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two stages to write a parallel code

– problem domain
➔ algorithm

– program domain
➔ implementation
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Problem domain 
● Naive iterative solver of Laplace equation for a variable T

– Start with a Gaussian field

– Iterate replacing each value with the mean value of the four 
neighboring points

– Stop when either the maximum amount of iterations or the 
convergence is reached



  

Problem domain 

– Analyze the algorithm  (trivial for the Laplace example):
● Is the serial algorithm suitable for a a distribute 

parallel MPI implementation?
● Is the serial algorithm still the best wrt performances 

for an MPI version of the code?

– Identify the most computationally demanding parts of 
the problem

● But remember that an MPI parallelization is difficult 
to develop incrementally



  

Concurrency 

Find concurrency:

– similar operations that can be applied to different 
parts of the data structure

– domain decomposition: divide data into chunks 
that can be operated concurrently

➔ a task works only its chunk of data 
➔ map local to global variables



  

Dependencies 

Handle dependencies among tasks:

– Tasks needs access to some portion of another 
task local data (data sharing)

– Understand the kind and the amount of 
communications among processes required to 
make anything consistent
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Computational 
Domain 

● The shape of 
the matrixes 
include ghost 
(or halo) points 
to handle (the 
neighbour of) 
boundary points
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● Use a Cartesian 
communicator to 
manage the processes 
and easily map them to 
rectangular 
subdomains

● Subdomains need 
ghost points too

● Some of them are 
the original ghost 
points

● In addition there are 
ghost points among 
inter-process 
boundaries
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1D versus 2D 
decomposition

● Why a 2D 
decomposition?

● Data to be 
exchanged:

● 1D: 2N

● 2D: 4N/√N_proc0,0

1,1

1,0

0,1



  

Program domain

2 different stages to parallelize a serial code

– problem domain
➔ algorithm

– program domain          
➔ Implementation      (the fun part)               



  

The serial code: Laplace equation

program laplace

   [ … variable declarations … ]   

   [ … input parameters ... ]

   [ … allocate variables … ]

   [ … initialize field … ]

   [ … print initial output … ]

  [ … computational core … ]

  [ … print final output … ]

  [ … deallocate variables … ]

end program laplace  

   

do while (var > tol .and. iter <= maxIter)

      iter = iter + 1

      var = 0.d0       

      do j = 1, n

         do i = 1, n

            Tnew(i,j) = 0.25d0 * (T(i-1,j)+T(i+1,j)+T(i,j-1)+T(i,j+1))

            var = max(var, abs( Tnew(i,j) - T(i,j) ))

         end do

      end do

 

      Tmp =>T; T =>Tnew; Tnew => Tmp; 

      if( mod(iter,100) == 0 ) &

          write(*,"(a,i8,e12.4)") ' iter, variation:', iter, var

   end do  



  

The tasks

● (1) Develop an MPI parallel version of the 
laplace.f90/laplace.c serial codes (init and save 
functions are in init_save.f90/c files)       

● (a) Start with a basic MPI implementation using a Cartesian 
topology and blocking communications

● (b) Try to enhance the solution using advanced features

● (2) Add the OMP parallelization to the blocking MPI 
version to finally develop an hybrid MPI-OMP 
implementation of the code

● Explore the different thread support levels



  

 MPI Basic - Hints / 1
● First create the Cartesian communicator

– And find the ranks of the neighboring processes

● Define the sizes of the domain for each rank
– Also define the offsets of the sub-domains with respect to the global domain

– If possible try to handle the remainders, otherwise force a constraint

● After that, init_field is easy to parallelize: ind2pos (the function which 
maps the index to the position in the grid) remains unchanged provided that 
the global indexes are passed to it

● The print function (save_gnuplot) parallelization 
– might be postponed: check the error at each time step to know if the results are 

correct

– to parallelize it, let the rank=0  collect all the fields and print (just for didactic 
purposes) but the right way is using MPI I/O 

● At each iteration update the ghost points with the boundary points of the 
neighboring processes
– MPI_Sendrecv may be a good choice

– Declare, allocate and use buffers to perform the communications



  

MPI Basic - Hints / 2
● Initialize MPI:

– MPI_Init / MPI_Comm_rank / MPI_Comm_size

● Input
– Make only rank=0 read from input

– MPI_Bcast the 3 input numbers to all the processes

● Cartesian topology for processes
– MPI_Dims_create – decompose the number of processes in a rectangular way cart_dims(:)

