
Profilers and performance
evaluation

Tools and techniques for
performance analysis

Andrew Emerson

10/06/2016 1 Tools and Profilers, Summer School 2016

Contents

• Motivations
• Manual Methods

– Measuring execution time
– Profiling PMPI

• Performance Tools
– Prof and gprof
– Papi
– Scalasca, Extrae, Vtune and other packages

• Some advice

10/06/2016 Tools and Profilers, Summer School 2016 2

Motivations for performance
profiling

• Efficient programming on HPC architectures
is difficult
– because modern HPC architectures are

complex:
• different types and speeds of memory

(memory hierarchies)
• presence of accelerators such as MICs, FPGAs

and GPUs
• mutiple filesystem technologies (local, gpfs,

SSD, etc)
• network topologies
• PARALLELISM !

• For programmers it is essential to use
profiling tools in order to optimise and
parallelise their applications. Just using –O3
is not usually enough.

• Even for users (rather than programmers) it
may be useful to profile in order to choose
the best build, hardware and input options.

10/06/2016 Tools and Profilers, Summer School 2016 3

Measuring execution time
without source code

• UNIX/Linux users often use the time command.
• This has the advantages that the source code does not need to be

re-compiled and has no overhead (i.e. non-intrusive). Note the
different formats of the UNIX and the bash versions.

• In a script, convenient to report on the wall time using date.

10/06/2016 Tools and Profilers, Summer School 2016 4

/usr/bin/time ./a.out

0.00user 0.00system 0:10.07elapsed 0%CPU (0avgtext+0avgdata

848maxresident)k inputs+0outputs (0major+259minor)pagefaults 0swaps

time ./a.out

real 0m10.695s

user 0m0.001s

sys 0m0.006s

start_time=$(date +"%s")

...

end_time=$(date +"%s")

walltime=$(($end_time-$start_time))

echo "walltime $walltime"

Using time
• For running benchmarks we are normally most interested

in the elapsed or walltime, i.e. the difference between
program start and program finish (for parallel programs this
means when all tasks and threads have finished).

• But the various time commands can also give other useful
information on resources used:

10/06/2016 Tools and Profilers, Summer School 2016 5

/usr/bin/time ./loop

40.90user 0.00system 0:41.00elapsed 99%CPU

(0avgtext+0avgdata 848maxresident)k

0inputs+0outputs

(0major+284minor)pagefaults 0swaps

/usr/bin/time ./sleep

0.00user 0.00system 0:10.00elapsed 0%CPU

(0avgtext+0avgdata 848maxresident)k

0inputs+0outputs

(0major+259minor)pagefaults 0swaps

In the first example we have
kept the CPU busy with
99% of the CPU used.
In the second example the
CPU has been sent to sleep!

Using top and MPI programs

• For MPI programs convenient to log onto the node where
the program is running and use the top command.

10/06/2016 Tools and Profilers, Summer School 2016 6

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

 8462 aemerson 20 0 12.284g 102952 64044 R 102.9 0.1 14:18.64 namd2

 8460 aemerson 20 0 12.284g 96320 57064 R 96.5 0.1 14:17.86 namd2

 8461 aemerson 20 0 12.284g 104240 65024 R 96.5 0.1 14:18.58 namd2

 8463 aemerson 20 0 12.283g 100728 62076 R 96.5 0.1 14:18.85 namd2

 8464 aemerson 20 0 12.284g 105200 65816 R 96.5 0.1 14:18.58 namd2

 8465 aemerson 20 0 12.284g 102668 63400 R 96.5 0.1 14:19.09 namd2

 8466 aemerson 20 0 12.284g 105540 66424 R 96.5 0.1 14:18.42 namd2

 8467 aemerson 20 0 12.283g 102896 64240 R 96.5 0.1 14:19.20 namd2

In this way you can check that you really are running a parallel program and multiple
cores are being used in a “balanced” fashion(i.e. %CPU=~100%).
top is also useful for the checking the memory required for each process.

