
Introduction to MPI Part II
Collective Communications

and communicatorsand communicators

Massimiliano Guarrasi, Andrew Emerson –
{m.guarrasi,a.emerson}@cineca.it

SuperComputing Applications and Innovation Department

Collective communications

•All processes (in a communicator) call the collective function
•Collective communications will not interfere with point-to-point
• All collective communications are blocking (in MPI 2.0)

Collective communications is a method of communication which
involves all processes in a communicator:

• All collective communications are blocking (in MPI 2.0)
• No tags are required
• Receive buffers must match in size (number of bytes)

It’s a safe communication mode

Communications involving a group of processes. They are called by all the
ranks involved in a communicator (or a group) and are of three types:

• Synchronization (e.g. Barrier)
• Data Movement (e.g. Broadcast or Gather/scatter)• Data Movement (e.g. Broadcast or Gather/scatter)
• Global Computation (e.g. reductions)

MPI Barrier

It stops all processes within a communicator until they are synchronized

int MPI_Barrier(MPI_Comm comm);

MPI Broadcast

Int MPI_Bcast (void *buf, int count, MPI_Datatype datatype, int root,
MPI_Comm comm)

Note that all processes must specify the same root and same comm.

Example

PROGRAM broad_cast
INCLUDE ’mpif.h’
INTEGER ierr, myid, nproc, root
INTEGER status(MPI_STATUS_SIZE)
REAL A(2)
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
root = 0root = 0
IF(myid .EQ. 0) THEN

a(1) = 2.0
a(2) = 4.0

END IF
CALL MPI_BCAST(a, 2, MPI_REAL, 0, MPI_COMM_WORLD, i err)
WRITE(6,*) myid, ’: a(1)=’, a(1), ’a(2)=’, a(2)
CALL MPI_FINALIZE(ierr)
END PROGRAM broad_cast

MPI Gather

Each process, root included, sends the content of its send buffer to the root
process. The root process receives the messages and stores them in the
rank order.
int MPI_Gather(void *sendbuf, int sendcnt, MPI_Datatype sendtype,

void *recvbuf, int recvcnt, MPI_Datatype recvtype,
int root, MPI_Comm comm)

MPI Scatter

The root sends a message. The message is split into n equal segments,
the i-th segment is sent to the i-th process in the group and each process
receives this message.

int MPI_Scatter(void *sendbuf, int sendcnt, MPI_Datatype sendtype,
void *recvbuf, int recvcnt, MPI_Datatype recvtype, int root,
MPI_Comm comm)

There are possible combinations of collective functions.
For example,
MPI Allgather
is a combination of a gather + a broadcast
int MPI_Allgather(void *sendbuf, int sendcount, MPI_Datatype sendtype,

void *recvbuf, int recvcount, MPI_Datatype recvtype,
MPI_Comm comm)

For many collective functions there are extended functionalities.

For example it’s possible to define the length of arrays to be scattered or
gathered with

MPI_Scatterv

MPI_GathervMPI_Gatherv

MPI All to all

This function makes a redistribution of the content of each process in a
way that each process know the buffer of all others. It is a way to
implement the matrix data transposition.
int MPI_Alltoall(void *sendbuf, int sendcount, MPI_Datatype sendtype,

void *recvbuf, int recvcount, MPI_Datatype recvtype,
MPI_Comm comm)

a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4

Reduction

Reduction operations permits us to

• Collect data from each process
• Reduce the data to a single value• Reduce the data to a single value
• Store the result on the root process (MPI_Reduce) or
• Store the result on all processes (MPI_Allreduce)

Predefined reduction operations

PROGRAM reduce
INCLUDE ’mpif.h’
INTEGER ierr, myid, nproc, root
REAL A(2), res(2)
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
root = 0
a(1) = 2.0a(1) = 2.0
a(2) = 4.0
CALL MPI_REDUCE(a, res, 2, MPI_REAL, MPI_SUM, root,
MPI_COMM_WORLD, ierr)
IF(myid .EQ. 0) THEN
WRITE(6,*) myid, ’: res(1)=’, res(1), ’res(2)=’, re s(2)
END IF
CALL MPI_FINALIZE(ierr)
END

Performance issues

• Much hidden communication takes place with collective
communication.
• Hardware vendors work hard to provide optimized
collective calls but performances will vary according to
implementation.implementation.
• Because of forced synchronization, collective
communications may not always be the best solution.