– MPI_Cart_create – create the Cartesian communicator

– MPI_Comm_rank on the Cartesian communicator

– MPI_Cart_coords – find the coordinates of my process cart_coord(:)

– MPI_Cart_shift (in x and y) – find the ranks of neighboring processes

● Associate the cartesian topology to the computational grid
– Find for each process the sub-domain size and the start indexes wrt to the global domain (in x and y): 

mymsize_x, mymsize_y, mystart_x, mystart_y
● mymsize_x = n/cart_dims(1)
● mystart_x = mymsize_x *cart_coord(1)

– Handle the remainders or force to be multiple (...)

● Allocate T, Tnew, and the buffers (4 send and 4 receive buffers), including the ghost points 
(size=mymsize_x+2). Ghosts not needed for buffers.

● Declare everything you need!



  

MPI Basic - Hints / 3
● Parallelize init_fields

– Pass mystart_x,mystart_y,mymsize_x,mymsize_y as 
arguments

– Modify the loop bounds from 0 to mymsize_x/y+1

– Modify the call to ind2pos (pass ix+mystart_x instead of ix)

● Parallelize print function (save_gnuplot) parallelization 
– to parallelize it, let the rank=0 collect all the fields and print 

ASCII (just for didactic purposes)

– the right way would be MPI I/O 

● To focus on MPI advanced features, parallel 
versions of init_fields and save_gnuplot are 
already provided



  

MPI Basic - Hints / 4
● Main compute loop:

– Modify the loops bounds (from 1 to mymsize_x/y)

– MPI_Allreduce to the error variable (max among all the processes)

– You are ready to check the first results, just print the error variable 
after one step: serial and parallel codes must give the same 
results

● To focus on MPI advanced features, the parallel 
versions (except for communications) is already 
provided

● Now you can start adding the communications
– Inside the main compute loop

– Usually just before the updates



  

MPI Basic - Hints / 5
● Communications

– 4 MPI_Sendrecv are enough: send to left + recv from right, send to right + recv from 
left, send to top + recv from bottom, send to bottom + recv from top

● Send to left + recv from right
● Copy left boundary to a buffer

– buffer_s_rl(1:mymsize_y) = T(1,1:mymsize_y)

● Send to left and receive from right
– MPI_Sendrecv(buffer_s_rl, mymsize_y, MPI_DOUBLE_PRECISION, dest_rl, tag,

                         buffer_r_rl, mymsize_y, MPI_DOUBLE_PRECISION, source_rl, tag,

                         cartesianComm, status, ierr)

● Copy back the received buffer 
– if(source_rl >= 0) T(mymsize_x+1,1:mymsize_y) = buffer_r_rl(1:mymsize_y)

– Why is the if required? Because MPI_Cart_shift return MPI_PROC_NULL when a 
neighboring process does not exist

– MPI_Sendrecv can correctly handle it (no send or receive is performed in that case)

– But the copy back from buffer to T must be avoided (otherwise T would be filled with 
unexpected values)



  

MPI Basic - Hints / 6

● Now probably you will face problems
– Errors when compiling: check the arguments of MPI 

calls, the MPI types, and for Fortran the kinds

– Start verifying that the MPI code still works using 1 
processor (mpirun -np 1 …)

– Then try to add the decomposition only on one 
dimension (mpirun -np 2 …)

– You can check the residuals or you can also check the 
field to understand the origin of the error

● Do not demoralize! Parallelizing a code –even 
simple – is not straightforward



  

MPI Advanced - Improvements

● So far we have a basic MPI parallelization of the original serial code
● Actually many improvements are possible

– which may be possibly mixed

Derived datatypes
Avoid copies on buffers 
even for not contiguous 

memory regions

Group communications 
using just one MPI 

neighbour alltoall call

Use non-blocking 
Communications and

overlap them with
computations

Use Remote Memory 
Access to avoid explicit

send-recv match
(not very useful for

this example)



  

MPI Advanced - (1) Overlap communications with computations 
● In spite of MPI_Sendrecv, non blocking MPI calls can be 

employed
– MPI_Isend, MPI_Irecv, …

● But, how to make them useful to enhance the scalability?
– Since the MPI communications are needed only for ghost 

nodes some operations can be performed simultaneously

– Which operations? The operations which do not involve the 
ghost points...

