Introduction to the features of the MPI-3 standard

Fabio Affinito

17318 5' AI SuperComputing Applications and Innovation
SuperComputing Applications and Innovation

Summary

e Introduction
 Nonblocking collectives
 Neighborhood collectives

« RMA and one-sided communications

S SC AI SuperComputing Applications and Innovation

Message Passing Interface

MPI is an open standard interface for message passing on
memory distributed systems

Version 1.0 was released in 1994, 2.2 in 2009 and 3.0 in 2012
MPI 3 contains many enhancements wrt MPI 2.2 in many areas

MPI 3 is already implemented in many different versions by
several vendors

It tackles problems originating when the number of tasks
iIncrease as it happens on modern supercomputers

3T SCAI SuperComputing Applications and Innovation

Open Cray Tianhe Intel IBM BG/Q | IBMPE IBM SGI Fujitsu | MS
MPICH | MVAPICH | o) MPI MPI MPI MPI* MPICH | Platform | MPI MPI | MPI
NBC v v Y A Y v Y Y S TV VA
Nbrhood . ,
eyt v v v v v v v Q315 v Q3 ‘15
RMA v | v v i v i v iy by by i35 P v Q35
i v v v v v v v Q3 ‘15 v Q315: v
memory
Jel: v v v v v v v? v Q315 v Q315: *
Interface
Comm-creat v v v v v v v Q3 ‘15 v Q315
group
F08 Bindings v v P v L v i v Q315 v : ! Q315 ! ¢ Q3‘15:
New ‘ ‘ *
Datatypes v v v v v v v v Q3 15 v Q3 ‘15
Large v v v v v v v v Q3 ‘15 v iQ315: *
Counts
Matched v v v v v v v v Q315 v v ‘
Probe
NBC1/0 v | Q315 iQ315: Q4‘l5 P Q2116 :

3T 5CAI SuperComputing Applications and Innovation

Summary

e Introduction
 Nonblocking collectives
 Neighborhood collectives

« RMA and one-sided communications

S SC AI SuperComputing Applications and Innovation

Communication modes

» Blocking (MPI_*)
- it does not return until the message data and envelope have been safely away
- the sender is free to modify the data send buffer
- depending on the implementation the data can be buffered

Buffered (MPI_B*)

- can be started whether or not a matching receive was posted

- this operation is local and its completion does not depend on the occurrence of a matching receive
Synchronous mode (MP|_S¥*)

- the send will complete successfully only if a matching receive is posted and the receive operation has started to receive the
message sent by the synchronous send

- a send executed in this mode is non-local
Ready mode (MPI_R*)

- a send in ready mode may be started only if the matching receive is already posted, otherwise the operation is erroneous and its
outcome is undefined

Non blocking (MPI_I*)

- a non blocking call initiates the operation but it does not complete it

3T SCAI SuperComputing Applications and Innovation

Non blocking collective communications

* Non blocking point to point benefits:
- avoid deadlocks

- overlap communication with computation

e Collective communications benefits:

- Optimized routines for one-to-all or all-to-all communications

 Non blocking collective communications:
- Sum of the benefits of both
- Avoid bottlenecks when large number of MPI tasks
- Semantic advantages

3T SCAI SuperComputing Applications and Innovation

Non blocking collective communications

« MPI 3 adds a non blocking variant to all the collective
communications
- example: MPI_Ibcast(<bcasts args>, MPI Request *req)

« Semantics:

- it returns no matter what

no guaranteed progress

usual completion call
- out of order completion

« Restrictions
- no tags, no ordering, no in-order
- no matching with blocking collectives

3T SCAI SuperComputing Applications and Innovation

Non blocking collective communications

 Semantic advantages:
- Enable asynchronous progression
- Pipelining
- Decouples data transfer and synchronization

- It removes bottlenecks due to a large number of MPI tasks far apart

3T SC AI SuperComputing Applications and Innovation

Non blocking collective communications

« Software pipelining

Process
ngess CPU 0 CPU

network network

Process cpy \ \ Progess cpy
network netwark

nge S8 CcPU ngess cPU
network natwork

Process
3 CPU Prugass CPU

network network

3T SC AI SuperComputing Applications and Innovation

2-D FFT

« 2D-FFT can be distributed among different processes each of them executes a 1D-FFT

» After the 1D-FFT along, for example, the x-direction is completed, an MPI_Alltoall is
performed.

