

Code Parallelization
a guided walk-through

f.salvadore@cineca.it

Advanced School ed. 2016

Code Parallelization

two stages to write a parallel code

– problem domain
➔ algorithm

– program domain
➔ implementation

two stages to write a parallel code

– problem domain
➔ algorithm

– program domain
➔ implementation

Code Parallelization

two stages to write a parallel code

– problem domain
➔ algorithm

– program domain
➔ implementation

Code Parallelization

Problem domain
● Naive iterative solver of Laplace equation for a variable T

– Start with a Gaussian field

– Iterate replacing each value with the mean value of the four
neighboring points

– Stop when either the maximum amount of iterations or the
convergence is reached

Problem domain

– Analyze the algorithm (trivial for the Laplace example):
● Is the serial algorithm suitable for a a distribute

parallel MPI implementation?
● Is the serial algorithm still the best wrt performances

for an MPI version of the code?

– Identify the most computationally demanding parts of
the problem

● But remember that an MPI parallelization is difficult
to develop incrementally

Concurrency

Find concurrency:

– similar operations that can be applied to different
parts of the data structure

– domain decomposition: divide data into chunks
that can be operated concurrently

➔ a task works only its chunk of data
➔ map local to global variables

Dependencies

Handle dependencies among tasks:

– Tasks needs access to some portion of another
task local data (data sharing)

– Understand the kind and the amount of
communications among processes required to
make anything consistent

iXX

iY

0 1 n n+1

1

n

n+1

Computational
Domain

● The shape of
the matrixes
include ghost
(or halo) points
to handle (the
neighbour of)
boundary points

iXX

iY

0 1 n n+1

1

n

n+1

● Use a Cartesian
communicator to
manage the processes
and easily map them to
rectangular
subdomains

● Subdomains need
ghost points too

● Some of them are
the original ghost
points

● In addition there are
ghost points among
inter-process
boundaries

0,0

1,1

1,0

0,1

iXX

iY

0 1 n n+1

1

n

n+1

1D versus 2D
decomposition

● Why a 2D
decomposition?

● Data to be
exchanged:

● 1D: 2N

● 2D: 4N/√N_proc0,0

1,1

1,0

0,1

Program domain

2 different stages to parallelize a serial code

– problem domain
➔ algorithm

– program domain
➔ Implementation (the fun part)

The serial code: Laplace equation

program laplace

 [… variable declarations …]

 [… input parameters ...]

 [… allocate variables …]

 [… initialize field …]

 [… print initial output …]

 [… computational core …]

 [… print final output …]

 [… deallocate variables …]

end program laplace

do while (var > tol .and. iter <= maxIter)

 iter = iter + 1

 var = 0.d0

 do j = 1, n

 do i = 1, n

 Tnew(i,j) = 0.25d0 * (T(i-1,j)+T(i+1,j)+T(i,j-1)+T(i,j+1))

 var = max(var, abs(Tnew(i,j) - T(i,j)))

 end do

 end do

 Tmp =>T; T =>Tnew; Tnew => Tmp;

 if(mod(iter,100) == 0) &

 write(*,"(a,i8,e12.4)") ' iter, variation:', iter, var

 end do

The tasks

● (1) Develop an MPI parallel version of the
laplace.f90/laplace.c serial codes (init and save
functions are in init_save.f90/c files)

● (a) Start with a basic MPI implementation using a Cartesian
topology and blocking communications

● (b) Try to enhance the solution using advanced features

● (2) Add the OMP parallelization to the blocking MPI
version to finally develop an hybrid MPI-OMP
implementation of the code

● Explore the different thread support levels

 MPI Basic - Hints / 1
● First create the Cartesian communicator

– And find the ranks of the neighboring processes

● Define the sizes of the domain for each rank
– Also define the offsets of the sub-domains with respect to the global domain

– If possible try to handle the remainders, otherwise force a constraint

● After that, init_field is easy to parallelize: ind2pos (the function which
maps the index to the position in the grid) remains unchanged provided that
the global indexes are passed to it

● The print function (save_gnuplot) parallelization
– might be postponed: check the error at each time step to know if the results are

correct

– to parallelize it, let the rank=0 collect all the fields and print (just for didactic
purposes) but the right way is using MPI I/O

● At each iteration update the ghost points with the boundary points of the
neighboring processes
– MPI_Sendrecv may be a good choice

