
Compilers and Optimisation

Andrew Emerson, Fabio Affinito

SCAI, Cineca

09/06/2016 1 Compilers and optimisation

Contents

• Introduction

• Optimisation levels

• Specific hardware optimisations
– IBM
– Intel

• Typical optimisations
– Loops

• Compilation and optimisation examples
– Simple compilation, compilation and linking, static and

shared libraries

09/06/2016 2 Compilers and optimisation

Introduction

• The hardware components of modern
supercomputers are capable providing substantial
computing power

• To obtain high performing applications we
require:
– Efficient programming
– A good understanding of the compilers and how that

optimize code for the underlying hardware
– Tools such as profilers, debuggers, etc, in order to

obtain the best performance

09/06/2016 3 Compilers and optimisation

The compiler

• There are many compilers available and for all
computer operating systems (e.g. Linux,
Windows or Macintosh).

• As well as free compilers from the GNU
project there are also various commercial
compilers (e.g. Portland or Intel)

• Some compilers are provided with the
hardware (IBM XL for Fermi)

09/06/2016 4 Compilers and optimisation

Compilers and interpreters

• Interpreted languages
– The code is “translated” statement-by-statement during the

execution

– Easier on the programmer, modifications can be made quickly
but optimisations between different statements (almost)
impossible

– Used for scripting languages (bash, Perl, PHP, ..)

• Compiled languages
– Entire program is translated before execution

– Optimisations between different parts of the program possible.

– HPC languages such as FORTRAN, C and C++

09/06/2016 5 Compilers and optimisation

What does the compiler do?

• Translates source code into machine code, if no syntax
errors found. Warnings for potential semantic
problems.

• Can attempt to optimise the code. Optimisations can
be:
– Language dependent or independent

– Hardware dependent (e.g. CPU, memory, cache)

• Compilers are very sophisticated software tools but
cannot replace human understanding of what the code
should do.

09/06/2016 6 Compilers and optimisation

Pre-processing, compiling
and linking

• “Compiling” a program is actually a three stage process:
1. Pre-processing to replace MACROs (#define), code

insertions (#include), code selections (#ifdef, #if).
Originally C/C++ but also used in FORTRAN.

2. Compilation of the source code into object files – organised
collections of symbols referring to variables and functions.

3. Linking of the object files, together with any external libraries
to create the executable (if all referred objects are resolved).

• For large projects usual to separate the compiling and
linking phases.

• Code optimisations are mainly done during compilation,
but how a program is linked may also affect performance
(e.g. BG/Q).

09/06/2016 7 Compilers and optimisation

Which compiler ?

• Common compiler suites include:
– GNU (gcc, gfortran,...)
– Intel (icc, icpc, icc)
– IBM (xlf, xlc, xlC)
– Portland (pgf90, pgcc, pgCC)
– LLVM (Clang)

• If I have a choice, which one ?
– Various things to consider. For performance vendor-

specific (e.g xlf on BG/Q, Intel on Intel CPUs) but many
tools have been developed with GNU.

09/06/2016 8 Compilers and optimisation

What does the compiler do?

• The compiler can perform many optimisations
including:
– Register allocation

– Dead and redundant code removal
– Common subexpression elimination (CSE)
– Strength reduction (e.g. replacing an exponentiation within

a loop with a multiplication)

– Inlining
– Loop optimisations such as index reordering, loop

pipelining, unrolling, merging

– Cache blocking

09/06/2016 9 Compilers and optimisation

What the compiler does

• What the compiler cannot do:
– Understand dependencies between data with indirect

addressing
– Non-integer or complex strength reduction
– Unrolling/Merging/Blocking with

• Calls to functions or subroutines
• I/O statements or calls within the code

– Function in-lining if not explicitly indicated by the
programmer

– Optimize variables with values known only at run-time

09/06/2016 10 Compilers and optimisation

Optimisation options - Intel

• Automatic vectorization (use of packed SIMD instructions)

• Loop interchange (for more efficient memory access)

• Loop unrolling (more instruction level parallelism)

• Prefetching (for patterns not recognized by h/w prefetcher)

• Cache blocking (for more reuse of data in cache)

• Loop peeling (allow for misalignment)

• Loop versioning (for loop count; data alignment; runtime dependency tests)

• Memcpy recognition (call Intel’s fast memcpy, memset)

• Loop splitting (facilitate vectorization)

• Loop fusion (more efficient vectorization)

• Scalar replacement (reduce array accesses by scalar temps)

• Loop rerolling (enable vectorization)

• Loop reversal (handle dependencies)

icc (or ifort) –O3

09/06/2016 11 Compilers and optimisation

Optimisation options

• Compilers give the possibility of specifying
optimisation options at compile time, together
with the other options.