» Now, each process can execute a 1D-FFT along the y-direction and a final MPI_Alltoall
permits to obtain the complete 2D-FFT

Process & Process1 Process 2 Proacessd Process 0 Process 1 Procass 2 Process 3
T T e FH
| L N
MElineRE(ineB3ine R (ins JEEH Blled B Bilno
in: v :H i::H i:H: E'H' i'H: fu i H
iy Ty M el e Amoa P Tyl T4 el

3T SC AI SuperComputing Applications and Innovation

2D-FFT

« The performance can be improved if we start the transposition
and, without waiting for the completion, we start working on

the FFT along the second direction

Process 0 Process 1 Progess 2 Procass 3 Process 0 Prodess 1 Process 2 Process 3
| |
= MPI_laltoal

[AU Ldd gi—

[i gi—]

= XU lddgl— |

== A

1;
(%F'I lalfloall v 3
T e, Wil

KP1_laltoail

i

L

|
-
. |
[¥ur 143
-
-
|
. Srm———
- |
— A0 54 (i—
-
-
--I---—l

WP Waital

L 2

L]

3T SC AI SuperComputing Applications and Innovation

Non blocking barrier

 Non blocking barrier? Is it a contradiction?
* Not really...

- Decouple the moment in which processes enter the barrier from the
moment in which the synchronization actually happens!

« Example:

- People are called to a meeting. There's a late guy. People is waiting
for him, but while they're waiting they can keep doing other things.
When the late guy arrives, they all can start having the meeting.

3T SCAI SuperComputing Applications and Innovation

DSDE

* N-body codes distribute the physical domain across different PEs.

« Computation is divided in two phase: computation of forces and
particle movement

« Particles may move from one process to another

* Only the originating process knows which particles are leaving its
area and where they are going

« The destination processes typically don't know how much they will
receive from the other processes

* This problem is called: Dynamic Sparse Data Exchange

3T SCAI SuperComputing Applications and Innovation

DSDE

A trivial solution to the DSDE problem is:
- to exchange data sizes with an MPI_Alltoall
- that sets up an MPI_Alltoallv for the communication of the actual data

* This simple solution sends p2 data items for a communicator
of size p

* Using other approaches, for example using
MPI_Any Source/MPI_Probe and then MPI _Scatter/Reduce will

always require p2 data items to communicate all the
metadata

3T SCAI SuperComputing Applications and Innovation

DSDE with nonblocking barrier

* First phase:

- each process sends its messages using
MPI_Issend

« Second phase:

- each process checks the completion of the send
(with MPI_Iprobe)

« If all the sends are complete the
process starts a nonblocking barrier
and then continues to receive
messages from the other processes in
the loop

« The processes exit the loop once the
nonblocking barrier completes

Process Process Process Process Process Process

0 1 2 3 4 5
5]
3]
2] 0 B
(2 0 4 3]
1] 0 1) A 3 4|
= ’ MPI_. ISSEND - ‘

LOOP MPI IPROBE(MP! ANY SOURCE)/MPI RECV
:f MPI SSENDs ﬁmshed start MPI IBARRIER
until MPI_ IBARRIER completed

» Y P P N b

E
0] 2] E
0] 1] 2] El a
0] Ef 2] E 4]