● As always, man (and the web, of course) is your friend:

man MPI_Init



  

(2) Using derived datatypes 
● Restart from basic MPI version
● So far we have been using buffers as temporary storage for non-

contiguous memory regions to send/recv (rows for Fortran and columns 
for C)

● But this can be avoided making the code more readable and possibly 
improving the performances

● Create two derived datatypes (actually just one is really mandatory)
– A type for a matrix row (contiguous in C and vector in Fortran)

– A type for a matrix column (contiguous in Fortran and vector in C)

● Then send/recv only 1 element of this type
– No buffer is needed! 

– Just pass to MPI_Sendrecv the first element of the submatrix to pass and 
specify one element of the contiguous/vector type to pass

– Hint: do not forget to commit the type after creation!



  

(3) Using Neighbor collective call

● Restart from basic MPI version
● Instead of 4 Sendrecv we can exploit the neighbour 

communication functions from MPI 3
– Prepare a single send buffer with all the 4 buffers to send

– Remember: for a Cartesian topology the sequence of 
neighbors in the send and receive buffers at each 
process is defined by order of the dimensions, first the 
neighbor in the negative direction and then in the 
positive direction with displacement 1

– Use MPI_Ineighbor_alltoallv and then MPI_Wait

– Copy back the received buffers (the same order apply)



  

(4) Using RMA

● Start from the derived datatype version
– It makes much more sense

● First create two windows win_1 and win_2: one corresponding to T and 
one corresponding to Tnew 
– To get the win_size be standard and use MPI_Type_size

● Instead of the sendrecv:
– MPI_Win_fence

– MPI_Put for each edge: the starting address is the same as send of sendrecv and 
the displacement can be extracted from the recv of sendrecv 

– MPI_Win_fence again

● Beware:
– the pointers of T and Tnew are switched during the computations but the windows 

do not switch at least in our basic version

– therefore the fence/put previous block have to be duplicated for even and odd 
iterations: for odd iterations use win_1, for even iterations use win_2. Guess why?



  

(1) MPI + OpenMP – Hints

● To mix MPI and OpenMP the simplest way is to open the OMP parallel 
region just around the main computing loop (the update iteration loop 
from T to Tnew)
– No direct interaction between MPI and OpenMP

– But MPI_THREAD_FUNNELED should be required according to the standard

– Actually MPI_THREAD_SINGLE (i.e., MPI_Init) also usually works (at least 
for OpenMPI)

– 5 minutes should be enough to complete the hybridization

● Remember to add the openmp compilation option



  

(2) MPI + OpenMP – Hints
● But the parallel region may be enlarged to include the MPI 

communications
– If the communications are performed by the master threads, 

MPI_THREAD_FUNNELED is enough

– The communications may overlap with the computations: master 
threads performs the communications and then update the 
boundaries

– At the same time, the other threads start doing bulk updating 

– Probably master threads collaborate after a while in doing that

– The OMP schedule should be modified accordingly

● Remember
– OMP master forces the code to be executed only by master 

thread

– And the other threads go on



  

(3) MPI + OpenMP – Hints

● The parallel region may be further enlarged 
including the entire while loop
– MPI_THREAD_SINGLE must be employed 

– Now we can overlap pointer exchange and the 
MPI reduction for the error

● Some OMP barriers are needed: where and 
why?

● Use OMP single 
– to do tasks which must be executed only by one 

thread: e.g. “iter=iter+1”

– Or for the MPI_Allreduce



  

(4) MPI + OpenMP – Hints

● What about “each thread executing an MPI 
communication”?
– You need MPI_THREAD_MULTIPLE support

– Each thread performs a send/recv: how to implement in 
OpenMP?

– The other threads immediately start the core updating loop... 

– Then wait for the other threads to finish (how?) and update the 
boundaries



  

Evaluating performances

● The different versions can lead to different results 
in term of performances
– But the actual improvements depend on several factors

– And are probably limited for such a didactic example

– Testing in realistic scenarios is mandatory

– For our case let us consider a 5000x5000 grid

1 2 ... 32768

MPI basic

Overlap

DDT

Neighbour

RMA



  

Evaluating performances / 2

● To evaluate the improvement given by the hybrid 
programming the scaling evaluation can be more complex
– No improvement expected for such a simple case

   N_MPI 
         /
N_OpenMP

1 2 ... 4096

1

2

4

8

16


