A[1]=A[0]+1; A[2]=A[1]+1; A[3]=A[2]+1; A[4]=A[3]+1;

I The above loop cannot be vectorized safely because if the first two
iterations are executed simultaneously by a SIMD instruction, the
value of A[1] may be used by the second iteration before it has been
calculated by the first iteration which could lead to incorrect results.

Data Dependencies

I Write-after-read: When a variable is read in one iteration and written
in a subsequent iteration, sometimes also known as an
anti-dependency

for (j=1; j<MAX; j++)
A[j-1]=A[j]+1;
// this is equivalent to:
A[0]=A[1]+1; A[1]=A[2]+1; A[2]=A[3]+1; A[3]=A[4]+1;

I This is not safe for general parallel execution, since the iteration with
the write may execute before the iteration with the read. However, for
vectorization, no iteration with a higher value of j can complete before
an iteration with a lower value of j, and so vectorization is safe (i.e.,
gives the same result as non- vectorized code) in this case.

Data Dependencies

I Read-after-read: These situations aren’t really dependencies, and do
not prevent vectorization or parallel execution. If a variable is not
written, it does not matter how often it is read.

I Write-after-write: Otherwise known as ’output’ dependencies, where
the same variable is written to in more than one iteration, are in
general unsafe for parallel execution, including vectorization.

Data Dependencies

I Dependencies indicate an execution order that must be honored.
I Executing statements in the order of the dependencies guarantee

correct results.
I Statements not dependent on each other can be reordered, executed

in parallel, or coalesced into a vector operation.

Data Dependencies and vectorization

I A statement inside a loop which is not in a cycle of the dependence
graph can be vectorized

I When cycles are present, vectorization can be achieved by:
I Separating (distributing) the statements not in a cycle
I Removing dependencies
I Freezing loops
I Changing the algorithm

Distributing

for (i=1; i<n; i++){
b[i] = b[i] + c[i];
a[i] = a[i-1]*a[i-2]+b[i];
c[i] = a[i] + 1;
}

b[1:n-1] = b[1:n-1] + c[1:n-1];
for (i=1; i<n; i++){
a[i] = a[i-1]*a[i-2]+b[i];
}
c[1:n-1] = a[1:n-1] + 1;

Removing dependencies

for (i=0; i<n; i++){
a = b[i] + 1;
c[i] = a + 2;

for (i=0; i<n; i++){
a’[i] = b[i] + 1;
c[i] = a’[i] + 2;
}
a=a’[n-1]

a’[0:n-1] = b[0:n-1] + 1;
c[0:n-1] = a’[0:n-1] + 2;
a=a’[n-1]

Freezing Loops

for (i=1; i<n; i++) {
for (j=1; j<n; j++) {
a[i][j]=a[i][j]+a[i-1][j];
}
}

for (i=1; i<n; i++) {
a[i][1:n-1]=a[i][1:n-1]+a[i-1][1:n-1];
}

Changing the algorithm

I When there is a recurrence, it is necessary to change the algorithm
in order to vectorize.

I Compiler use pattern matching to identify the recurrence and then
replace it with a parallel version.

I Examples or recurrences include:
I Reductions (S+=A[i])
I Linear recurrences (A[i]=B[i]*A[i-1]+C[i])
I Boolean recurrences (if (A[i]>max) max = A[i])

Changing the algorithm

a[0]=b[0];
for (i=1; i<n; i++)
a[i]=a[i-1]+b[i];

a[0:n-1]=b[0:n-1];
for (i=0;i<k;i++) /* n = 2 k */
a[2**i:n-1]=a[2**i:n-1]+b[0:n-2**i];

Changing the algorithm

I Different algorithm for the same problem could be vectorazable or not

I Gauss-Seidel: data dependencies, can not be vectorized

for(i = 1; i < n-1; ++i)
for(j = 1; j < m-1; ++j)
a[i][j] = w0 * a[i][j] +
w1*(a[i-1][j] + a[i+1][j] + a[i][j-1] + a[i][j+1]);

I Jacobi: no data dependence, can be vectorized

for(i = 1; i < n-1; ++i)
for(j = 1; j < m-1; ++j)

b[i][j] = w0*a[i][j] +
w1*(a[i-1][j] + a[i][j-1] + a[i+1][j] + a[i][j+1]);

for(i = 1; i < n-1; ++i)
for(j = 1; j < m-1; ++j)

a[i][j] = b[i][j];

Stripmining

I Stripmining is a simple transformation

for (i=1; i<n; i++){
...
}

/* n is a multiple of q */
for (k=1; k<n; k+=q){
for (i=k; i<k+q-1; i++){
...
}
}

I It is typically used to improve locality.