OpenMP threads

For OpenMP the top command can give something like this

10/06/2016 Tools and Profilers, Summer School 2016 7

Tasks: 337 total, 6 running, 331 sleeping, 0 stopped, 0 zombie

%Cpu(s): 93.1 us, 0.1 sy, 0.0 ni, 6.8 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st

KiB Mem: 13174488+total, 14130592 used, 11761428+free, 1232 buffers

KiB Swap: 32767996 total, 0 used, 32767996 free. 6393776 cached Mem

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

 4419 aemerson 20 0 933224 279780 5856 R 800.2 0.2 0:47.07 test

 4428 aemerson 20 0 123820 1824 1160 R 0.3 0.0 0:00.01 top

29436 root 0 -20 9897424 1.217g 109248 S 0.3 1.0 156:38.92 mmfsd

 1 root 20 0 55496 4936 2400 S 0.0 0.0 4:45.87 systemd

 2 root 20 0 0 0 0 S 0.0 0.0 0:02.66 kthreadd

 3 root 20 0 0 0 0 S 0.0 0.0 6:40.96 ksoftirqd/0

 5 root 0 -20 0 0 0 S 0.0 0.0 0:00.00 kworker/0:0H

 8 root rt 0 0 0 0 S 0.0 0.0 0:12.88 migration/0

 9 root 20 0 0 0 0 S 0.0 0.0 0:02.28 rcu_bh

8 OpenMP threads

Measuring execution time within the
program (serial)

• Programmers generally want more information on which parts of the program consume
the most time.

• Both C/C++ and Fortran programmers are used to instrument the code with timing and
printing functions to measure and collect or visualize the time spent in critical or
computationally intensive code’ sections.

 Fortran77

 etime(),dtime()

 Fortran90

 cputime(), system_clock(), date_and_time()

 C/C++

 clock()

• The programmer must be aware though that these methods are intrusive, and introduce
overheads to the program code.

Measuring execution time -
example

C example:

#include <time.h>

clock_t time1, time2;

double dub_time;

…

time1 = clock();

for (i = 0; i < nn; i++)

for (k = 0; k < nn; k++)

for (j = 0; j < nn; j ++)

c[i][j] = c[i][j] + a[i][k]*b[k][j];

time2 = clock();

dub_time = (time2 - time1)/(double) CLOCKS_PER_SEC;

printf("Time -----------------> %lf \n", dub_time);

10/06/2016 Tools and Profilers, Summer School 2016 9

Measuring execution time in
parallel programs

• Both MPI and OpenMP provide functions for measuring the
elapsed time.

10/06/2016 Tools and Profilers, Summer School 2016 10

double t1,t2;

t1=MPI_Wtime()

..

t2=MPI_Wtime()

elaspsed=t2-t1;

! In FORTRAN MPI_Wtime is a function

double precision t1,t2

t1 = MPI_Wtime()

..

// OpenMP

t1 = omp_get_wtime()

(Debugging) and profiling MPI
with PMPI

• Most MPI implementations provide a profiling interface called
PMPI.

• In PMPI each standard MPI function (MPI_) has an equivalent
function with prefix PMPI_ (e.g. PMPI_Send, PMI_RECV, etc).

• With PMPI it is possible to customize normal MPI commands to
provide extra information useful for profiling or debugging.

• Not necessary to modify source code since the customized MPI
commands can be linked as a separate library during debugging. For
production the extra library is not linked and the standard MPI
behaviour is used.

• Many third-party profilers (e.g. Scalasca, Vtune, etc) are based on
PMPI.

10/06/2016 11 Advanced MPI

PMPI Examples

// profiling example

static int send_count=0;

int MPI_Send(void*start,int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

{

send_count++;

return PMPI_Send(start, count, datatype, dest, tag, comm);

}

! Unsafe uses of MPI_Send

! MPI_Send can be implemented as MPI_Ssend (synchronous send)

subroutine MPI_Send(start, count, datatype, dest,

 tag, comm, ierr)

 integer start(*), count, datatype, dest, tag, comm

 call PMPI_Ssend(start, count, datatype,

 dest, tag, comm, ierr)

end

Profiling

Debugging

Advanced MPI

Profiling using tools and
libraries

• The time command may be ok for benchmarking based on elapsed time
but is not sufficient for detailed performance analysis.

• Inserting time commands in the source is tedious and not without
overheads. There may also be problems of portability between
architectures and compilers.

• For these reasons common to use tools such as gprof or third-party tools
(some commercial) such Scalasca, Vtune, Allenia and so on.

• Such profiling tools generally provide a wide variety of performance data:
– no. of calls and timings of subroutines and functions
– use of memory, including cache (“cache hits and misses”) and presence of

memory leaks
– info related to parallelism, e.g. load balancing, thread usage, use of MPI calls,

etc.
– I/O related performance data

• Other related tools, tracing tools, can give information on the MPI
communication patterns.