• These are either general optimisation levels or
specific flags related to the underlying hardware.

• Some options can greatly increase the
compilation time so one reason for starting with
a low optimisation level during code
development.

09/06/2016 12 Compilers and optimisation

Optimisation levels –common to all
HPC compilers

• -O0 : no optimisation, the code is translated
literally

• -O1, -O2: local optimisations, compromise
between compilation speed, optimisation, code
accuracy and executable size (usually default)

• -O3: high optimisation, can alter the semantics of
the program (hence not used for debugging)

• -O4 or higher: Aggressive optimisations,
depending on hardware.

09/06/2016 13 Compilers and optimisation

Can I just leave it to the
compiler to optimise my code ?

• Example: matrix-matrix multiplication (1024x1024),
double precision, FORTRAN.

• Two systems:
– FERMI: (IBM BG/Q Power A2, 1.6Ghz)
– PLX: (Xeon Westmere CPUs, 2.4 Ghz)

 Option Seconds MFlops

-O0 65.78 32.6

-O2 7.13 301

-O3 0.78 2735

-O4 55.52 38.7

-O5 0.65 3311

Option Seconds MFlops

-O0 8.94 240

-O2 1.41 1514

-O3 0.72 2955

-O4 0.33 6392

-O5 0.32 6623

FERMI xlf PLX -ifort

09/06/2016 14 Compilers and optimisation

Can I just leave it to the compiler to
optimise my code ?

• To find out what is going on can invoke the -qreport option
of xlf. It tells us what the compiler is actually doing.

• On Fermi, for –O4 the option tells us that the optimiser
follows a different strategy:
– The compiler recognises the matrix-matrix product and

substitutes the code with a call to a library routine __xl_dgemm

– This is quite slow, particularly compared to the IBM optimised
library (ESSL).

– Intel uses a similar strategy, but uses instead the efficient MKL
library

• Moral? Increasing the optimisation level doesn’t always
increase performance. Must check each time.

09/06/2016 15 Compilers and optimisation

Optimising Loops

• Many HPC programs consume resources in loops where
there are array accesses.

• Since main memory accesses are expensive principle goal
when optimising loops is maximise data locality so that the
cache can be used. Another goal is to aid vectorisation.

• For simple loops the compiler can do this but sometimes it
needs help.

• Important to remember differences between FORTRAN and
C for array storage.

• But should always test the performance. For small arrays, in
particular, the various optimisations may give worse results.

09/06/2016 16 Compilers and optimisation

Loop optimisations
• First rule: always use the correct types for loop indices. Otherwise

the compiler will have to perform real to integer conversions.

• FORTRAN compilers may indicate an error or warning, but usually
tolerated

real :: i,j,k
....
do j=1,n
 do k=1,n
 do i=1,n
 c(i,j)=c(i,j)+a(i,k)*b(k,j)
 enddo
 enddo
enddo

Compilation integer real

PLX gfortran –O0 9.96 8.37

PLX gfortran –O3
 0.75 2.63

PLX ifort –O0 6.72 8.28

PLX ifort –O3 0.33 1.74

Plx pgif90 4.73 4.85

Plx pgif90 -fast 0.68 2.3

Fermi bglxlf –O3 64.78 104.1

Fermi bgxlf –O3 0.64 12.38

09/06/2016 17 Compilers and optimisation

Loop optimisations: index reordering

do i=1,n
do j=1,n
do k=1,n
 c(i,j) = c(i,j) + a(i,k)*b(k,j)
end do
end do
end do

For simple loops, the compiler optimises well

Compilation J-k-i i-k-j

Ifort –O0 6.72 21.8

Ifort –fast 0.34 0.33

09/06/2016 18 Compilers and optimisation

Loop optimisations – index reordering

• For more complex, nested loops optimised performances
may differ.