Stripmining

for (i=1; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i] + 2;
}

Striminine

for (k=1; k<n; k+=q){
/* q could be size of vector register */
for (i=k; i < k+q; i++){
a[i] = b[i] + 1;
c[i] = a[i-1] + 2;
}
}

Vectorize

for (i=1; i<n; i+=q){
a[i:i+q-1] = b[i:i+q-1] + 1;
c[i:i+q-1] = a[i:i+q] + 2;
}

Outline

Topics

Introduction

Data Dependencies

Overcoming limitations to SIMD-Vectorization
Data Dependencies
Data Alignment
Aliasing
Non-unit strides
Conditional Statements

Vectorization

Loop Vectorization

I Loop Vectorization is not always a legal and profitable transformation.
I Compiler needs:

I The compiler figures out dependencies by
I Compute the dependencies

I Solving a system of (integer) equations (with constraints)
I Demonstrating that there is no solution to the system of equations

I Remove cycles in the dependence graph
I Determine data alignment
I Vectorization is profitable

Outline

Topics

Introduction

Data Dependencies

Overcoming limitations to SIMD-Vectorization
Data Dependencies
Data Alignment
Aliasing
Non-unit strides
Conditional Statements

Vectorization

Dependence Graphs

I Acyclic Dependence Graphs (ADG):
I All dependencies are forward:

I Vectorized by the compiler
I Some backward dependencies:

I Sometimes vectorized by the compiler

I Cycles in the Dependence Graph (CDG)
I Self-antidependence:

I Vectorized by the compiler
I Recurrence:

I Usually vectorized by the compiler
I Other examples

ADG: Forward Dependencies

S113

for (i=0; i<LEN; i++) {
a[i]= b[i] + c[i]
d[i] = a[i] + (float) 1.0;
}

intel 16.0.3
scalar: 6.61
vector: 3.52
s.up: 1.88

gnu 4.9.2
scalar: 6.59
vector: 4.90
s.up: 1.34

pgi 16.3
scalar: 6.61
vector: 4.56
s.up: 1.45

MIC 16.0.3
scalar: 106.33
vector: 14.77
s.up: 7.20

ADG: Backward Dependencies reordering
S114

for (i=0; i<LEN; i++) {
a[i]= b[i] + c[i];
d[i] = a[i+1]+(float)1.0;
}

S114_1

for (i=0; i<LEN; i++) {
d[i] = a[i+1]+(float)1.0;
a[i]= b[i] + c[i];
}

S114
intel 16.0.3
scalar: 6.55
vector: 4.01
s.up: 1.63

gnu 4.9.2
scalar: 6.66
vector: ...
s.up: ...

pgi 16.3
scalar: 6.64
vector: ...
s.up: ...

MIC 16.0.3
scalar: 111.3
vector: 14.88
s.up: 7.48

S114_1
intel 16.0.3
scalar: 6.55
vector: 4.01
s.up: 1.63

gnu 4.9.2
scalar: 6.63
vector: 4.21
s.up: 1.57

pgi 16.3
scalar: 6.63
vector: 4.28
s.up: 1.55

MIC 16.0.3
scalar: 111.50
vector: 14.88
s.up: 7.49

ADG: Backward Dependencies reordering II
S214

for (int i=1;i<LEN;i++) {
a[i]=d[i-1]+(float)sqrt(c[i]);
d[i]=b[i]+(float)sqrt(e[i]);
}

S214_1

for (int i=1;i<LEN;i++) {
d[i]=b[i]+(float)sqrt(e[i]);
a[i]=d[i-1]+(float)sqrt(c[i]);
}

S214
intel 16.0.3
scalar: 1.42
vector: 0.51
s.up: 2.78

gnu 4.9.2
scalar: 2.61
vector: ...
s.up: ...

pgi 16.3
scalar: 2.83
vector: ...
s.up: ...

MIC 16.0.3
scalar: 16.80
vector: 1.40
s.up: 12.0

S214_1
intel 16.0.3
scalar: 1.43
vector: 0.51
s.up: 2.80

gnu 4.9.2
scalar: 2.61
vector: ...
s.up: ...

pgi 16.3
scalar: 2.83
vector: ...
s.up: ...