• All profiling tools have some degree of overhead but unless the analysis is
very detailed (i.e. at the statement level) the overheads should be low.

10/06/2016 Tools and Profilers, Summer School 2016 13

Profiling using gprof

• The GNU profiler “gprof” is an open-source tool that allows the profiling of serial and parallel

codes.

• It works by using Time Based Sampling : at intervals the “program counter” is interrogated to

decide at which point in the code the execution has arrived.

• To use the GNU profiler:

– Recompile the source code using the compiler profiling flag:
 gcc –pg source code

 g++ -pg source code

 gfortran –pg source code

– Run the executable to allow the generation of the files containing profiling information:

o At the end of the execution in the working directory will be generated a specific file
generally named “gmon.out” containing all the analytic information for the profiler

– Results analysis

 gprof executable gmon.out

10/06/2016 Tools and Profilers, Summer School 2016 14

gprof output – Flat profile

Flat profile:

Each sample counts as 0.01 seconds.

 % cumulative self self total

 time seconds seconds calls us/call us/call name

 48.60 0.41 0.41 10000 41.31 81.61 init(double*, int)

 27.26 0.64 0.23 10000 23.17 40.30 mysum(double*, int)

 20.15 0.82 0.17 100000000 0.00 0.00 add3(double)

 3.56 0.85 0.03 frame_dummy

10/06/2016 Tools and Profilers, Summer School 2016 15

gprof - flat profile coulmn
meanings

• The meaning of the columns displayed in the flat profile is:

• % time: percentage of the total execution time your program spent in this
function

• cumulative seconds: cumulative total number of seconds the computer
spent executing this functions, plus the time spent in all the functions
above this one in this table

• self seconds: number of seconds accounted for by this function alone.

• calls: total number of times the function was called

• self us/calls: represents the average number of microseconds spent in
this function per call

• total us/call: represents the average number of microseconds spent in
this function and its descendants per call if this function is profiled, else
blank

• name: name of the function

10/06/2016 Tools and Profilers, Summer School 2016 16

gprof – call graph
• Also possible to show relations between subroutines and functions

and the time used:

10/06/2016 Tools and Profilers, Summer School 2016 17

Call graph (explanation follows)

index % time self children called name

 <spontaneous>

[1] 96.4 0.00 0.82 main [1]

 0.41 0.40 10000/10000 init(double*, int) [2]

 0.41 0.40 10000/10000 main [1]

[2] 96.4 0.41 0.40 10000 init(double*, int) [2]

 0.23 0.17 10000/10000 mysum(double*, int) [3]

With appropriate compile options various other outputs are also possible
(call trees, line-level timings, etc)

gprof limitations

• gprof gives no information on library routines such as
MKL (but MKL should already be well optimised)

• The profiler has a fairly high “granularity”, i.e. for
complex programs not easy identify performance
bottlenecks.

• Can have high performance overheads.

• Not suited for parallel programming (requires analysing
a gmon.out file for each parallel process).

10/06/2016 Tools and Profilers, Summer School 2016 18

PAPI (Performance Application
Programming Interface)

• The PAPI is a standard for accessing information
provided by hardware counters.

• The hardware counters are special registers built into
processors which monitor low-level events such as
cache misses, no. of floating point instructions
executed, vector instructions, etc.

• The hardware counters available depend on the
specific CPU model or architecture and are quite
difficult to use since they may have different names.

• The aim of PAPI is to provide a portable interface to
hardware counters.

10/06/2016 Tools and Profilers, Summer School 2016 19

PAPI tools

• PAPI can provide low-level information not available from software
profilers.

• The PAPI library defines a large number of Preset Events including:
– PAPI_TOT_CYC- total no. of cycles
– PAPI_TOT_INS – no. of completed instructions
– PAPI_FP_INS – floating point instructions
– PAPI_L1_DCM – cache misses in L1
–

• Although you can call directly the PAPI routines from your C or FORTRAN
programs you are more likely to use tools or libraries based on PAPI.

• Examples of PAPI tools include:
– Tau
– HPC Toolkit
– Perfsuite

• Others may have PAPI as an option (e.g. Vtune)
• The general procedure (e.g. Tau) is to recompile with the PAPI-enabled

library.