Some studies show that around 80% transfer time is in collectives.

17

MPI communicators and groups

Many users are familiar with the mostly used communicator:

MPI_COMM_WORLD

A communicator can be thought as a handle to a group.
- a group is a ordered set of processes

- each process is associated with a rank
- ranks are contiguous and start from zero- ranks are contiguous and start from zero

Groups allow collective operations to be operated on a subset of processes

18

The group routines are primarily used to specify which processes should be
used to construct a communicator.

Intracommunicators

are used for communications within a single group

Intercommunicators

are used for communications between two disjoint groupsare used for communications between two disjoint groups

19

Group management:

-All group operations are local

-Groups are not initially associated with communicators

-Groups can only be used for message passing within a communicator

-We can access groups, construct groups, destroy groups, i.e.
groups/communicators are dynamic - they can be created and destroyed during
program execution.

20

Using MPI Groups

Typical usage:

1. Extract handle of global group from MPI_COMM_WORLD using
MPI_Comm_group

2. Form new group as a subset of global group using MPI_Group_incl
3. Create new communicator for new group using MPI_Comm_create3. Create new communicator for new group using MPI_Comm_create
4. Determine new rank in new communicator using MPI_Comm_rank
5. Conduct communications using any MPI message passing routine
6. When finished, free up new communicator and group (optional) using

MPI_Comm_free and MPI_Group_free

Group constructors

Group constructors are used to create new groups from existing ones (initially
from the group associated with MPI_COMM_WORLD; you can use
mpi_comm_group to get this).

Group creation is a local operation: no communication is needed

After the creation of a group, no communicator has been associated to this
group, and hence no communication is possible within the new group

22

Group Creation

1

2

5

64

3 7

0

MPI_COMM_WORLD

2

0

3

2

1

4

7

5

6

0

3

2

1

0

3

2

1

group 1 group 2

comm1 comm2

Group accessors:

-MPI_GROUP_SIZE

This routine returns the number of processes in the group

-MPI_GROUP_RANK

This routine returns the rank of the calling process inside a given group

24

-MPI_COMM_GROUP(comm,group,ierr)

This routine returns the group associated with the communicator comm

-MPI_GROUP_UNION(group_a, group_b, newgroup, ierr)

This returns the ensemble union of group_a and group_b

-MPI_GROUP_INTERSECTION(group_a, group_b, newgroup, ierr)

This returns the ensemble intersection of group_a and group_b

-MPI_GROUP_DIFFERENCE(group_a, group_b, newgroup, ierr)

This returns in newgroup all processes in group_a that rare not in group_b,
ordered as in group_a

25

-MPI_GROUP_INCL(group, n, ranks, newgroup, ierr)

This routine creates a new group that consists of all the n processes with ranks
ranks[0]... ranks[n-1]

Example:

group = {a,b,c,d,e,f,g,h,i,j}group = {a,b,c,d,e,f,g,h,i,j}
n = 5
ranks = {0,3,8,6,2}

newgroup = {a,d,i,g,c}

26

-MPI_GROUP_EXCL(group,n,ranks,newgroup,ierr)

This routine returns a newgroup that consists of all the processes in the group
after removing processes with ranks: ranks[0]..ranks[n-1]

Example:

group = {a,b,c,d,e,f,g,h,i,j}group = {a,b,c,d,e,f,g,h,i,j}
n = 5
ranks = {0,3,8,6,2}

newgroup = {b,e,f,h,j}

27

Communicator management

Communicator access operations are local, not requiring interprocess
communication

Communicator constructors are collective and may require interprocess
communications

We will cover in depth only intracommunicators, giving only some notions about
intercommunicators.

