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Introduction 

• The hardware components of modern 
supercomputers are capable providing substantial 
computing power 

• To obtain high performing applications we 
require: 
– Efficient programming 
– A good understanding of the compilers and how that 

optimize code for the underlying hardware 
– Tools such as profilers, debuggers, etc, in order to 

obtain the best performance  
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The compiler 

• There are many compilers available and for all 
computer operating systems (e.g. Linux, 
Windows or Macintosh). 

• As well as free compilers from the GNU 
project there are also various commercial 
compilers (e.g. Portland or Intel) 

•  Some compilers are provided with the 
hardware (IBM XL for Fermi) 
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Compilers and interpreters 

• Interpreted languages 
– The code is “translated” statement-by-statement during the 

execution 

– Easier on the programmer, modifications can be made quickly 
but optimisations between different statements (almost) 
impossible 

– Used for scripting languages (bash, Perl, PHP, ..) 

• Compiled languages 
– Entire program is translated before execution 

– Optimisations between different parts of the program possible. 

– HPC languages such as FORTRAN, C and C++  
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What does the compiler do? 

• Translates source code into machine code, if no syntax 
errors found. Warnings for potential semantic 
problems. 

• Can attempt to optimise the code. Optimisations can 
be: 
– Language  dependent or independent 

– Hardware dependent (e.g. CPU, memory, cache) 

• Compilers are very sophisticated software tools but 
cannot replace human understanding of what the code 
should do. 
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Pre-processing, compiling 
and linking 

• “Compiling” a program is actually a three stage process: 
1. Pre-processing  to replace MACROs (#define),  code 

insertions (#include), code selections (#ifdef, #if). 
Originally C/C++ but also used in FORTRAN. 

2. Compilation of the source code into object files – organised 
collections of symbols referring to variables and functions. 

3. Linking of the object files, together with any external libraries 
to create the executable (if all referred objects are resolved). 

• For large projects usual to separate the compiling and 
linking phases. 

• Code optimisations are mainly done during compilation, 
but how a program is linked may also affect performance 
(e.g. BG/Q). 
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Which compiler ? 

• Common compiler suites include: 
– GNU (gcc, gfortran,...) 
– Intel (icc, icpc, icc) 
– IBM (xlf, xlc, xlC) 
– Portland (pgf90, pgcc, pgCC) 
– LLVM (Clang) 

• If I have a choice, which one ? 
– Various things to consider. For performance vendor-

specific (e.g xlf on BG/Q, Intel on Intel CPUs) but many 
tools have been developed with GNU.  
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What does the compiler do? 

• The compiler can perform many optimisations 
including: 
– Register allocation 

– Dead and redundant code removal 
– Common subexpression elimination (CSE) 
– Strength reduction (e.g. replacing an exponentiation within 

a loop with a multiplication) 

– Inlining 
– Loop optimisations such as index reordering, loop 

pipelining, unrolling, merging 

– Cache blocking 
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What the compiler does 

• What the compiler cannot do: 
– Understand dependencies between data with indirect 

addressing 
– Non-integer or complex strength reduction 
– Unrolling/Merging/Blocking with  

• Calls to functions or subroutines 
• I/O statements or calls within the code 

– Function in-lining if not explicitly indicated by the 
programmer 

– Optimize variables with values known only at run-time  
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Optimisation options - Intel 

• Automatic vectorization (use of packed SIMD instructions) 

• Loop interchange (for more efficient memory access) 

•  Loop unrolling (more instruction level parallelism) 

• Prefetching (for patterns not recognized by h/w prefetcher) 

• Cache blocking (for more reuse of data in cache) 

• Loop peeling (allow for misalignment) 

• Loop versioning (for loop count; data alignment; runtime dependency tests) 

• Memcpy recognition (call Intel’s fast memcpy, memset) 

• Loop splitting (facilitate vectorization) 

• Loop fusion (more efficient vectorization) 

• Scalar replacement (reduce array accesses by scalar temps) 

• Loop rerolling (enable vectorization) 

• Loop reversal (handle dependencies) 

icc (or ifort) –O3  
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Optimisation options 

• Compilers give the possibility of specifying 
optimisation options at compile time, together 
with the other options. 

• These are either general optimisation levels or 
specific flags related to the underlying hardware. 