10/06/2016 Tools and Profilers, Summer School 2016 20

Common profiler/tracing
packages

• There are very many profiling packages available. A (very) partial list includes.

10/06/2016 Tools and Profilers, Summer School 2016 21

Tool name Suited for Comments

Scalasca Profiling and limited tracing
of many task programs

Free (GPL)

Intel Trace Analyser and
Collector (ITAC)

Quick tool for tracing intel-
compiled apps

Intel licensed MPI lightweight
tool *

Intel Vtune Amplifier Detailed profiling with intel
applications

Intel licensed profiler *

Extrae/Paraver General purpose tracing tool Not currently available at
Cineca (but can be installed)

Valgrind Memory and thread
debugging

Allinea DDT Commercial
debugger+profiler

Not currently available at
Cineca (under consideration)

Tau Profiling and tracing PAPI based. Can use paraprof
for visualisation

Vampir Tracing

* limited licenses available at Cineca!

Scalasca

• Scalable performance analysis of large-scale applications.
• Tool originally developed by Felix Wolf and co-workers from

the Juelich Supercomputing Centre.
• Available for most HPC architectures and compilers and

suitable for systems with many thousands of cores (often the
best option for Bluegene)

• Free to download and based on “the New BSD open-
source license” (i.e. free but copyrighted)

• Scalasca 2.x based on the Score-P profiling and tracing
infrastructure and uses the and CUBE4 format profiles and
OTF2 (Open Trace Format 2) format for event traces.

• Score-P and the CUBE-GUI need to be downloaded separately.

10/06/2016 Tools and Profilers, Summer School 2016 22

Using Scalasca 2.x

1. Compile and link as normal but with scorep:
– scorep mpif90 -c prog.f90

– scorep mpif90 –o prog.exe prog.o

2. Run using the scan (= scalasca –analyze)
command + mpirun
– scan mpirun –n 4 ./prog.exe

3. This will create a directory e.g.
scorep_DLPOLY_16_sum which can analysed with
the square (=scalasca –examine) command
– square scorep_DLPOLY_16_sum

10/06/2016 Tools and Profilers, Summer School 2016 23

Using scalasca 2.x

1. Flat (summary) profile
– square -s scorep_DLPOLY_16_sum
– less ./scorep_DLPOLY_16_sum/scorep.score

10/06/2016 Tools and Profilers, Summer School 2016 24

Estimated aggregate size of event trace: 544MB

Estimated requirements for largest trace buffer (max_buf): 35MB

Estimated memory requirements (SCOREP_TOTAL_MEMORY): 37MB

(hint: When tracing set SCOREP_TOTAL_MEMORY=37MB to avoid intermediate flushes

 or reduce requirements using USR regions filters.)

flt type max_buf[B] visits time[s] time[%] time/visit[us] region

 ALL 36,686,355 21,696,937 93.17 100.0 4.29 ALL

 USR 35,811,984 21,377,014 15.56 16.7 0.73 USR

 MPI 695,056 205,337 30.43 32.7 148.20 MPI

 COM 186,446 114,586 47.18 50.6 411.76 COM

 USR 16,463,174 10,100,000 8.16 8.8 0.81 vdw_forces_

 USR 16,463,174 10,100,000 3.24 3.5 0.32 images_

 USR 982,540 304,475 0.21 0.2 0.68 parse_module.strip_blanks_

 USR 657,332 204,422 0.11 0.1 0.54 parse_module.get_word_

 USR 633,126 382,636 0.08 0.1 0.20 uni_

 USR 326,352 100,802 0.63 0.7 6.27 parse_module.word_2_real_

 MPI 272,344 73,856 5.80 6.2 78.58 MPI_Allreduce

 USR 244,764 150,024 0.11 0.1 0.76 box_mueller_

Using scalasca - filters

• Just like any profiling tool, scalasca induces some overhead which may skew the
results.

• Particularly relevant for user routines which although require little time are called
very frequently: the relative overhead is then quite large.

• In these cases possible to filter the profiling such that these functions are not
measured.