Process Process Process Process Process Process
0 1 2 3 4 5

3T SC AI SuperComputing Applications and Innovation

Summary

e Introduction
 Nonblocking collectives
 Neighborhood collectives

« RMA and one-sided communications

S SC AI SuperComputing Applications and Innovation

Neighborhood collective

« New functions (and their variable buffer and nonblocking
variants) define collective operations among a process and
its neighbors:

- MPI_Neighbor_allgather
- MPI_Neighbor_alltoall

* Neighbors are defined by an MPI cartesian or graph virtual
topology that must be previously set

 These functions are useful, for example, in stencil
computations that require nearest-neighbor exchanges

3T SCAI SuperComputing Applications and Innovation

Example: MPI_Neighbor allgather

Process 1

A

Sendbuf l
' > Progess 5

Process 3 <€—

—

Process 4
Recvbuf

[Proc 3 | Proc 5 [Proc 1 | Proc 7 |

Y
Process 7

3T SC AI SuperComputing Applications and Innovation

SuperComputing Applications and Innovatio

Example: MPI_Neighbor allgather

Process 4
A

e Sendbuf ‘L
Process 6 > Prog¢ess 8

n—— Process 7

Proc 6 | Proc 8 | Proc 4

Not updated or communicated

3T SC AI SuperComputing Applications and Innovation

SuperComputing Applications and

Summary

« Introduction
 Nonblocking collectives
 Neighborhood collectives

« RMA and one-sided communications

S SC AI SuperComputing Applications and Innovation

MPI-2 and one-sided communication

« One-sided communication was introduced in MPI-2 with the basic idea of
decouple data movement with process synchronization

* It makes possible to move data without requiring that the remote process
synchronize

« Each process exposes a part of its memory to the other processes
« Other processes can read or write in the exposed part of the memory (window)

Process 0 Process 1 Process 2 Process 3

Global
Address ot
Space & 7
Private g | Private" Private
Memory =" y “NMemory ..Melory
CINECA SCAI Su| gore

Window creation

MPI_WIN_ALLOCATE

- You want to create a buffer and directly make it remotely accessible

MPI_WIN_CREATE

- You already have an allocated buffer that you would like to make remotely accessible

MPI_WIN_CREATE_DYNAMIC

- You don't have a buffer yet, but will have one in the future

- You may want to dynamically add/remove buffers to/from the window

MPI_WIN_ALLOCATE_SHARED

- You may want multiple processes on the same node share a buffer

3T SCAI SuperComputing Applications and Innovation

Example MPI_WIN_ALLOCATE

int main(int argc, char ** argv)
{
int *a;
MPI Win win;
MPI Init(&argc, &argv);
/* collectively create remote accessible memory in a window */
MPI Win allocate(1000*sizeof(int), sizeof(int), MPI_INFO NULL, MPI_COMM WORLD, &a, &win);
/* Array ‘a’ is now accessible from all processes in MPI_COMM WORLD */
MPI Win free(&win);
MPI Finalize();

return 0;

}

3T SC AI SuperComputing Applications and Innovation

SuperCompufing Applications and Innovation

Data movement

MPI_Put

Remotely
Accessible
Memory

\:’ Private
Memory

Origin Target

MPI_Get

MPI_Accumulate

Remotely
Accessible

Memory

Private
Memory

Plus many others... (Get_accumulate, Fetch_and op, Compare_and_swap...)

3T SC AI SuperComputing Applications and Innovation

SuperComputing Applications and

Ordering

Process O Process 1

0 * No guaranteed ordering for put/get

PUT(x=1, P1) %
PUT(x=2, P1) % =3
x=1

PUT(x=2, P1)
GET(y, x, P1) \ x=1 .
] =, « For concurrent accumulate operations
to the same location ordering is

guaranteed

» Results for concurrent put/accumulate
are undefined

GET_ACC [y, x+=2, P1)

x=2
ACC (x+=1, P1) Q S
y=2 x+=1

3T SC AI SuperComputing Applications and Innovation

RMA synchronization models

 MPI provides three synchronization models:
- Fence (active target)
- Post-start-complete-wait (generalized active target)
- Lock/Unlock (passive target)