MIC 16.0.3
scalar: 16.82
vector: 1.40
s.up: 12.0

ADG: I

S115

for (int i=0;i<LEN-1;i++){
b[i] = a[i] + (float) 1.0;
a[i+1] = b[i] + (float) 2.0;
}

intel 16.0.3
scalar: 12.04
vector: ...
s.up: ...

gnu 4.9.2
scalar: 12.04
vector: ...
s.up: ...

pgi 16.3
scalar: 12.79
vector: ...
s.up: ...

MIC 16.0.3
scalar: 68.13
vector: ...
s.up: ...

ADG: II

S116

for (int i=1;i<LEN;i++){
a[i] = b[i] + c[i];
d[i] = a[i] + e[i-1];
e[i] = d[i] + c[i];
}

intel 16.0.3
scalar:
12.05
vector: ...
s.up: ...

gnu 4.9.2
scalar:
12.05
vector: ...
s.up: ...

pgi 16.3
scalar:
13.57
vector: ...
s.up: ...

MIC 16.0.3
scalar:
197.88
vector: ...
s.up: ...

ADG: III 1

S117

for (int i=0;i<LEN-1;i++){
a[i]=a[i+1]+b[i];
}

intel 16.0.3
scalar: 3.05
vector: 1.26
s.up: 2.42

gnu 4.9.2
scalar: 2.87
vector: 1.43
s.up: 2.01

pgi 16.3
scalar: 2.92
vector: 1.29
s.up: 2.26

MIC 16.0.3
scalar: 62.72
vector: 5.72
s.up: 10.98

ADG: III 2

S118

for (int i=1;i<LEN;i++){
a[i]=a[i-1]+b[i];
}

intel 16.0.3
scalar: 6.02
vector: ...
s.up: ...

gnu 4.9.2
scalar: 6.03
vector: ...
s.up: ...

pgi 16.3
scalar: 6.77
vector: ...
s.up: ...

MIC 16.0.3
scalar: 57.60
vector: ...
s.up: ...

ADG: IV

S119

for (int i=4;i<LEN;i++){
a[i]=a[i-4]+b[i];
}

intel 16.0.3
scalar: 3.21
vector: 2.25
s.up: 1.41

gnu 4.9.2
scalar: 4.54
vector: 1.54
s.up: 2.95

pgi 16.3
scalar: 2.74
vector: ...
s.up: ...

MIC 16.0.3
scalar: 68.04
vector: 28.34
s.up: 2.91

ADG: V

S121

for (int i = 0; i < LEN-1; i++) {
for (int j = 0; j < LEN; j++)
a[i+1][j] = a[i][j] + 1;
}

intel 16.0.3
scalar: 5.09
vector: 2.13
s.up: 2.39

gnu 4.9.2
scalar: 7.82
vector: 2.24
s.up: 3.49

pgi 16.3
scalar: 4.66
vector: 2.24
s.up: 2.08

MIC 16.0.3
scalar: 81.62
vector: 18.65
s.up: 4.38

ADG: VI 1

S122

for (int i=0;i<LEN;i++){
a[r[i]]=a[r[i]]*(float)2.0;
}

intel 16.0.3
scalar: 2.77
vector: ...
s.up: ...

gnu 4.9.2
scalar: 3.10
vector: ...
s.up: ...

pgi 16.3
scalar: 2.65
vector: ...
s.up: ...

MIC 16.0.3
scalar: 56.38
vector: ...
s.up: ...

ADG: VI 2

S123

for (int i=0;i<LEN;i++){
r[i] = i;
a[r[i]]=a[r[i]]*(float)2.0;
}

intel 16.0.3
scalar: 3.36
vector: ...
s.up: ...

gnu 4.9.2
scalar: 3.49
vector: 1.16
s.up: 3.01

pgi 16.3
scalar: 3.28
vector: ...
s.up: ...

MIC 16.0.3
scalar: 58.77
vector: ...
s.up: ...

Loop Transformations

I Compiler Directives
I Loop Distribution or loop fission
I Node Splitting
I Scalar expansion
I Loop Peeling
I Loop Fusion
I Loop Unrolling
I Loop Interchanging

Compiler Directives I

I When the compiler does not vectorize automatically due to
dependencies the programmer can inform the compiler that it is safe
to vectorize

I #pragma ivdep:this tells the compiler to ignore vector
dependencies in the loop that immediately follows the
directive/pragma. However, this is just a recommendataion, and the
compiler will not vectorize the loop if there is a clear dependency.

I Use #pragma ivdep only when you know that the assumed loop
dependencies are safe to ignore.