• Filtering also useful if the program to be profiled is large and a full event trace is
likely to exceed the memory available (look at the first few lines of the summary)

10/06/2016 Tools and Profilers, Summer School 2016 25

SCOREP_REGION_NAMES_BEGIN

 EXCLUDE

 vdw_forces

 images_

SCOREP_REGION_NAMES_END

square –s –f my.filt scorep_DLPOLY_16_sum

Using scalasca 2.x - GUI
2. GUI

– square scorep_DLPOLY_16_sum

10/06/2016 Tools and Profilers, Summer School 2016 26

Scalasca and event tracing
• As well as time-averaged summaries, possible to generate also

time-stamped event traces.
• Note that because trace profiles can be very large it is strongly

recommended to set the total memory allowed and use filters.

10/06/2016 Tools and Profilers, Summer School 2016 27

export SCOREP_TOTAL_MEMORY=55M

scan –q –t –f myfilter.filt mpirun –n 64 ./myexe

square scorep_DLPOLY_16_trace

Similar output to a profile
but gives time-dependent
information.

Intel Trace Analyzer and
Collector (ITAC)

• Graphical tool from Intel for understanding MPI application
behaviour.

• Convenient because no need to re-compile the program.

10/06/2016 Tools and Profilers, Summer School 2016 28

#!/bin/bash

#PBS -l select=1:ncpus=4:mpiprocs=4

#PBS -l walltime=30:00

#PBS -A cin_staff

#PBS -W group_list=cin_staff

cd $PBS_O_WORKDIR

module load autoload intelmpi

module load mkl

source /cineca/prod/compilers/intel/pe-xe-

2016/binary/itac/9.1.1.017/intel64/bin/itacvars.sh

mpirun -trace -n 2 ./rept90-mkl.x

traceanalyzer ./rept90-mkl.stf

ITAC output

10/06/2016 Tools and Profilers, Summer School 2016 29

This example shows that the application spends very little time in MPI
calls and when it does only in collectives.

ITAC output -2

10/06/2016 Tools and Profilers, Summer School 2016 30

shows more detailed
interactions between MPI
processes

ITAC-MPI Performance
Snapshot (mps)

• Lightweight, scalable performance tool designed to give
quickly information for very large number of processes.

• Included in the Intel ITAC package (>9.0.3), requires Intel
MPI >=5.0.3 and Intel compilers >=15.0.1 for OpenMP data.

10/06/2016 Tools and Profilers, Summer School 2016 31

source $INTEL_HOME/…./itacvars.sh

mpirun –mps –n 32 ./poisson

Intel Vtune Amplifier

• Comprehensive Intel Performance profiler.

• Best used in interactive mode of PBS.

10/06/2016 Tools and Profilers, Summer School 2016 32

qsub –l select=1:ncpus=16,walltime=30:00 –A cin_staff –I

cd $PBS_O_WORKDIR

module load autoload vtune

amplxe-gui &

or command line

amplxe-cl –collect hotspots -- home/myprog

Vtune

10/06/2016 Tools and Profilers, Summer School 2016 33

colours are
misleading because
assumes all cores in
the node should be
used

Extrae and paraver

• Profiling package developed by Barcelona Supercomputing Centre
(BSC). Extrae inserts “probes” into the application to produce trace
files which can be read by paraver.

• Available for a wide range of platforms, incl. ARM and Xeon PHI.

10/06/2016 Tools and Profilers, Summer School 2016 34

Supported programming
models

Supported platforms

MPI
Linux clusters (x86 and x86-
64)

OpenMP* BlueGene/Q

CUDA* Cray

OpenCL* nVidia GPUs

pthread* Intel Xeon Phi

OmpSs* ARM

Java Android

Python

LD_PRELOAD=${EXTRAE_HOME}/lib/lib

mpitracef.so

mpirun –env LD_PRELOAD ./mympi

I/O performance

• Not so many user-level
profiling tools for I/O (file
write and read profiling
mainly done by sysadmins).

• One example is Darshan.

10/06/2016 Tools and Profilers, Summer School 2016 35

Some considerations

• Debugging and profiling/tracing are closely related – unexpected
poor performance or parallel scaling are also bugs.

• Like debugging, parallelism complicates the profiling procedure.
Parallel profiling tools require time and effort. Useful to start with
serial program and/or flat profiles before full-scaling profiling.

• Other useful hints:
– use multiple test cases to activate all the code parts
– use “realistic” test cases, and with different sizes
– try different tools and, if possible, different architectures
– for very complex programs consider isolating the critical code in mock-

ups or miniapps to simplify the procedure

10/06/2016 Tools and Profilers, Summer School 2016 36