• Some options can greatly increase the 
compilation time so one reason for starting with 
a low optimisation level during code 
development. 
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Optimisation levels –common to all 
HPC compilers 

• -O0 : no optimisation, the code is translated 
literally 

• -O1, -O2:  local optimisations, compromise 
between compilation speed, optimisation, code 
accuracy and executable size (usually default) 

• -O3: high optimisation, can alter the semantics of 
the program (hence not used for debugging) 

• -O4 or higher: Aggressive optimisations, 
depending on hardware. 
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Can I just leave it to the 
compiler to optimise my code ? 

• Example: matrix-matrix multiplication (1024x1024), 
double precision, FORTRAN. 

• Two systems: 
– FERMI: (IBM BG/Q Power A2, 1.6Ghz) 
– PLX:  (Xeon Westmere CPUs, 2.4 Ghz) 

 

 Option Seconds MFlops 

-O0 65.78 32.6 

-O2 7.13 301 

-O3 0.78 2735 

-O4 55.52 38.7 

-O5 0.65 3311 

Option Seconds MFlops 

-O0 8.94 240 

-O2 1.41 1514 

-O3 0.72 2955 

-O4 0.33 6392 

-O5 0.32 6623 

FERMI xlf PLX -ifort 
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Can I just leave it to the compiler to 
optimise my code ? 

• To find out what is going on can invoke the -qreport option 
of xlf. It tells us what the compiler is actually doing. 

• On Fermi, for –O4 the option tells us that the optimiser 
follows a different strategy: 
– The compiler recognises the matrix-matrix product and 

substitutes the code with a call to a library routine __xl_dgemm 

– This is quite slow, particularly compared to the IBM optimised 
library (ESSL). 

– Intel uses a similar strategy, but uses instead the efficient MKL 
library 

• Moral? Increasing the optimisation level doesn’t always 
increase performance. Must check each time. 
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Optimising Loops 

• Many HPC programs consume resources in loops where 
there are array accesses. 

• Since main memory accesses are expensive principle goal 
when optimising loops is maximise data locality so  that the 
cache can be used. Another goal is to aid vectorisation. 

• For simple loops the compiler can do this but sometimes it 
needs help.  

• Important to remember differences between FORTRAN and 
C for array storage. 

• But should always test the performance. For small arrays, in 
particular, the various optimisations may give worse results. 
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Loop optimisations   
• First rule: always use the correct types for loop indices. Otherwise 

the compiler will have to perform real to integer conversions. 

• FORTRAN compilers may indicate an error or warning, but usually 
tolerated 

real :: i,j,k 
.... 
do j=1,n 
  do k=1,n 
      do i=1,n 
           c(i,j)=c(i,j)+a(i,k)*b(k,j) 
      enddo 
   enddo 
enddo 

Compilation integer real 

PLX gfortran –O0 9.96 8.37 

PLX gfortran –O3 
 0.75 2.63 

PLX ifort –O0 6.72 8.28 

PLX ifort –O3 0.33 1.74 

Plx pgif90 4.73 4.85 

Plx pgif90 -fast 0.68 2.3 

Fermi bglxlf –O3 64.78 104.1 

Fermi bgxlf –O3 0.64 12.38 
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Loop optimisations: index reordering 

do i=1,n 
do j=1,n 
do k=1,n 
     c(i,j) = c(i,j) + a(i,k)*b(k,j) 
end do 
end do 
end do 

For simple loops, the compiler optimises well 

Compilation J-k-i i-k-j 

Ifort –O0 6.72 21.8 

Ifort –fast 0.34 0.33 
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Loop optimisations – index reordering 

• For more complex, nested loops optimised performances 
may differ. 

• Important to understand the cache mechanism! 

 do jj = 1, n, step 
     do kk = 1, n, step 
        do ii = 1, n, step 
           do j = jj, jj+step-1 
              do k = kk, kk+step-1 
                 do i = ii, ii+step-1 
                    c(i,j) = c(i,j) + a(i,k)*b(k,j) 
                 enddo 
              enddo 
           enddo 
        enddo 
     enddo 
  enddo 

Compilation  j-k-i  i-k-j 
(PLX) ifort -O0  10  11.5 
(PLX) ifort -fast  1.  2.4 
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Loop optimisations -cache blocking 