Compiler Directives I

S124

for (int i=0;i<LEN-k;i++)
a[i]=a[i+k]+b[i];

S124_1

if (k>=0)
for (int i=0;i<LEN-k;i++)
a[i]=a[i+k]+b[i];
if (k<0)
for (int i=0);i<LEN-k;i++)
a[i]=a[i+k]+b[i];

S124
intel 16.0.3
scalar: 3.04
vector: ...
s.up: ...

gnu 4.9.2
scalar: 3.75
vector: ...
s.up: ...

pgi 16.3
scalar: 2.75
vector: ...
s.up: ...

MIC 16.0.3
scalar: 85.73
vector: ...
s.up: ...

S124_1
intel 16.0.3
scalar: 3.03
vector: ...
s.up: ...

gnu 4.9.2
scalar: 4.06
vector: 3.74
s.up: 1.08

pgi 16.3
scalar: 2.74
vector: ...
s.up: ...

MIC 16.0.3
scalar: 85.73
vector: ...
s.up: ...

Compiler Directives I

S124_2

if (k>=0)
#pragma ivdep
for (int i=0;i<LEN-k;i++)
a[i]=a[i+k]+b[i];
if (k<0)
for (int i=0);i<LEN-k;i++)
a[i]=a[i+k]+b[i];

intel 16.0.3
scalar: 2.80
vector: 1.41
s.up: 1.98

gnu 4.9.2
scalar: 3.74
vector: ...
s.up: ...

pgi 16.3
scalar: 2.75
vector: 1.29
s.up: 2.13

MIC 16.0.3
scalar: 84.81
vector: 7.39
s.up: 11.48

Compiler Directives II

I #pragma vector: This overrides default heuristics for vectorization
of the loop. You can provide a clause for a specific task. For
example, it will try to vectorize the immediately-following loop that the
compiler normally would not vectorize because of a performance
efficiency reason. As another example.

I #pragma novector: This tells the compiler to disable vectorizaton
for the loop that follows

I You can use #pragma vector always to override any efficiency
heuristics during the decision to vectorize or not, and to vectorize
non-unit strides or unaligned memory accesses. The loop will be
vectorized only if it is safe to do so. The outer loop of a nest of loops
will not be vectorized, even if #pragma vector always is placed
before it

Compiler Directives III

I #pragma simd: This is used to enforce vectorization for a loop that
the compiler doesn’t auto-vectorize even with the use of vectorization
hints such as #pragma vector always or #pragma ivdep.
Because of this nature of enforcement, it is called user-mandated
vectorization. A clause can be accompanied to give a more specific
direction (see documentation).

#pragma ivdep versus #pragma simd

I #pragma ivdep
I Implicit vectorization
I Notifies the compiler about the absence of pointer aliasing
I Based on practicability and costs, the compiler decides about

vectorization
I #pragma simd

I Explicit
I Enforces vectorization rergardless of the costs
I If no parameter is provided, the vector length of the SIMD unit is

assumed

Loop Distribution

S216

for (int i = 0; i < LEN; i++) {
a[i] = (float)sqrt(b[i]) + (float)sqrt(c[i]);
s216_dummy(a,b,c);

}
}

intel 16.0.3
scalar: 1.41
vector: ...
s.up: ...

gnu 4.9.2
scalar: 1.70
vector: ...
s.up: ...

pgi 16.3
scalar: 2.82
vector: ...
s.up: ...

MIC 16.0.3
scalar: 18.70
vector: ...
s.up: ...

Loop Distribution

S216_1

for (int i = 0; i < LEN; i++) {
a[i] = (float)sqrt(b[i]) + (float)sqrt(c[i]);

}
for (int i = 0; i < LEN; i++) {
s216_dummy(a,b,c);

}

intel 16.0.3
scalar: 1.93
vector: 0.74
s.up: 2.61

gnu 4.9.2
scalar: 2.40
vector: ...
s.up: ...

pgi 16.3
scalar: 3.34
vector: ...
s.up: ...

MIC 16.0.3
scalar: 17.35
vector: 3.76
s.up: 4.61

Node Splitting
S126

for (int i=0;i<LEN-1;i++){
a[i]=b[i]+c[i];
d[i]=(a[i]+a[i+1])*(float)0.5;
}

S126_1

for (int i=0;i<LEN-1;i++){
e[i]=a[i+1];
a[i]=b[i]+c[i];
d[i]=(a[i]+e[i])*(float)0.5;
}

S126
intel 16.0.3
scalar: 10.46
vector: 4.67
s.up: 2.24

gnu 4.9.2
scalar: 6.81
vector: ...
s.up: ...

pgi 16.3
scalar: 6.66
vector: ...
s.up: ...