– Declare, allocate and use buffers to perform the communications

MPI Basic - Hints / 2
● Initialize MPI:

– MPI_Init / MPI_Comm_rank / MPI_Comm_size

● Input
– Make only rank=0 read from input

– MPI_Bcast the 3 input numbers to all the processes

● Cartesian topology for processes
– MPI_Dims_create – decompose the number of processes in a rectangular way cart_dims(:)

– MPI_Cart_create – create the Cartesian communicator

– MPI_Comm_rank on the Cartesian communicator

– MPI_Cart_coords – find the coordinates of my process cart_coord(:)

– MPI_Cart_shift (in x and y) – find the ranks of neighboring processes

● Associate the cartesian topology to the computational grid
– Find for each process the sub-domain size and the start indexes wrt to the global domain (in x and y):

mymsize_x, mymsize_y, mystart_x, mystart_y
● mymsize_x = n/cart_dims(1)
● mystart_x = mymsize_x *cart_coord(1)

– Handle the remainders or force to be multiple (...)

● Allocate T, Tnew, and the buffers (4 send and 4 receive buffers), including the ghost points
(size=mymsize_x+2). Ghosts not needed for buffers.

● Declare everything you need!

MPI Basic - Hints / 3
● Parallelize init_fields

– Pass mystart_x,mystart_y,mymsize_x,mymsize_y as
arguments

– Modify the loop bounds from 0 to mymsize_x/y+1

– Modify the call to ind2pos (pass ix+mystart_x instead of ix)

● Parallelize print function (save_gnuplot) parallelization
– to parallelize it, let the rank=0 collect all the fields and print

ASCII (just for didactic purposes)

– the right way would be MPI I/O

● To focus on MPI advanced features, parallel
versions of init_fields and save_gnuplot are
already provided

MPI Basic - Hints / 4
● Main compute loop:

– Modify the loops bounds (from 1 to mymsize_x/y)

– MPI_Allreduce to the error variable (max among all the processes)

– You are ready to check the first results, just print the error variable
after one step: serial and parallel codes must give the same
results

● To focus on MPI advanced features, the parallel
versions (except for communications) is already
provided

● Now you can start adding the communications
– Inside the main compute loop

– Usually just before the updates

MPI Basic - Hints / 5
● Communications

– 4 MPI_Sendrecv are enough: send to left + recv from right, send to right + recv from
left, send to top + recv from bottom, send to bottom + recv from top

● Send to left + recv from right
● Copy left boundary to a buffer

– buffer_s_rl(1:mymsize_y) = T(1,1:mymsize_y)

● Send to left and receive from right
– MPI_Sendrecv(buffer_s_rl, mymsize_y, MPI_DOUBLE_PRECISION, dest_rl, tag,

 buffer_r_rl, mymsize_y, MPI_DOUBLE_PRECISION, source_rl, tag,

 cartesianComm, status, ierr)

● Copy back the received buffer
– if(source_rl >= 0) T(mymsize_x+1,1:mymsize_y) = buffer_r_rl(1:mymsize_y)

– Why is the if required? Because MPI_Cart_shift return MPI_PROC_NULL when a
neighboring process does not exist

– MPI_Sendrecv can correctly handle it (no send or receive is performed in that case)

– But the copy back from buffer to T must be avoided (otherwise T would be filled with
unexpected values)

MPI Basic - Hints / 6

● Now probably you will face problems
– Errors when compiling: check the arguments of MPI

calls, the MPI types, and for Fortran the kinds

– Start verifying that the MPI code still works using 1
processor (mpirun -np 1 …)

– Then try to add the decomposition only on one
dimension (mpirun -np 2 …)

– You can check the residuals or you can also check the
field to understand the origin of the error

● Do not demoralize! Parallelizing a code –even
simple – is not straightforward

MPI Advanced - Improvements

● So far we have a basic MPI parallelization of the original serial code
● Actually many improvements are possible

– which may be possibly mixed

Derived datatypes
Avoid copies on buffers
even for not contiguous

memory regions

Group communications
using just one MPI

neighbour alltoall call

Use non-blocking
Communications and

overlap them with
computations

Use Remote Memory
Access to avoid explicit

send-recv match
(not very useful for

this example)

MPI Advanced - (1) Overlap communications with computations
● In spite of MPI_Sendrecv, non blocking MPI calls can be

employed
– MPI_Isend, MPI_Irecv, …

● But, how to make them useful to enhance the scalability?
– Since the MPI communications are needed only for ghost

nodes some operations can be performed simultaneously

– Which operations? The operations which do not involve the
ghost points...