If the a,b,c, arrays fit into the cache, performance is fast 

for (i = 0; i < N; i = i+1)  
   for (j = 0; j < N; j = j+1) {  
      r = 0;  
      for (k = 0; k < N; k = k+1){  
             r = r + y[i][k]*z[k][j]; 
      }  
     x[i][j] = r;  
}; 

for (jj = 0; jj < N; jj = jj+B)  
   for (kk = 0; kk < N; kk = kk+B)  
      for (i = 0; i < N; i = i+1)  
         for (j = jj; j < min(jj+B-1,N); j = j+1)  { 
            r = 0;  
            for (k = kk; k < min(kk+B-1,N); k = k+1) {  
                r = r + y[i][k]*z[k][j]; 
            }  
            x[i][j] = x[i][j] + r;  
          }; 

If not then performance 
is slow. By adding loops, 
can reduce data held such 
that it fits into cache. B=blocking factor 
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Loop optimisations – unrolling (or 
unwinding) 

• Aim to reduce loop overhead (e.g. loop control instructions)  by 
reducing iterations. Can also reduce memory accesses, and aid 
vectorisation. 

• Can be done by replicating the code inside the loop.  

• Most effective when the computations in the loop can be simulated 
by the compiler (e.g. stepping sequentially through an array) . 
Clearly, the no. of iterations should be known before execution.  

a[i] = b[i] + c[i]; 

 

a[i] = b[i] + c[i]; 

 

for(int 

i=0;i<1000;i++) 

   a[i] = b[i] + c[i]; 

for(int i=0;i<1000;i+=4) { 

     a[i] = b[i] + c[i]; 

     a[i+1] = b[i+1] + c[i+1]; 

     a[i+2] = b[i+2] + c[i+2]; 

     a[i+3] = b[i+3] + c[i+3]; 

 

} 

in some cases can 
eliminate a loop 
altogether 
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Loop optimisations – loop fusion 

• A loop transformation which replaces multiple loops with a single one (to 
avoid loop overheads and aid cache use). 

• Possible when two loops iterate over the same range and do not reference 
each other’s data. (unless “loop peeling” is used) 

• Doesn’t always improve performance – sometimes cache is better used in 
two loops (Loop fission) 

 /* Unoptimized */ 
for (i = 0; i < N; i = i + 1) 

   for (j = 0; j < N; j = j + 1) 

     a[i][j] = 2 * b[i][j]; 

 

for (i = 0; i < N; i = i + 1) 

   for (j = 0; j < N; j = j + 1) 

     c[i][j] = K*b[i][j]+ d[i][j]/2 

/* Optimized */ 

for (i = 0; i < N; i = i + 1) 

  for (j = 0; j < N; j = j + 1) 

   a[i][j] = 2 * b[i][j]; 

   c[i][j] = K*b[i][j]+d[i][j]/2 
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Loop optimisations - fission 

• The opposite of Loop fusion, i.e. splitting a single loop into multiple 
loops. 

• Often used when: 
1. computations in single loop become too many(which can lead to 

“register spills”). 

2. If the loop contains a conditional: create 2 loops, one without 
conditional for vectorisation. 

3. Improve memory locality.  

for (j=0; j<n; j++) { 

   for (i=0; i<n; i++) {  

      b[i][j] = a[i][j];  

   }  

   for (i=0; i<n; i++) {  

      c[i][j] = b[i+m][j];  

   }  

}  

for (i=0; i<n; i++) { 

   for (j=0; j<n; j++) {  

      b[i][j] = a[i][j];  

   }  

}  

for (i=0; i<n; i++) {  

   for (j=0; j<n; j++) {  

      c[i][j] = b[i+m][j];  

   }  

}  
non local access 
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Array of Structures (AoS) vs Structure of 
Arrays (SoA) 

• Depends on access patterns, but for vectorised C/C++ usually 
preferable to have SoA rather than  AoS since array elements are 
contiguous in memory. 

• SoA also usually uses less memory because of data alignment. 

 

 

// AoS 

struct node { 

   float x,y,z; 

// other data 

}; 

 

struct node NODES[N]; 

// SoA 

struct node { 

   float x[N]; 

   float y[N]; 

   float z[N]; 

//other data 

}; 

struct node NODES; 
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Example 

// Array of structures 

struct node { 

   float x,y,z; 

   int n; 

}; 

 

struct node NODES[N]; 

 

for (i=0;i<N;i++) { 

   NODES[i].x=1; 

   NODES[i].y=1; 

   NODES[i].z=1; 

} 

for (i=0; i<N; i++) { 

   x=NODES[i].x; 

   y=NODES[i].y; 

   z=NODES[i].z; 

   sum+=sqrtf(x*x+y*y+z*z); 