• Important to understand the cache mechanism!

 do jj = 1, n, step
 do kk = 1, n, step
 do ii = 1, n, step
 do j = jj, jj+step-1
 do k = kk, kk+step-1
 do i = ii, ii+step-1
 c(i,j) = c(i,j) + a(i,k)*b(k,j)
 enddo
 enddo
 enddo
 enddo
 enddo
 enddo

Compilation j-k-i i-k-j
(PLX) ifort -O0 10 11.5
(PLX) ifort -fast 1. 2.4

09/06/2016 19 Compilers and optimisation

Loop optimisations -cache blocking

If the a,b,c, arrays fit into the cache, performance is fast

for (i = 0; i < N; i = i+1)
 for (j = 0; j < N; j = j+1) {
 r = 0;
 for (k = 0; k < N; k = k+1){
 r = r + y[i][k]*z[k][j];
 }
 x[i][j] = r;
};

for (jj = 0; jj < N; jj = jj+B)
 for (kk = 0; kk < N; kk = kk+B)
 for (i = 0; i < N; i = i+1)
 for (j = jj; j < min(jj+B-1,N); j = j+1) {
 r = 0;
 for (k = kk; k < min(kk+B-1,N); k = k+1) {
 r = r + y[i][k]*z[k][j];
 }
 x[i][j] = x[i][j] + r;
 };

If not then performance
is slow. By adding loops,
can reduce data held such
that it fits into cache. B=blocking factor

09/06/2016 20 Compilers and optimisation

Loop optimisations – unrolling (or
unwinding)

• Aim to reduce loop overhead (e.g. loop control instructions) by
reducing iterations. Can also reduce memory accesses, and aid
vectorisation.

• Can be done by replicating the code inside the loop.

• Most effective when the computations in the loop can be simulated
by the compiler (e.g. stepping sequentially through an array) .
Clearly, the no. of iterations should be known before execution.

a[i] = b[i] + c[i];

a[i] = b[i] + c[i];

for(int

i=0;i<1000;i++)

 a[i] = b[i] + c[i];

for(int i=0;i<1000;i+=4) {

 a[i] = b[i] + c[i];

 a[i+1] = b[i+1] + c[i+1];

 a[i+2] = b[i+2] + c[i+2];

 a[i+3] = b[i+3] + c[i+3];

}

in some cases can
eliminate a loop
altogether

09/06/2016 21 Compilers and optimisation

Loop optimisations – loop fusion

• A loop transformation which replaces multiple loops with a single one (to
avoid loop overheads and aid cache use).

• Possible when two loops iterate over the same range and do not reference
each other’s data. (unless “loop peeling” is used)

• Doesn’t always improve performance – sometimes cache is better used in
two loops (Loop fission)

 /* Unoptimized */
for (i = 0; i < N; i = i + 1)

 for (j = 0; j < N; j = j + 1)

 a[i][j] = 2 * b[i][j];

for (i = 0; i < N; i = i + 1)

 for (j = 0; j < N; j = j + 1)

 c[i][j] = K*b[i][j]+ d[i][j]/2

/* Optimized */

for (i = 0; i < N; i = i + 1)

 for (j = 0; j < N; j = j + 1)

 a[i][j] = 2 * b[i][j];

 c[i][j] = K*b[i][j]+d[i][j]/2

09/06/2016 22 Compilers and optimisation

Loop optimisations - fission

• The opposite of Loop fusion, i.e. splitting a single loop into multiple
loops.

• Often used when:
1. computations in single loop become too many(which can lead to

“register spills”).

2. If the loop contains a conditional: create 2 loops, one without
conditional for vectorisation.

3. Improve memory locality.

for (j=0; j<n; j++) {

 for (i=0; i<n; i++) {

 b[i][j] = a[i][j];

 }

 for (i=0; i<n; i++) {

 c[i][j] = b[i+m][j];

 }

}

for (i=0; i<n; i++) {

 for (j=0; j<n; j++) {

 b[i][j] = a[i][j];

 }

}

for (i=0; i<n; i++) {

 for (j=0; j<n; j++) {

 c[i][j] = b[i+m][j];

 }

}
non local access

local access 09/06/2016 23 Compilers and optimisation

Array of Structures (AoS) vs Structure of
Arrays (SoA)

• Depends on access patterns, but for vectorised C/C++ usually
preferable to have SoA rather than AoS since array elements are
contiguous in memory.

• SoA also usually uses less memory because of data alignment.