28

Communicator accessors

-MPI_COMM_SIZE(comm,size,ierr)
Returns the number of processes in the group associated with the comm

-MPI_COMM_RANK(comm,rank,ierr)
Returns the rank of the calling process within the group associated with the
comm

-MPI_COMM_COMPARE(comm1,comm2,result,ierr)-MPI_COMM_COMPARE(comm1,comm2,result,ierr)
Returns:

- MPI_IDENT if comm1 and comm2 are the same handle
- MPI_CONGRUENT if comm1 and comm2 have the same group

attribute
- MPI_SIMILAR if the groups associated with comm1 and comm2

have the same members but in different rank order
- MPI_UNEQUAL otherwise

29

Communicator constructors

-MPI_COMM_DUP(comm, newcomm,ierr)
This returns a communicator newcomm identical to the communicator comm

-MPI_COMM_CREATE(comm, group, newcomm,ierr)
This collective routine must be called by all the process involved in the group
associated with comm. It returns a new communicator that is associated with associated with comm. It returns a new communicator that is associated with
the group. MPI_COMM_NULL is returned to processes not in the group.
Note that group must be a subset of the group associated with comm!

30

A practical example:

CALL MPI_COMM_RANK (...)
CALL MPI_COMM_SIZE (...)

CALL MPI_COMM_GROUP (MPI_COMM_WORLD,wgroup,ierr)

define something..define something..

CALL MPI_COMM_GROUP_EXCL(wgroup....., newgroup...)
CALL MPI_COMM_CREATE(MPI_COMM_WORLD,newgroup,newcomm,ierr)

31

-MPI_COMM_SPLIT(comm, color, key, newcomm, ierr)

This routine creates as many new groups and communicators as there are
distinct values of color.
(processes in the same color are in the same communicator).

The rankings in the new groups are determined by the value of the key.

MPI_UNDEFINED is used as the color for processes to not be included in any
of the new groups

32

33

MPI provides functions to manage and to create groups and
communicators.

MPI_comm_split, for example, creates a communicator...

if(myid%2==0){
color=1;

}else{
color=2;color=2;

}
MPI_COMM_SPLIT(MPI_COMM_WORLD,color,myid,&subcomm);
MPI_COMM_RANK(subcomm,mynewid);
printf(“rank in MPICOMM_WORLD %d”,myid,”rank in Subcomm %d”,mynewid);

I am rank 2 in MPI_COMM_WORLD, but 1 in Comm 1.
I am rank 7 in MPI_COMM_WORLD, but 3 in Comm 2.
I am rank 0 in MPI_COMM_WORLD, but 0 in Comm 1.
I am rank 4 in MPI_COMM_WORLD, but 2 in Comm 1.
I am rank 6 in MPI_COMM_WORLD, but 3 in Comm 1.
I am rank 3 in MPI_COMM_WORLD, but 1 in Comm 2.
I am rank 5 in MPI_COMM_WORLD, but 2 in Comm 2.
I am rank 1 in MPI_COMM_WORLD, but 0 in Comm 2.

int MPI_Comm_split(MPI_Comm old_comm, int color, int key, MPI_Comm *new_comm)

For a 2D logical grid, create subgrids of rows and columns

c**logical 2D topology with nrow rows and mcol columns
irow = Iam/mcol !! logical row number
jcol = mod(Iam, mcol) !! logical column number
comm2D = MPI_COMM_WORLD
call MPI_Comm_split(comm2D, irow, jcol, row_comm, ierr)call MPI_Comm_split(comm2D, irow, jcol, row_comm, ierr)
call MPI_Comm_split(comm2D, jcol, irow, col_comm, ierr)

http://scv.bu.edu/~kadin/alliance/communicators/MPI_Comm_split.html

Destructors

The communicators and groups from a process’ viewpoint are just handles.
Like all handles, there is a limited number available: you could (in principle) run
out!