} 

// Struct of Arrays 

struct node { 

   float x[N]; 

   float y[N]; 

   float z[N]; 

   int n[N]; 

}; 

 

struct node NODES; 

 

for (i=0;i<N;i++) { 

   NODES.x[i]=1; 

   NODES.y[i]=1; 

   NODES.z[i]=1; 

} 

for (i=0; i<N; i++) { 

   x=NODES.x[i]; 

   y=NODES.y[i]; 

   z=NODES.z[i]; 

   sum+=sqrtf(x*x+y*y+z*z); 

} 

icc -O2 -opt-report 2 -o soa soa.c -lm 

soa.c(22:1-22:1):VEC:main:  LOOP WAS VECTORIZED 

soa.c(29:1-29:1):VEC:main:  LOOP WAS VECTORIZED 

 

icc -O2 -opt-report 2 -o aos aos.c -lm 

aos.c(18:1-18:1):VEC:main:  loop was not vectorized: not inner loop 

aos.c(19:4-19:4):VEC:main:  loop was not vectorized: low trip count 

aos.c(25:1-25:1):VEC:main:  LOOP WAS VECTORIZED 
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Vectorisation 

• Modern processors have dedicated circuits and SIMD 
instructions for operating on blocks of data (“vectors”) 
rather than single data items. 

non vectorised vectorised 

c(0) = a(0) + b(0) 

c(1) = a(1) + b(1) 

c(2) = a(2) + b(2) 

c(3) = a(3) + b(3) 
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Vectorisation evolution 

• SSE: 128 bit registers (intel Core - AMD Opteron) 
– 4  floating/integer  operations in single precision 

– 2  floating/integer operations in double precision 

• AVX: 256 bit registers (intel Sandy Bridge - AMD 
Bulldozer) 
– 8 floating/integer operations in single precision 

– 4 floating/integer operations in double precision 

• MIC: 512 bit registers (Intel Knights Corner - 2013) 
– 16 floating/integer operations in single precision 

– 8 floating/integer operations in double precision 
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Vectorisation 

• Loop vectorisation can increase dramatically the 
performance. 

• But to be vectorisable a loop must obey certain criteria, in 
particular the absence of dependencies between separate 
iterations. 

• Other criteria include: 
– Countable (constant number of iterations) 

– Single entry/exit points (no branches, unless implemented as 
masks) 

– Only the internal loop of a nested loop 

– No function calls (unless inlined or using a vector version of the 
function) 

• Note that AVX can give different numerical results (e.g. 
Fused Multiply Addition)   
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Vectorisation Algorithms 

• Different algorithms performing the same task can behave 
differently wrt vectorisation. 
– Gauss-Seidel: dependency between iterations, not vectorisable. 

for( i = 1; i < n-1; ++i ) 

   for( j = 1; j < m-1; ++j ) 

      a[i][j] = w0 * a[i][j] + 

      w1*(a[i-1][j] + a[i+1][j] + a[i][j-1] + a[i][j+1]);  
– Jacobi: no dependency, vectorisable. 

for( i = 1; i < n-1; ++i ) 

   for( j = 1; j < m-1; ++j ) 

     b[i][j] = w0*a[i][j] + 

     w1*(a[i-1][j] + a[i][j-1] + a[i+1][j] + a[i][j+1]); 

for( i = 1; i < n-1; ++i ) 

   for( j = 1; j < m-1; ++j ) 

      a[i][j] = b[i][j]; 
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Helping the vectoriser 

• Some “coding tricks” can block vectorisation: 
– vectorisable 

for( i = 0; i < n-1; ++i ){ 

 b[i] = a[i] + a[i+1]; 

} 

– non vectorisable  because x is needed for the next iteration. 

x = a[0]; 

for( i = 0; i < n-1; ++i ){ 

   y = a[i+1]; 

   b[i] = x + y; 

   x = y; 

} 

• If the code hasn’t vectorised then you can help the compiler by: 

• modifying the code to make it vectorisable 

• inserting compiler directives to force the vectorisation 
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Helping the vectoriser 

• If the programmer knows that a dependency indicated by the programmer 
is only apparent then the vectorisation can be forced with compiler-
dependent directives.  
– Intel FOTRAN: !DIR$ simd 

– Intel C:#pragma simd 

• so if we know that inow ≠ inew then there is in fact no dependency 

 
do k = 1,n 

 