// AoS

struct node {

 float x,y,z;

// other data

};

struct node NODES[N];

// SoA

struct node {

 float x[N];

 float y[N];

 float z[N];

//other data

};

struct node NODES;

 09/06/2016 24 Compilers and optimisation

Example

// Array of structures

struct node {

 float x,y,z;

 int n;

};

struct node NODES[N];

for (i=0;i<N;i++) {

 NODES[i].x=1;

 NODES[i].y=1;

 NODES[i].z=1;

}

for (i=0; i<N; i++) {

 x=NODES[i].x;

 y=NODES[i].y;

 z=NODES[i].z;

 sum+=sqrtf(x*x+y*y+z*z);

}

// Struct of Arrays

struct node {

 float x[N];

 float y[N];

 float z[N];

 int n[N];

};

struct node NODES;

for (i=0;i<N;i++) {

 NODES.x[i]=1;

 NODES.y[i]=1;

 NODES.z[i]=1;

}

for (i=0; i<N; i++) {

 x=NODES.x[i];

 y=NODES.y[i];

 z=NODES.z[i];

 sum+=sqrtf(x*x+y*y+z*z);

}

icc -O2 -opt-report 2 -o soa soa.c -lm

soa.c(22:1-22:1):VEC:main: LOOP WAS VECTORIZED

soa.c(29:1-29:1):VEC:main: LOOP WAS VECTORIZED

icc -O2 -opt-report 2 -o aos aos.c -lm

aos.c(18:1-18:1):VEC:main: loop was not vectorized: not inner loop

aos.c(19:4-19:4):VEC:main: loop was not vectorized: low trip count

aos.c(25:1-25:1):VEC:main: LOOP WAS VECTORIZED
09/06/2016 25 Compilers and optimisation

Vectorisation

• Modern processors have dedicated circuits and SIMD
instructions for operating on blocks of data (“vectors”)
rather than single data items.

non vectorised vectorised

c(0) = a(0) + b(0)

c(1) = a(1) + b(1)

c(2) = a(2) + b(2)

c(3) = a(3) + b(3)

09/06/2016 26 Compilers and optimisation

Vectorisation evolution

• SSE: 128 bit registers (intel Core - AMD Opteron)
– 4 floating/integer operations in single precision

– 2 floating/integer operations in double precision

• AVX: 256 bit registers (intel Sandy Bridge - AMD
Bulldozer)
– 8 floating/integer operations in single precision

– 4 floating/integer operations in double precision

• MIC: 512 bit registers (Intel Knights Corner - 2013)
– 16 floating/integer operations in single precision

– 8 floating/integer operations in double precision

09/06/2016 27 Compilers and optimisation

Vectorisation

• Loop vectorisation can increase dramatically the
performance.

• But to be vectorisable a loop must obey certain criteria, in
particular the absence of dependencies between separate
iterations.

• Other criteria include:
– Countable (constant number of iterations)

– Single entry/exit points (no branches, unless implemented as
masks)

– Only the internal loop of a nested loop

– No function calls (unless inlined or using a vector version of the
function)

• Note that AVX can give different numerical results (e.g.
Fused Multiply Addition)

09/06/2016 28 Compilers and optimisation

Vectorisation Algorithms

• Different algorithms performing the same task can behave
differently wrt vectorisation.
– Gauss-Seidel: dependency between iterations, not vectorisable.

for(i = 1; i < n-1; ++i)

 for(j = 1; j < m-1; ++j)

 a[i][j] = w0 * a[i][j] +

 w1*(a[i-1][j] + a[i+1][j] + a[i][j-1] + a[i][j+1]);
– Jacobi: no dependency, vectorisable.

for(i = 1; i < n-1; ++i)

 for(j = 1; j < m-1; ++j)

 b[i][j] = w0*a[i][j] +

 w1*(a[i-1][j] + a[i][j-1] + a[i+1][j] + a[i][j+1]);

for(i = 1; i < n-1; ++i)

 for(j = 1; j < m-1; ++j)

 a[i][j] = b[i][j];

09/06/2016 29 Compilers and optimisation

Helping the vectoriser

• Some “coding tricks” can block vectorisation:
– vectorisable

for(i = 0; i < n-1; ++i){

 b[i] = a[i] + a[i+1];

}

– non vectorisable because x is needed for the next iteration.

x = a[0];

for(i = 0; i < n-1; ++i){

 y = a[i+1];

 b[i] = x + y;

 x = y;

}

• If the code hasn’t vectorised then you can help the compiler by:

• modifying the code to make it vectorisable

• inserting compiler directives to force the vectorisation

09/06/2016 30 Compilers and optimisation

Helping the vectoriser

• If the programmer knows that a dependency indicated by the programmer
is only apparent then the vectorisation can be forced with compiler-
dependent directives.
– Intel FOTRAN: !DIR$ simd

– Intel C:#pragma simd

• so if we know that inow ≠ inew then there is in fact no dependency

do k = 1,n

!DIR$ simd

 do i = 1,l

 ...

