
Tasking in OpenMP 4

Mirko Cestari - m.cestari@cineca.it
Marco Rorro - m.rorro@cineca.it

mailto:m.cestari@cineca.it

Outline

● Introduction to OpenMP
● General characteristics of Taks
● Some examples
● Live Demo

Multi-threaded process

● Each thread may be regarded as a concurrent execution flow

Fork-Join parallel execution

Structure of an OpenMP program
 Execution model

● fork-join parallel execution
● the program starts with an initial thread
● when a parallel construct is encountered a team is created
● parallel regions may be nested arbitrarily
● worksharing constructs permit to divide work among threads

 Shared-memory model
● all threads have access to the memory
● each thread is allowed to have a temporary view of the memory
● each thread has access to a thread-private memory
● two kinds of data-sharing attributes: private and shared
● data-races trigger undefined behavior

Programming model
● compiler directives + environment variables + run-time library

OpenMP core elements

 OpenMP 2.5

• 2 main worksharing contructs
– Loop construct: the number of iterations is determined

before entering the loop
– Number of iterations cannot be changed
– The sections contruct: sections are statically defined at

compiled time

• Synchronization contructs affect the whole team of threads
– Not just units of work

 Tasks: motivations

• Modern applications are larger and more complex

• Irregular and dynamic structures are widely used
– While loops

– Recursive routines

• OpenMP 2.5 is not suitable to exploit this kind of
concurrency

Pointer chasing using single

#pragma omp parallel private(p)
{
 p = head;
 while(p) {
 #pragma omp single nowait
 process(p);
 p=p->next;
 }
}

Each thread performs the while loop (traverses the whole list)

Each thread has to determine if another thread already executed the work on
that element

Outline

● Introduction to OpenMP
● General characteristics of Taks
● Some examples
● Live Demo

Tasks

 First Introduced in OpenMP 3.0
● has been the major addition from OpenMP 2.5

 Refined in OpenMP 3.1 and OpenMP 4.0

Fortran
1.0

1998

Fortran
1.1

Fortran
2.0

2.5 3.0 3.1 4.0

C/C++
2.0

C/C++
1.0

2002

200019991997

2005 2008 2011 2013

 Tasking

• From a thread-centric model to a task centric-model

• A model in which users identify independent unit of works
and rely on the system to schedule these units

• Irregular parallelism: dynamically generated units of work
that can be executed asynchronously

Tasking in OpenMP

#pragma omp parallel
...

{
 [code]
}
...

{
 [code]
}

...

 Thread

 Thread

 Thread

 Thread

 Thread

The assumption here is that tasks are independent

Task construct

#pragma omp task [clause[[,]clause] ...]
{
 structured­block
}

Explicit task construct
a task can be executed immediately or delayed (deferred)
Runtime system will decide when the task is executed
Tasks can be nested

Definitions

Task construct – task directive plus structured block

 #pragma omp task [clause[[,]clause] ...]

 structured-block

Task – instructions and data created when a thread
encounters a task contruct
– Different encounters of the same task construct generate

different tasks

Task region – all the code encountered during the
execution of a task

Task example

Let's write a code that prints

“A“
“long“
“run”

in any order exploiting all the cores of the system

Pointer chasing using tasks
#pragma omp parallel private(p)
 #pragma omp single
 {
 p = head;
 while(p) {
 #pragma omp task
 process(p);
 p=p->next;
 }
 }

• One thread creates tasks
 packages code and data environment

• When it finishes, it reaches the implicit barrier and starts to execute the
tasks

• The other threads reach straight the implicit barrier and start to execute
tasks

Data scoping in explicit tasks

• private and firstprivate: business as usual

Example:

a = 1, b = 1, c = 1
#pragma omp parallel private(b) firstprivate(c)

• Inside the parallel region

– a (shared) 1

– b (private) undefined

– c (private) 1

Data scoping in explicit tasks

• private and firstprivate: business as usual

– If a variable is private on a task construct, the references to it
inside the construct are to new uninitialized storage that is
created when the task is executed

– If a variable is firstprivate on a construct, the references to it
inside the construct are to new storage that is created and
initialized with the value of the existing storage of that name
when the task is encountered

Data scoping in explicit tasks

• shared: same business, from a new perspective

– shared among all tasks (“horizontal”)
– shared among a task and a descendant (“vertical”)
– If a variable is shared on a task construct, the references to it

inside the construct are to the storage with that name at the
point where the task was encountered

Data scoping in explicit tasks

The behavior you want for tasks is usually firstprivate, because
the task may not be executed until later (and variables may have
gone out of scope)

Variables that are private when the task construct is encountered
are firstprivate by default

Variables that are shared in all constructs starting from the
innermost enclosing parallel construct are shared by default

Use default(none) to help avoid races!!!