!DIR$ simd 

   do i = 1,l 

   ... 

    x02 = a02(i-1,k+1,inow) 

    x04 = a04(i-1,k-1,inow) 

    x05 = a05(i-1,k ,inow) 

    x06 = a06(i, k-1, inow) 

    x19 = a19(i ,k ,inow) 

 

    rho =+x02+x04+x05+x06+x11+x13+x14+x15+x19 

    a05(i,k,inew) = x05 - omega*(x05-e05) + force 
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Inlining 

• A manual or compiler optimisation which replaces a call to the 
function with the body of the function itself. 
 eliminates the cost of the function call and can improve instruction 

cache performance 

 makes inter-procedure optimisation easier 

• In C/C++ the keyword inline is a “suggestion” 

• Not every function is “inlineable” – depends on the compiler.  

• Can cause increase in code size, particularly for large functions. 

• Intel: -inline=n (0=disable, 1=keyword, 2=compiler decides) 

• GNU: -finline-functions, -finline-limit=n 

• In some compilers activated at high optimisation levels 
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Common Subexpression 
Elimination (CSE) 

• Sometimes identical expressions are calculated more than once. 
When this happens may be useful to replace them with a variable 
holding the value. 

• This  

  A = B+C+D 

  E = B+F+C 

 requires 4 sums. But the following 

  A =(B+C)+D 

  E =(B+C)+D 

 requires 3 sums. 

• Careful: the floating point result may not be identical 

• Another use is to replace an array element with a scalar to avoid 
multiple array lookups. 
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CSE  and function calls 

• By altering the order of the calls the compiler doesn’t know if 
the result is affected (possible side-effects) 

• 5 function calls, 5 products  

• 4 function calls, 4 products (1 temporary variable) 

x=r*sin(a)*cos(b); 

y=r*sin(a)*sin(b); 

z=r*cos(a); 

temp=r*sin(a) 

x=temp*cos(b); 

y=temp*sin(b); 

z=r*cos(a); 
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CSE: Limitations 

• Loops which are too big: 
– The compiler works with limited window sizes: it may not detect 

which quantity to re-use 

• Functions: 
– If I change the order of the functions do I still get the same 

result? 

• Order and evaluations: 
– Only at high levels of optimisation does the compiler change the 

order of operations (usually –O3 and above). 

– In some expressions it is possible to inhibit the mechanism with 
parantheses (the programmer is always right!). 

•  Since intermediate values are used will increase use of 
registers (risk of “register spilling”). 
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Optimisation Reports 

• Compiler dependent. Intel provides various useful options: 

 

• The GNU suite does not provide exactly equivalent options. 

– The best option is to specify: -fdump-tree-all  

– which prints  out alot of stuff (but not exactly in user-friendly form). 

-opt-report[n] n=0(none),1(min),2(med),3(max) 
-opt-report-file<file> 

-vec-report[n] n=0(none),1(min),2,3,4,5,6,7(max) 

.... 
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Static and dynamic allocation 

• Static allocation in principle can help the compiler 
optimise by providing more information. But 
– the code becomes more rigid 
– in parallel computing dynamic allocation is very useful  

integer :: n 

parameter(n=1024) 

real a(1:n,1:n) 

real b(1:n,1:n) 

real c(1:n,1:n) 

real, allocatable, dimension(:,:) :: a 

real, allocatable, dimension(:,:) :: b 

real, allocatable, dimension(:,:) :: c 

print*,’Enter matrix size’ 

read(*,*) n 

allocate(a(n,n),b(n,n),c(n,n)) 
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Static and Dynamic Allocation 

• For recent compilers, performances are often similar for 
static and dynamic allocations. 
– e.g. matrix-matrix multiplication 

 

 

 

 

• Note that static allocations use the “stack”, which is 
generally limited. 

• In the bash shell you can use the ulimit command to see 
and (possibly) set the stack. 

Compiler  Static Dynamic 

PLX ifort –O0 6.72 18.26 

PLX ifort –fast 0.34 0.35 

ulimit –a 

ulimit –s unlimited 
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Dynamic allocation in C 

• C doesn’t have a native 2-d array (unlike FORTRAN) but instead uses 
arrays of arrays. 