MIC 16.0.3
scalar: 199.22
vector: 45.80
s.up: 4.35

S126_1
intel 16.0.3
scalar: 10.10
vector: 5.45
s.up: 1.85

gnu 4.9.2
scalar: 10.08
vector: 6.32
s.up: 1.59

pgi 16.3
scalar: 8.90
vector: 6.10
s.up: 1.46

MIC 16.0.3
scalar: 214.53
vector: 23.23
s.up: 9.23

Scalar Expansion
S139

for (int i=0;i<n;i++){
t = a[i];
a[i] = b[i];
b[i] = t;
}

S139_1

for (int i=0;i<n;i++){
t[i] = a[i];
a[i] = b[i];
b[i] = t[i];
}

S139
intel 16.0.3
scalar: 0.44
vector: 0.18
s.up: 2.44

gnu 4.9.2
scalar: 0.44
vector: 0.19
s.up: 2.31

pgi 16.3
scalar: 0.46
vector: 0.19
s.up: 2.42

MIC 16.0.3
scalar: 6.55
vector: 0.57
s.up: 11.49

S139_1
intel 16.0.3
scalar: 0.44
vector: 0.18
s.up: 2.44

gnu 4.9.2
scalar: 0.44
vector: 0.19
s.up: 2.31

pgi 16.3
scalar: 0.66
vector: 0.39
s.up: 1.69

MIC 16.0.3
scalar: 11.66
vector: 1.24
s.up: 9.40

Loop Peeling

I Remove the first/s or the last/s iteration of the loop into separate
code outside the loop

I It is always legal, provided that no additional iterations are
introduced.

I This transformation is useful to enforce a particular initial memory
alignment on array references prior to loop vectorization

Loop Peeling

S127

for (int i=0;i<LEN;i++){
a[i] = a[i] + a[0];

}

S127_1

a[0]= a[0] + a[0];
for (int i=1;i<LEN;i++){
a[i] = a[i] + a[0]
}

S127
intel 16.0.3
scalar: 3.01
vector: ...
s.up: ...

gnu 4.9.2
scalar: 2.58
vector: ...
s.up: ...

pgi 16.3
scalar: 2.29
vector: ...
s.up:

MIC 16.0.3
scalar: 62.11
vector: ...
s.up: ...

S127_1
intel 16.0.3
scalar: 2.53
vector: 1.00
s.up: 2.53

gnu 4.9.2
scalar: 3.19
vector: ...
s.up: ...

pgi 16.3
scalar: 2.31
vector: ...
s.up: ...

MIC 16.0.3
scalar: 47.08
vector: 4.33
s.up: 10.87

Loop Interchanging
S228

for (j=1; j<LEN; j++){
for (i=j; i<LEN; i++){
A[i][j]=A[i-1][j]+(float)1.0;

}}

S228_1

for (i=j; i<LEN; i++){
for (j=1; j<LEN; j++){
A[i][j]=A[i-1][j]+(float)1.0;

}}

S228
intel 16.0.3
scalar: 2.03
vector: ...
s.up: ...

gnu 4.9.2
scalar: 2.05
vector: ...
s.up: ...

pgi 16.3
scalar: 2.17
vector: ...
s.up: ...

MIC 16.0.3
scalar: 14.74
vector: 31.05
s.up: 0.47

S228_1
intel 16.0.3
scalar: 0.23
vector: 0.16
s.up: 1.77

gnu 4.9.2
scalar: 0.48
vector: 0.14
s.up: 3.43

pgi 16.3
scalar: 0.25
vector: 0.13
s.up: 1.92

MIC 16.0.3
scalar: 2.84
vector: 1.09
s.up: 2.60

Reductions

S131

sum =0;
for (int i=0;i<LEN;++i){
sum+= a[i];
}

intel 16.0.3
scalar: 3.01
vector: 0.55
s.up: 5.47

gnu 4.9.2
scalar: 6.01
vector: 1.50
s.up: 4.00

pgi 16.3
scalar: 6.01
vector: 0.76
s.up: 7.91

MIC 16.0.3
scalar: 31.39
vector: 2.20
s.up: 14.27

Reductions

S132

x = a[0];
index = 0;
for (int i=0;i<LEN;++i){
if (a[i] > x) {
x = a[i];
index = i;
}}

intel 16.0.3
scalar: 6.02
vector: 2.01
s.up: 2.99

gnu 4.9.2
scalar: 4.02
vector: ...
s.up: ...

pgi 16.3
scalar: 4.02
vector: ...
s.up: ...