 x02 = a02(i-1,k+1,inow)

 x04 = a04(i-1,k-1,inow)

 x05 = a05(i-1,k ,inow)

 x06 = a06(i, k-1, inow)

 x19 = a19(i ,k ,inow)

 rho =+x02+x04+x05+x06+x11+x13+x14+x15+x19

 a05(i,k,inew) = x05 - omega*(x05-e05) + force

 a06(i,k,inew) = x06 - omega*(x06-e06) 09/06/2016 31 Compilers and optimisation

Inlining

• A manual or compiler optimisation which replaces a call to the
function with the body of the function itself.
 eliminates the cost of the function call and can improve instruction

cache performance

 makes inter-procedure optimisation easier

• In C/C++ the keyword inline is a “suggestion”

• Not every function is “inlineable” – depends on the compiler.

• Can cause increase in code size, particularly for large functions.

• Intel: -inline=n (0=disable, 1=keyword, 2=compiler decides)

• GNU: -finline-functions, -finline-limit=n

• In some compilers activated at high optimisation levels

09/06/2016 32 Compilers and optimisation

Common Subexpression
Elimination (CSE)

• Sometimes identical expressions are calculated more than once.
When this happens may be useful to replace them with a variable
holding the value.

• This

 A = B+C+D

 E = B+F+C

 requires 4 sums. But the following

 A =(B+C)+D

 E =(B+C)+D

 requires 3 sums.

• Careful: the floating point result may not be identical

• Another use is to replace an array element with a scalar to avoid
multiple array lookups.

09/06/2016 33 Compilers and optimisation

CSE and function calls

• By altering the order of the calls the compiler doesn’t know if
the result is affected (possible side-effects)

• 5 function calls, 5 products

• 4 function calls, 4 products (1 temporary variable)

x=r*sin(a)*cos(b);

y=r*sin(a)*sin(b);

z=r*cos(a);

temp=r*sin(a)

x=temp*cos(b);

y=temp*sin(b);

z=r*cos(a);

09/06/2016 34 Compilers and optimisation

CSE: Limitations

• Loops which are too big:
– The compiler works with limited window sizes: it may not detect

which quantity to re-use

• Functions:
– If I change the order of the functions do I still get the same

result?

• Order and evaluations:
– Only at high levels of optimisation does the compiler change the

order of operations (usually –O3 and above).

– In some expressions it is possible to inhibit the mechanism with
parantheses (the programmer is always right!).

• Since intermediate values are used will increase use of
registers (risk of “register spilling”).

09/06/2016 35 Compilers and optimisation

Optimisation Reports

• Compiler dependent. Intel provides various useful options:

• The GNU suite does not provide exactly equivalent options.

– The best option is to specify: -fdump-tree-all

– which prints out alot of stuff (but not exactly in user-friendly form).

-opt-report[n] n=0(none),1(min),2(med),3(max)
-opt-report-file<file>

-vec-report[n] n=0(none),1(min),2,3,4,5,6,7(max)

....

09/06/2016 36 Compilers and optimisation

Static and dynamic allocation

• Static allocation in principle can help the compiler
optimise by providing more information. But
– the code becomes more rigid
– in parallel computing dynamic allocation is very useful

integer :: n

parameter(n=1024)

real a(1:n,1:n)

real b(1:n,1:n)

real c(1:n,1:n)

real, allocatable, dimension(:,:) :: a

real, allocatable, dimension(:,:) :: b

real, allocatable, dimension(:,:) :: c

print*,’Enter matrix size’

read(*,*) n

allocate(a(n,n),b(n,n),c(n,n))

09/06/2016 37 Compilers and optimisation

Static and Dynamic Allocation

• For recent compilers, performances are often similar for
static and dynamic allocations.
– e.g. matrix-matrix multiplication

• Note that static allocations use the “stack”, which is
generally limited.

• In the bash shell you can use the ulimit command to see
and (possibly) set the stack.

Compiler Static Dynamic

PLX ifort –O0 6.72 18.26

PLX ifort –fast 0.34 0.35

ulimit –a

ulimit –s unlimited

09/06/2016 38 Compilers and optimisation

Dynamic allocation in C

• C doesn’t have a native 2-d array (unlike FORTRAN) but instead uses
arrays of arrays.