● As always, man (and the web, of course) is your friend:

man MPI_Init

(2) Using derived datatypes
● Restart from basic MPI version
● So far we have been using buffers as temporary storage for non-

contiguous memory regions to send/recv (rows for Fortran and columns
for C)

● But this can be avoided making the code more readable and possibly
improving the performances

● Create two derived datatypes (actually just one is really mandatory)
– A type for a matrix row (contiguous in C and vector in Fortran)

– A type for a matrix column (contiguous in Fortran and vector in C)

● Then send/recv only 1 element of this type
– No buffer is needed!

– Just pass to MPI_Sendrecv the first element of the submatrix to pass and
specify one element of the contiguous/vector type to pass

– Hint: do not forget to commit the type after creation!

(3) Using Neighbor collective call

● Restart from basic MPI version
● Instead of 4 Sendrecv we can exploit the neighbour

communication functions from MPI 3
– Prepare a single send buffer with all the 4 buffers to send

– Remember: for a Cartesian topology the sequence of
neighbors in the send and receive buffers at each
process is defined by order of the dimensions, first the
neighbor in the negative direction and then in the
positive direction with displacement 1

– Use MPI_Ineighbor_alltoallv and then MPI_Wait

– Copy back the received buffers (the same order apply)

(4) Using RMA

● Start from the derived datatype version
– It makes much more sense

● First create two windows win_1 and win_2: one corresponding to T and
one corresponding to Tnew
– To get the win_size be standard and use MPI_Type_size

● Instead of the sendrecv:
– MPI_Win_fence

– MPI_Put for each edge: the starting address is the same as send of sendrecv and
the displacement can be extracted from the recv of sendrecv

– MPI_Win_fence again

● Beware:
– the pointers of T and Tnew are switched during the computations but the windows

do not switch at least in our basic version

– therefore the fence/put previous block have to be duplicated for even and odd
iterations: for odd iterations use win_1, for even iterations use win_2. Guess why?

(1) MPI + OpenMP – Hints

● To mix MPI and OpenMP the simplest way is to open the OMP parallel
region just around the main computing loop (the update iteration loop
from T to Tnew)
– No direct interaction between MPI and OpenMP

– But MPI_THREAD_FUNNELED should be required according to the standard

– Actually MPI_THREAD_SINGLE (i.e., MPI_Init) also usually works (at least
for OpenMPI)

– 5 minutes should be enough to complete the hybridization

● Remember to add the openmp compilation option

(2) MPI + OpenMP – Hints
● But the parallel region may be enlarged to include the MPI

communications
– If the communications are performed by the master threads,

MPI_THREAD_FUNNELED is enough

– The communications may overlap with the computations: master
threads performs the communications and then update the
boundaries

– At the same time, the other threads start doing bulk updating

– Probably master threads collaborate after a while in doing that

– The OMP schedule should be modified accordingly

● Remember
– OMP master forces the code to be executed only by master

thread

– And the other threads go on

(3) MPI + OpenMP – Hints

● The parallel region may be further enlarged
including the entire while loop
– MPI_THREAD_SINGLE must be employed

– Now we can overlap pointer exchange and the
MPI reduction for the error

● Some OMP barriers are needed: where and
why?

● Use OMP single
– to do tasks which must be executed only by one

thread: e.g. “iter=iter+1”

– Or for the MPI_Allreduce

(4) MPI + OpenMP – Hints

● What about “each thread executing an MPI
communication”?
– You need MPI_THREAD_MULTIPLE support

– Each thread performs a send/recv: how to implement in
OpenMP?

– The other threads immediately start the core updating loop...

– Then wait for the other threads to finish (how?) and update the
boundaries

Evaluating performances

● The different versions can lead to different results
in term of performances
– But the actual improvements depend on several factors

– And are probably limited for such a didactic example

– Testing in realistic scenarios is mandatory

– For our case let us consider a 5000x5000 grid

1 2 ... 32768

MPI basic

Overlap

DDT

Neighbour

RMA

Evaluating performances / 2

● To evaluate the improvement given by the hybrid
programming the scaling evaluation can be more complex
– No improvement expected for such a simple case

 N_MPI
 /
N_OpenMP

1 2 ... 4096

1

2

4

8

16