« Data accesses occur within “epochs”
- access epoch: contain a set of operation issued by an origin process
- exposure epoch: enable remote processes to update a target window
- Synchronization models provide mechanisms for establishing epochs

3T SCAI SuperComputing Applications and Innovation

Fence: active target synchronization

« MPI_WIN FENCE starts and
ends access and exposure
epoch of all processes in the
window

« Collective synchronization
model

« All operations complete at
the second fence
synchronization

Fence

Fence

PO P1 P2

—

3T SCAI SuperComputing Applications and Innovation

Post/start/complete/wait: generalized active target synchronization

« More flexible wrt MPI_WIN_FENCE

- origin and target may specify who they
communicate with, through the definition
of an MPI_Group

« target side: exposure epoch
- opened with MPI_WIN_Post
- closed with MPI_WIN_Wait

 origin side: access epoch
- opened with MPI_WIN_Start
- closed with MPI_WIN_Complete

Target

Post

Wait

S

Origin

Start

Complete

3T SC AI SuperComputing Applications and Innovation

Lock/unlock: passive target synchronization

 One sided asynchronous
communication

» Target does not participate
In communication operation

 Shared memory-like model

Lock

Unlock

Passive Target Mode

—

3T SC AI SuperComputing Applications and Innovation

MPI RMA Memory model

« MPI-3 provides two memory models: separate and unified

« MPI-2 separate model
- Logical public and private copies
- MPI provides software coherency between window copies
- extremely portable to systems that don't provide hardware coherence

e MPI-3 unified model (newt!)

- single copy for the window
- system should provide a mechanism for coherency
- it allows concurrent local/remote access

3T SCAI SuperComputing Applications and Innovation

Shared memory with MPI

« MPI-3 permits to manage shared memory access to
different processes

« It uses many of the concepts of one-sided communication
« Can be simpler to implement wrt OpenMP threads

It can live together with other different MPI parallelization
layers

3T SCAI SuperComputing Applications and Innovation

MPI and shared memory

| J

|
MPI_COMM_WORLD

MPI_Comm_spIit_typei(COM M_TYPE_SHARED)

| J\ J\)
| Y Y
Shared memory Shared memory Shared memory
communicator communicator communicator
¢ MPI_Win_allocate_shared ¢ ¢
\ J\ J\)
Y Y Y
Shared memory Shared memory Shared memory
window window window

3T sc Al SuperComputing Applications and Innovation

SuperCompufing Applications and Innovation

RMA windows vs shared memory windows

« Shared memory windows
allow application
processes to directly
perform load/store
accesses on all of the
window memory

- e.g. x[100]=10

PUT/GET
Load/store Load/store
Local Local
memory memory

Traditional RMA windows

Load/store I
Load/storeI i Load/store

Local memory

Shared memory windows

3T SC AI SuperComputing Applications and Innovation

Memory allocation and placement

 Shared memory allocation does not need to be uniform across
processes

- Processes can allocate a different amount of memory (even zero)

« The MPI standard does not specify where the memory would be
placed (e.g. which physical memory it will be pinned to)

* The total allocated shared memory on a communicator is
contiguous by default

- Users can pass an info hint called “noncontig” that will allow the MPI
implementation to align memory allocations from each process to appropriate
boundaries to assist with placement

3T SCAI SuperComputing Applications and Innovation

MPI Shared memory example

int main(int argc, char ** argv)

{
int buf[100];
MPI Init(&argc, &argv);
MPI Comm split type(..., MPI_COMM TYPE SHARED, .., &comm);
MPI Win allocate shared(comm, ..., &win);
MPI Win lockall(win);
/* copy data to local part of shared memory */
MPI Win sync(win);
/* use shared memory */
MPI Win unlock all(win);
MPI Win free(&win);
MPI Finalize();
return 0;
}

