// solves 2-D Laplace equation using a relaxation scheme #define MAX(A,B) (((A) > (B)) ? (A) : (B)) #include #include #include #include #include #include int main() { double *T, *Tnew, *Tmp; double tol, var = DBL_MAX, top = 100.0; unsigned n, n2, maxIter, i, j, iter = 0; int itemsread; FILE *fout; printf("Enter mesh size, max iterations and tolerance: "); itemsread = scanf("%u ,%u ,%lf", &n, &maxIter, &tol); if (itemsread!=3) { fprintf(stderr, "Input error!\n"); exit(-1); } time_t startTime = clock(); n2 = n+2; T = calloc(n2*n2, sizeof(*T)); Tnew = calloc(n2*n2, sizeof(*T)); if (T == NULL || Tnew == NULL) { fprintf(stderr, "Not enough memory!\n"); exit(EXIT_FAILURE); } // set boundary conditions for (i=1; i<=n; i++) { T[(n+1)*n2+i] = Tnew[(n+1)*n2+i] = i * top / (n+1); T[i*n2+n+1] = Tnew[i*n2+n+1] = i * top / (n+1); } while(var > tol && iter <= maxIter) { ++iter; var = 0.0; for (i=1; i<=n; ++i) { for (j=1; j<=n; ++j) { Tnew[i*n2+j] = 0.25*( T[(i-1)*n2+j] + T[(i+1)*n2+j] + T[i*n2+(j-1)] + T[i*n2+(j+1)] ); var = MAX(var, fabs(Tnew[i*n2+j] - T[i*n2+j])); } } Tmp=T; T=Tnew; Tnew=Tmp; if (iter%100 == 0) printf("iter: %8u, variation = %12.4lE\n", iter, var); } double endTime = (clock() - startTime) / (double) CLOCKS_PER_SEC; printf("Elapsed time (s) = %.2lf\n", endTime); printf("Mesh size: %u\n", n); printf("Stopped at iteration: %u\n", iter); printf("Maximum error: %lE\n", var); // saving results to file fout = fopen("results", "w"); if (fout == NULL) { perror("results"); exit(-1); } for (i=1; i<=n; ++i) for (j=1; j<=n; ++j) fprintf(fout, "%8u %8u %18.9lE\n", i, j, T[i*n2+j]); fclose(fout); free(T); free(Tnew); return 0; }