-MPI_GROUP_FREE(group, ierr)
-MPI_COMM_FREE(comm,ierr) -MPI_COMM_FREE(comm,ierr)

36

Intercommunicators

Intercommunicators are associated with 2 groups of disjoint processes.

Intercommunicators are associated with a remote group and a local group

The target process (destination for send, source for receive) is its rank in the
remote group.remote group.

A communicator is either intra or inter, never both

37

MPI topologies

Virtual topologies

• Virtual topologies
• MPI supported topologies
• How to create a cartesian topology
• Cartesian mapping functions
• Cartesian partitioning

Why a virtual topology can be useful?

• Convenient process naming
• Naming scheme to fit the communication pattern
• Simplifies the writing of the code
• Can allow MPI to optimize communications

How to use a virtual topology?

• A new topology = a new communicator
• MPI provides some “mapping functions” to manage virtual topologies
• Mapping functions compute processor ranks, based on the topology
name scheme

Cartesian topology on a 2D torus

MPI supports...

• Cartesian topologies
�each process is connected to its neighbours in a virtual grid
�Boundaries can be cyclic
�Processes can be identified by cartesian coords�Processes can be identified by cartesian coords

• Graph topologies

MPI_Cart_Create

MPI_Comm vu;
int dim[2], period[2], reorder;
dim[0]=4; dim[1]=3;
period[0]=TRUE; period[1]=FALSE;
reorder=TRUE;reorder=TRUE;

MPI_Cart_create(MPI_COMM_WORLD,
2,dim,period,reorder,&vu)

Useful functions

Grid coords ranks

MPI_Cart_rank

ranks Grid coords

MPI_Cart_coords

Moving upwards,
downwords, leftside,
rightside...

MPI_Cart _shift

#include<mpi.h>
int main(int argc, char *argv[]) {
int rank;
MPI_Comm vu;
int dim[2],period[2],reorder;
int coord[2],id;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);
dim[0]=4; dim[1]=3;
period[0]=TRUE; period[1]=FALSE;
reorder=TRUE;
MPI_Cart_create(MPI_COMM_WORLD,2,dim,period,
reorder,&vu);
if(rank==5){if(rank==5){

MPI_Cart_coords(vu,rank,2,coord);
printf("P:%d My coordinates are %d %d\n",rank,
coord[0],coord[1]);

}
if(rank==0){

coord[0]=3; coord[1]=1;
MPI_Cart_rank(vu,coord,&id);
printf("The processor at position (%d, %d) has
rank %d\n",coord[0],coord[1],id);

}

MPI_Cart_shift

• It doesn’t shift data actually: it returns the correct ranks for a shift that can
be used in the subsequent communication call

• Arguments:
�Direction: in which direction the shift should be made
� disp: length of the shift� disp: length of the shift
� rank_source: where the calling process should receive a
message from during the shift
� rank_dest: where the calling process should send a message
to during the shift

Cartesian partitioning

• Often we want to do an operation on only a part of an existing cartesian
topology
• Cut a grid up into “slices”• Cut a grid up into “slices”
• A new communicator (i.e. a new cart. topology) is produced for each slide
• Each slice can perform its own collective communications

int MPI_Cart_sub(MPI_Comm comm, int *remain_dims,
MPI_Comm *newcomm)

Practical info

Yes, ok, but how can I write the right functions?

http://www.mpi-forum.org/docs/mpi-2.2

From C bindings to Fortran bindings

-In Fortran all function are transformed in subroutines and they don’t
return a type

-All functions have an addictional argument (ierror) of type integer

-All MPI datatypes in Fortran are defined as integers

Now we can seriously start to work...