Task data scoping example

#pragma omp parallel shared(a) private(b)
{
 …
 #pragma omp task
 int c;
 process(a,b,c);
 }
}

Task data scoping example

Task data scoping example

Outline

● Introduction to OpenMP
● General characteristics of Taks
● Some examples
● Live Demo

Load balancing on lists with tasks
#pragma omp parallel
{
 #pragma omp for private(p)
 for (i=0; i<num_lists; i++) {
 p = heads[i];
 while(p) {
 #pragma omp task
 process(p);
 p=p->next;
 }
 }
}
•Assign one list per thread could be unbalanced
•Multiple threads create tasks
•All the team cooperates executing them

Tree traversal with task
void preorder(node *p) {
 process(p->data);
 if (p->left)
 #pragma omp task
 preorder(p->left);
 if (p->right)
 #pragma omp task
 preorder(p->right);
}

•Tasks are composable
•It isn’t a worksharing construct
•But what about postorder traversal?

Tree traversal with task

20

9 53

79155

11

Postorder: LRN

5, 11, 15, 9, 79, 53, 20

Postorder tree traversal

void postorder(node *p) {
 if (p->left)
 #pragma omp task
 postorder(p->left);
 if (p->right)
 #pragma omp task
 postorder(p->right);
 #pragma omp taskwait

 process(p->data);
}

•Parent task suspended until children tasks complete

When/where explicit tasks complete?

• #pragma omp taskwait
● applies only to siblings, not to descendants
● task is suspendended until siblings complete

• #pragma omp taskgroup
 {

create_a_group_of_tasks(could_create_nested_task)
}

● at the end of the region current task is suspended until all child tasks generated in
the region and their descendants complete execution

• #pragma omp barrier
– applies to all tasks generated in the current parallel region up to the barrier

– matches user expectation
– obviously applies also to implicit barriers

When/where explicit tasks complete?

taskwait

taskgroup

SparseLU

● Fwd, bdiv and bmod
phases are responsible for
load imbalance

● Using task to operate only
on non-empty blocks

task switching

● What: the ability of a thread to suspend the execution of a task and
execute another one before resuming

● Where: at task scheduling points: task, taskwait, barrier directives,
and implicit barriers

● When:
● whenever is needed or useful
● up to the implementation

● Why:
● to lift pressure on runtime data structures

Lifting pressure on runtime

 #pragma omp single
 {
 for (i=0; i<ONEZILLION; i++)
 #pragma omp task
 process(item[i]);
 }

● Too many tasks generated in an eye-blink
● Generating task will have to suspend for a while
● With task switching, the executing thread can:

● execute an already generated task (draining the “task pool”)
● dive into the encountered task (could be very cache-friendly)

thread switching
 #pragma omp single
 {
 #pragma omp task
 for (i=0; i<ONEZILLION; i++)
 #pragma omp task
 process(item[i]);
 }

•Eventually, too many tasks are generated
•Generating task is suspended and executing thread switches to a long and
boring task
•Other threads get rid of all already generated tasks, and start starving…
•With thread switching, the generating task can be resumed by a different
thread, and starvation is over
•Too unsafe to be the default, the programmer is responsible!

untied

The if clause

● When the if clause argument is false
● the encountered task is executed immediately by the encountering thread,

and the enclosing task is suspended up to its end
● the data environment is still local to the new task
● and it’s still a different task wrt. Synchronization
● does not apply to descendants

● It’s a user directed optimization
● when the cost of the task is comparable to the runtime overhead
● to control cache and memory affinity

The final clause

● When the final clause argument is true
● the generated task will be a final task
● all tasks encountered during execution of a final task will generate

included tasks
– an included task is a task for which execution is sequentially included

in the generating task region; that is, it is undeferred and executed
immediately by the encountering threads

● It’s another user directed optimization

• omp_in_final() returns true if the enclosing task region
is final. Otherwise, it returns false

Example: if and final

#pragma omp task if(0) // This is undeferred
{
 #pragma omp task // This is a regular task
 for(i = 0; i < 3; i++) {
 #pragma omp task // This is a regular task
 bar();
 }
}
#pragma omp task final(1) // This is a regular task
{
 #pragma omp task // This is included
 for(i=0;i<3;i++){
 #pragma omp task // This is also included
 bar();
 }
}

Conclusions on tasks

• Tasks allow to express a lot of irregular parallelism

• The tasking concept opens up opportunities to parallelize a
wider range of applications

Outline

● Introduction to OpenMP
● General characteristics of Taks
● Some examples
● Live Demo

GOAL

Impress your Grandma by implementing a
parallel sudoku solver with OpenMP enad
tasks

(credits Cristian Terboven)

A brute force algorithm
visits the empty cells in
some order, filling in
digits sequentially from
the available choices,
or backtracking
(removing failed
choices) when a dead-
end is reached.

(wikipedia)

	Slide 1
	Slide 2
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 17
	Slide 18
	Pointer chasing using task
	Data scoping in explicit tasks
	Slide 21
	Slide 22
	Slide 23
	Task data scoping example
	Slide 25
	Slide 26
	Slide 27
	Load balancing on lists with tasks
	Tree traversal with task
	Slide 30
	Postorder tree traversal
	When/where explicit tasks complete?
	Slide 33
	Slide 35
	Enter task switching
	Lifting pressure on runtime
	Enter thread switching
	The if clause
	The final clause
	Example: if and final
	Conclusions on task
	Slide 44
	Slide 45
	Slide 46