• Static allocation guarantees all the values are contiguous in memory

• Dynamic allocation can be inefficient, if not done carefully

/* Inefficient array allocation */

/* Allocate a double matrix with many malloc */

double** allocate_matrix(int nrows, int ncols) {

 double **A;

 /* Allocate space for row pointers */

 A = (double**) malloc(nrows*sizeof(double*));

 /* Allocate space for each row */

 for (int ii=1; ii<nrows; ++ii) {

 A[ii] = (double*) malloc(ncols*sizeof(double));

 }

return A;

}

double A[nrows][ncols];

09/06/2016 39 Compilers and optimisation

Dynamic array allocation in C/2

• Better to allocate a linear (1D array) and use it as matrix (index
linearisation).

• If necessary can add a matrix of pointers pointing to the allocated array

/* Allocate a double matrix with one malloc */

double* allocate_matrix_as_array(int nrows, int ncols) {

double *arr_A;

/* Allocate enough raw space */

arr_A = (double*) malloc(nrows*ncols*sizeof(double));

return arr_A;

}

..

arr_A[i+ncols+j]

/* Allocate a double matrix with one malloc */

double** allocate_matrix(int nrows, int ncols, double* arr_A) {

double **A;

/* Prepare pointers for each matrix row */

A = new double*[nrows];

/* Initialize the pointers */

for (int ii=0; ii<nrows; ++ii) {

A[ii] = &(arr_A[ii*ncols]);

}

return A;

}

09/06/2016 40 Compilers and optimisation

Aliasing and restrict

• In C aliasing occurs if two pointers point to the same area of
memory.

• Aliasing can severely limit compiler optimisations:

– difficult to invert the order of the operations, particularly if passed to
a function

• The C99 standard introduced the restrict keyword to

indicate that aliasing is not possible:

void saxpy(int n, float a, float *x, float* restrict y)

• In C++ it is assumed that aliasing cannot occur between
pointers to different types (strict aliasing).

09/06/2016 41 Compilers and optimisation

Aliasing and Restrict /2

• FORTRAN assumes that the arguments of a procedure cannot point
to the same area of memory

– except for arrays where in any case the indices allow a correct
behaviour

– or for pointers which are used anyway as arguments

– one reason why FORTRAN optimises better than C!

• It is possible to configure the aliasing options at compile time

– GNU (solo strict-aliasing): -fstrict-aliasing

– Intel (complete elimination): -fno-alias

– IBM (no overlap per array): -qalias=noaryovrlp

09/06/2016 42 Compilers and optimisation

Input/Output

• I/O is performed by the operating system and:
– results in a system call

– empties the pipeline

– destroys the coherence of data in the cache

– is very slow

• Rule 1: Do not mix intensive computing with I/O

• Rule 2: read/write data in blocks, not a few bytes
at a time (the optimum block size depends on
filesystem)

09/06/2016 43 Compilers and optimisation

Fortran I/O examples

do k=1,n ; do j=1,n ; do i=1,n

write(69,*) a(i,j,k) ! formattated

enddo ; enddo ; enddo

do k=1,n ; do j=1,n ; do i=1,n

write(69) a(i,j,k) ! binary

enddo ; enddo ; enddo

do k=1,n ; do j=1,n

write(69) (a(i,j,k),i=1,n) ! columns

enddo ; enddo

do k=1,n

write(69) ((a(i,j,k),i=1),n,j=1,n) ! matrices

enddo

write(69) (((a(i,j,k),i=1,n),j=1,n),k=1,n) ! block

write(69) a ! dump

09/06/2016 44 Compilers and optimisation

FORTRAN I/O performances

Option Seconds Kbytes

Formatted 81.6 419430

Binary 81.1 419430

Columns 60.1 268435

Matrix 0.66 134742

Block 0.94 134219

Dump 0.66 134217

09/06/2016 45 Compilers and optimisation

I/O Summary

• Reading/writing formatted data is slow.
• Better to read/write binary data.
• Read/write in blocks.
• Choose the most efficient filesystem available.
• Note that although writing is generally buffered,

the impact on performance can be significant.
• For parallel programs:

– avoid having every task perform read/writes
– use instead MPI I/O, NetCDF or HDF5, etc.

09/06/2016 46 Compilers and optimisation

Summary

• Most programmers optimise their codes by
simply increasing the optimisation level during
the compilation but with complex programs the
compiler normally needs help.

• Many serial optimisations, regardless of language
(C, Fortran,..), work towards optimal cache and
vector performance – particularly essential for
hybrid HPC architectures (e.g. GPU, Xeon PHI).

09/06/2016 47 Compilers and optimisation