• Static allocation guarantees all the values are contiguous in memory 

 

• Dynamic allocation can be inefficient, if not done carefully 

/* Inefficient array allocation */ 

/* Allocate a double matrix with many malloc */ 

double** allocate_matrix(int nrows, int ncols) { 

   double **A; 

   /* Allocate space for row pointers */ 

   A = (double**) malloc(nrows*sizeof(double*) ); 

   /* Allocate space for each row */ 

   for (int ii=1; ii<nrows; ++ii) { 

      A[ii] = (double*) malloc(ncols*sizeof(double)); 

   } 

return A; 

} 

double A[nrows][ncols]; 
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Dynamic array allocation in C/2 

• Better to allocate a linear (1D array) and use it as matrix (index 
linearisation). 

• If necessary can add a matrix of pointers pointing to the allocated array 

/* Allocate a double matrix with one malloc */ 

double* allocate_matrix_as_array(int nrows, int ncols) { 

double *arr_A; 

/* Allocate enough raw space */ 

arr_A = (double*) malloc(nrows*ncols*sizeof(double)); 

return arr_A; 

} 

.. 

arr_A[i+ncols+j] 

/* Allocate a double matrix with one malloc */ 

double** allocate_matrix(int nrows, int ncols, double* arr_A) { 

double **A; 

/* Prepare pointers for each matrix row */ 

A = new double*[nrows]; 

/* Initialize the pointers */ 

for (int ii=0; ii<nrows; ++ii) { 

A[ii] = &(arr_A[ii*ncols]); 

} 

return A; 

} 
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Aliasing and restrict 

• In C aliasing occurs if two pointers point to the same area of 
memory. 

• Aliasing can severely limit compiler optimisations: 

–  difficult to invert the order of the operations, particularly if passed to 
a function 

 
• The C99 standard introduced the restrict keyword to 

indicate that aliasing is not possible: 

void saxpy(int n, float a, float *x, float* restrict y) 

• In C++ it is assumed that aliasing cannot occur between 
pointers to different types (strict aliasing). 
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Aliasing and Restrict /2 

• FORTRAN assumes that the arguments of a procedure cannot point 
to the same area of memory 

– except for arrays where in any case the indices allow a correct 
behaviour  

– or for pointers which are used anyway as arguments 

– one reason why FORTRAN optimises better than C! 

• It is possible to configure the aliasing options at compile time 

– GNU (solo strict-aliasing): -fstrict-aliasing 

– Intel (complete elimination): -fno-alias 

– IBM (no overlap per array): -qalias=noaryovrlp  
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Input/Output 

• I/O is performed by the operating system and: 
– results in a system call 

– empties the pipeline 

– destroys the coherence of data in the cache 

– is very slow 

• Rule 1: Do not mix intensive computing with I/O 

• Rule 2: read/write data in blocks, not a few bytes 
at a time (the optimum block size depends on 
filesystem) 
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Fortran  I/O examples 

do k=1,n ; do j=1,n ; do i=1,n 

write(69,*) a(i,j,k)     ! formattated 

enddo ; enddo ; enddo 

do k=1,n ; do j=1,n ; do i=1,n 

write(69) a(i,j,k)     ! binary 

enddo ; enddo ; enddo 

do k=1,n ; do j=1,n 

write(69) (a(i,j,k),i=1,n)    ! columns 

enddo ; enddo 

do k=1,n 

write(69) ((a(i,j,k),i=1),n,j=1,n)   ! matrices 

enddo 

write(69) (((a(i,j,k),i=1,n),j=1,n),k=1,n)  ! block 

write(69) a     ! dump 
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FORTRAN I/O performances 

Option Seconds Kbytes 

Formatted 81.6 419430 

Binary 81.1 419430 

Columns 60.1 268435 

Matrix 0.66 134742 

Block 0.94 134219 

Dump 0.66 134217 
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I/O Summary 

• Reading/writing formatted data is slow. 
• Better to read/write binary data. 
• Read/write in blocks. 
• Choose the most efficient filesystem available. 
• Note that although writing is generally buffered, 

the impact on performance can be significant. 
• For parallel programs: 

– avoid having every task perform read/writes 
– use instead MPI I/O, NetCDF or HDF5, etc. 
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Summary 

• Most programmers optimise their codes by 
simply increasing the optimisation level during 
the compilation but with complex programs the 
compiler normally needs help. 

• Many serial optimisations, regardless of language 
(C, Fortran,..), work towards optimal cache and 
vector performance – particularly essential for 
hybrid HPC architectures (e.g. GPU, Xeon PHI).   
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