MIC 16.0.3
scalar: 60.14
vector: 4.98
s.up: 12.08

Induction variables

I Induction variable is a variable that can be expressed as a function of
the loop iteration variable

S133

float s = (float)0.0;
for (int i=0;i<LEN;i++){
s += (float)2.;
a[i] = s * b[i];
}

intel 16.0.3
scalar: 4.05
vector: 1.56
s.up: 2.60

gnu 4.9.2
scalar: 6.23
vector: 1.64
s.up: 3.80

pgi 16.3
scalar: 6.21
vector: ...
s.up: ...

MIC 16.0.3
scalar: 57.63
vector: 5.11
s.up: 11.28

Induction variables

S133_1

for (int i=0;i<LEN;i++){
a[i] = (float)2.*(i+1)*b[i];
}

intel 16.0.3
scalar: 4.73
vector: 1.24
s.up: 3.81

gnu 4.9.2
scalar: 5.35
vector: 1.49
s.up: 3.59

pgi 16.3
scalar: 4.09
vector: 1.23
s.up: 3.32

MIC 16.0.3
scalar: 94.21
vector: 6.57
s.up: 14.34

Induction variables

S134

for (int i=0;i<LEN;i++) {
*a = *b + *c;
a++; b++; c++;
}

S134_1

for (int i=0;i<LEN;i++){
a[i] = b[i] + c[i];
}

intel 16.0.3
scalar: 3.27
vector: 2.11
s.up: 1.55

gnu 4.9.2
scalar: 3.23
vector: 2.13
s.up: 1.52

pgi 16.3
scalar: 3.12
vector: 2.15
s.up: 1.45

MIC 16.0.3
scalar: 66.23
vector: 19.00
s.up: 3.48

Outline

Topics

Introduction

Data Dependencies

Overcoming limitations to SIMD-Vectorization
Data Dependencies
Data Alignment
Aliasing
Non-unit strides
Conditional Statements

Vectorization

Data Alignment

I Vector loads/stores load/store 128 consecutive bits to a vector
register.

I Data addresses need to be 16-byte (128 bits) aligned to be
loaded/stored

I To know if a pointer is 16-byte aligned, the last digit of the pointer
address in hex must be 0.

I Note that if &b[0] is 16-byte aligned, and is a single precision array,
then &b[4] is also 16-byte aligned

__attribute__ ((aligned(16))) float B[1024];
int main(){
printf("%p, %p\n", &B[0], &B[4]);
}

Output:
0x7fff1e9d8580, 0x7fff1e9d8590

Data Alignment

I In many cases, the compiler cannot statically know the alignment of
the address in a pointer

I The compiler assumes that the base address of the pointer is
16-byte aligned and adds a run-time checks for it

I if the runtime check is false, then it uses another code (which may be
scalar)

Data Alignment

I Manual 16-byte alignment can be achieved by forcing the base
address to be a multiple of 16.

__attribute__ ((aligned(16))) float b[N];
float* a = (float*) memalign(16,N*sizeof(float));

I When the pointer is passed to a function, the compiler should be
aware of where the 16-byte aligned address of the array starts.

void func1(float *a, float *b,
float *c) {
__assume_aligned(a, 16);
__assume_aligned(b, 16);
__assume_aligned(c, 16);
for int (i=0; i<LEN; i++) {
a[i] = b[i] + c[i];
}

Alignment in a struct

#include <stdio.h>
struct st{
char A;
int B[64]

__attribute__ ((aligned(16)))

;
float C;
int D[64]

__attribute__ ((aligned(16)))

;
};
int main(){
struct st s1;
printf("%p, %p, %p, %p\n", &s1.A, s1.B, &s1.C, s1.D);
}

Output:
0x7fff4bbeeb80, 0x7fff4bbeeb84, 0x7fff4bbeec84, 0x7fff4bbeec88

0x7fffa3644fb0, 0x7fffa3644fc0, 0x7fffa36450c0, 0x7fffa36450d0

Alignment in a struct

#include <stdio.h>
struct st{
char A;
int B[64] __attribute__ ((aligned(16)));
float C;
int D[64] __attribute__ ((aligned(16)));
};
int main(){
struct st s1;
printf("%p, %p, %p, %p\n", &s1.A, s1.B, &s1.C, s1.D);
}

Output:

0x7fff4bbeeb80, 0x7fff4bbeeb84, 0x7fff4bbeec84, 0x7fff4bbeec88

0x7fffa3644fb0, 0x7fffa3644fc0, 0x7fffa36450c0, 0x7fffa36450d0

Consistency of SIMD results

The alignment can effect reproducibility: because the order of the
calculations can change

I Try to align to the SIMD register size
I MMX: 8 Bytes;
I SSE2: 16 bytes,
I AVX: 32 bytes
I MIC: 64 bytes

I Try to align blocks of data to cacheline size - ie 64 bytes

Outline

Topics

Introduction

Data Dependencies

Overcoming limitations to SIMD-Vectorization
Data Dependencies
Data Alignment
Aliasing
Non-unit strides
Conditional Statements

Vectorization

Aliasing

I Writing "clean" code is a good starting point to have
the code vectorized

I Prefer array indexing instead of explicit pointer arithmetic
I Use restrict keyword to tell the compiler that there is no array aliasing

I The use of the restrict keyword in pointer declarations informs the
compiler that it can assume that during the lifetime of the pointer only
this single pointer has access to the data addressed by it that is, no
other pointers or arrays will use the same data space. Normally, it is
adequate to just restrict pointers associated with the left-hand side of
any assignment statement. Without the restrict keyword, the code
will not vectorize.

void f(int n, float *x, float *y, float *restrict z, float *d1, float *d2)
{
for (int i = 0; i < n; i++)
z[i] = x[i] + y[i]-(d1[i]*d2[i]);
}

Outline

Topics

Introduction

Data Dependencies

Overcoming limitations to SIMD-Vectorization
Data Dependencies
Data Alignment
Aliasing
Non-unit strides
Conditional Statements

Vectorization

Non-unit Stride I

S135

typedef struct{int x, y, z}
point;
point pt[LEN];
for (int i=0; i<LEN; i++) {
pty[i] *= scale;
}

intel 16.0.3
scalar: 3.84
vector: 3.66
s.up: 1.04

gnu 4.9.2
scalar: 3.89
vector: ...
s.up: ...

pgi 16.3
scalar: 3.19
vector: ...
s.up: ...

MIC 16.0.3
scalar: 38.69
vector: 41.06
s.up: 0.94

Non-unit Stride I

S135_1

int ptx[LEN], int pty[LEN],
int ptz[LEN];
for (int i=0; i<LEN; i++) {
pty[i] *= scale;
}

intel 16.0.3
scalar: 2.41
vector: 0.82
s.up: 2.94

gnu 4.9.2
scalar: 2.51
vector: 0.82
s.up: 3.06

pgi 16.3
scalar: 2.51
vector: 2.24
s.up: 1.12

MIC 16.0.3
scalar: 36.62
vector: 2.98
s.up: 12.29

Non-unit Stride II

S136

for (int i = 0; i < LEN2; i++){
float sum = (float)0.0;
for (int j = 0; j < LEN2; j++){
sum += aa[j][i];

}
e[i] = sum;

}

intel 16.0.3
scalar: 2.50
vector: 2.74
s.up: 0.91

gnu 4.9.2
scalar: 2.61
vector: 0.66
s.up: 3.95

pgi 16.3
scalar: 2.94
vector: 2.15
s.up: 1.37

MIC 16.0.3
scalar: 42.62
vector: 129.34
s.up: 0.33

Non-unit Stride II

S136_1

for (int i = 0; i < LEN2; i++){
sum[i] = (float)0.0;
for (int j = 0; j < LEN2; j++){
sum[i] += aa[j][i];

}
e[i] = sum[i];

}

intel 16.0.3
scalar: 2.05
vector: 2.76
s.up: 0.96

gnu 4.9.2
scalar: 2.61
vector: 0.65
s.up: 4.01

pgi 16.3
scalar: 3.07
vector: 0.27
s.up: 11.37

MIC 16.0.3
scalar: 43.72
vector: 129.88
s.up: 0.34

Non-unit Stride II

S136_2

for (int i = 0; i < LEN2; i++)
e[i] = (float)0.0;

for (int j = 0; j < LEN2; j++){
for (int i = 0; i < LEN2; i++){
e[i] += aa[j][i];

}
}

intel 16.0.3
scalar: 1.01
vector: 0.29
s.up: 3.48

gnu 4.9.2
scalar: 1.00
vector: 0.37
s.up: 2.70

pgi 16.3
scalar: 0.98
vector: 0.27
s.up: 3.63

MIC 16.0.3
scalar: 21.93
vector: 2.66
s.up: 8.24

Outline

Topics

Introduction

Data Dependencies

Overcoming limitations to SIMD-Vectorization
Data Dependencies
Data Alignment
Aliasing
Non-unit strides
Conditional Statements