3T SC AI SuperComputing Applications and Innovation

SuperCompufing Applications and Innovation

Resources and acknowledgements

« Online resources:

- www.mcs.anl.gov/~thakur/sc15-mpi-tutorial

http://www.mpi-forum.org/docs/docs.html
http://www.mpi-forum.org/ Using Advanced MPI
http://software.intel.com/en-us/intel-mpi-library/ Moo

Message-Passing Interface

http://www.open-mpi.org/

« Books:
- Gropp et al. Using advanced MPI - MIT Press, 2014

« Acknowledgements:
- G.F. Marras (Cineca), H. Bockhorst (Intel) for revision and contribution to these slides

3T sc AI SuperComputing Applications and Innovation

SuperComputing Applications and Innovatio

http://www.mcs.anl.gov/~thakur/sc15-mpi-tutorial

Backup slides

3T sc AI SuperComputing Applications and Innovation

SuperComputing Applications and Innovatio

Intel NBC benchmarks (IMB)

« Results based on Intel MPI Library 5.0 Beta3 and Intel MPI Benchmarks 4.0
Beta (IMB), both of which support the MPI-3 standard.

* In a nutshell, the benchmark flow looks as follows:

1. Measure the time needed for a pure communication call (e.qg.,
MPI_Ibcast() followed by MPI_Wait())

2. Start communication (e.g., call MPI_Ibcast())

3. Start computation with duration equal to the time measured in step 1.
Thus we ensure that communication and computation parts consume
approximately the same amount of time.

4. Wait for communication to finish (i.e., call MPI_Wait())

3T SCAI SuperComputing Applications and Innovation

Intel NBC benchmarks (IMB)

« Given the description above, the IMB-NBC benchmarks output four
timings:
- time_pure is the time for nonblocking operation, which is executed without any concurrent CPU
activity;

- time_CPU is the time of the test CPU activity (which is supposed to be close to the time_pure
value);

- time_ovrlp is the time for nonblocking operations concurrent with CPU activity;
- overlap - the estimated overlap percentage obtained by the following formula:

overlap = 100 * max(0, min(1, (time_pure + time_CPU - time_ovrlp) /
max(time_pure, time_CPU)))

3T SCAI SuperComputing Applications and Innovation

Results

usec (lower is better)
900,000
800,000

alltoall computation / communication overlap

700,000 -
600,000 -

500,000
400,000

300,000 -

200,000
100,000
0

|
262144 524288

message size in bytes

9934 9848
I

99.24

1048576

_Hn

99.18
9915 MPI_Alltoall
- I MPI_lalitoall
Overlap %
2097152 4194304

1 MPI_lalltoall overlapped with computation vs. MPI_Alltoall followed by computation.

3T sc AI SuperComputing Applications and Innovation

SuperCompufing Applications and Innovation

Results

usec (lower is better) gligather computation / communication overlap
400,000 . i

350,000

300,000

250,000

200,000 | 99.16
150,000
100,000 MPI_Allgather

98.2
500,000 973 98.16 . I | B MPI_laligather

= @ BB _ Overlap %
262144 524288 1048576 2097152 4194304
message size in bytes

94.28

2 MPI_lallgather overlapped with computation vs. MPI_Allgather followed by computation.

3T SC AI SuperComputing Applications and Innovation

SuperCompufing Applications and Innovation

Results

usec (lower is better)
=5

25
20 ~

15

10

5

0

30 -

bcast computation / communication overlap

73.18

6234 6375 6259 642 6313

i

128
message size in bytes

6535 6635

MPI_Bcast
B MPI_Ibcast
Overlap %

1024 2048 4095 8192

3 MPI_Ibcast overlapped with computation vs. MPI_Bcast followed by computation.

3T sc AI SuperComputing Applications and Innovation

SuperCompufing Applications and Innovation

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