Vectorization

Conditional Statements
S137

for (int i = 0; i < LEN; i++){
if (C[i] > (float) -1.0)
A[i] = A[i] * B[i] + D[i];

}

S137_1

#pragma vector always
for (int i = 0; i < LEN; i++){

if (C[i] > (float) -1.0)
A[i] = A[i] * B[i] + D[i];

}

S137
intel 16.0.3
scalar: 5.30
vector: ...
s.up: ...

gnu 4.9.2
scalar:5.43
vector: ...
s.up: ...

pgi 16.3
scalar: 5.39
vector: 2.84
s.up: 1.89

MIC 16.0.3
scalar: 163.20
vector: 22.97
s.up: 7.10

S137_1
intel 16.0.3
scalar: 5.30
vector: 2.99
s.up: 1.77

gnu 4.9.2
scalar: 5.41
vector: ...
s.up: ...

pgi 16.3
scalar: 5.38
vector: 2.84
s.up: 1.89

MIC 16.0.3
scalar: 163.36
vector: 14.87
s.up: 10.98

Intrinsic

I Intrinsics are vendor/architecture specific
I Intrinsics are useful when

I the compiler fails to vectorize
I when the programmer thinks it is possible to generate better code than

the one produced by the compiler

Splitting with intrinsic

S126_2

#include <xmmintrin.h>
#define n 1000
int main() {
__m128 rA1, rA2, rB, rC, rD;
__m128 r5=_mm_set1_ps((float)0.5)
for (i = 0; i < LEN-4; i+=4) {
rA2= _mm_loadu_ps(&a[i+1]);
rB= _mm_load_ps(&b[i]);
rC= _mm_load_ps(&c[i]);
rA1= _mm_add_ps(rB, rC);
rD= _mm_mul_ps(_mm_add_ps(rA1,rA2),r5);
_mm_store_ps(&a[i], rA1);
_mm_store_ps(&d[i], rD); }}

intel 16.0.3
intrinsic: 4.33
s.up : 1.08

gnu 4.9.2
intrinsic: 4.23
s.up: 1.60

pgi 16.3
intrinsic: 3.67
s.up: 1.66

MIC 16.0.3
intrinsic: 66.34
s.up: 0.69

Vectorization: array notation

I Using array notation is a good way to guarantee the compiler that the
iterations are independent

I In Fortran this is consistent with the language array syntax
a(1:N) = b(1:N) + c(1:N)

I In C the array notation is provided by Intel Cilk Plus
a[1:N] = b[1:N] + c[1:N]

I Beware:
I The first value represents the lower bound for both languages
I But the second value is the upper bound in Fortran whereas it is the

length in C
I An optional third value is the stride both in Fortran and in C
I Multidimensional arrays supported, too

Outline

Topics

Introduction

Data Dependencies

Overcoming limitations to SIMD-Vectorization

Vectorization

How to Succeed in Vectorization? I

I Most frequent reason of failing vectorization is Dependence:
I Minimize dependencies among iterations by design!

I Alignment: Align your arrays/data structures
I Function calls in loop body: Use aggressive in-lining (IPO)
I Complex control flow/conditional branches:

I Avoid them in loops by creating multiple versions of loops
I Unsupported loop structure: Use loop invariant expressions
I Not inner loop:

I Manual loop interchange possible? for example Intel Compilers 12.1
and higher can do

I outer loop vectorization now as well!
I Mixed data types:

I Avoid type conversions in rare cases Intel Compiler cannot do
automatically

How to Succeed in Vectorization? II

I Non-unit stride between elements:
I Possible to change algorithm to allow linear/consecutive access?

I Loop body too complex reports: Try splitting up the loops!
I Vectorization seems inefficient reports:

I Enforce vectorization, benchmark and verify results!

Vectorization:conclusions

I Microprocessor vector extensions can contribute to improve program
performance and the amount of this contribution is likely to increase
in the future as vector lengths grow.

I Compilers are only partially successful at vectorizing
I When the compiler fails, programmers can

I add compiler directives
I apply loop transformations

I If after transforming the code, the compiler still fails to vectorize (or
the performance of the generated code is poor), the only option is to
program the vector extensions directly using intrinsics or assembly
language.

	Topics
	Introduction
	Data Dependencies
	Overcoming limitations to SIMD-Vectorization
	Data Dependencies
	Data Alignment
	Aliasing
	Non-unit strides
	Conditional Statements

	Vectorization

