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Message Passing Interface

● MPI is an open standard interface for message passing on 
memory distributed systems

● Version 1.0 was released in 1994, 2.2 in 2009 and 3.0 in 2012
● MPI 3 contains many enhancements wrt MPI 2.2 in many areas
● MPI 3 is already implemented in many different versions by 

several vendors
● It tackles problems originating when the number of tasks 

increase as it happens on modern supercomputers
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Communication modes

● Blocking (MPI_*)
– it does not return until the message data and envelope have been safely away

– the sender is free to modify the data send buffer

– depending on the implementation the data can be buffered

● Buffered (MPI_B*)
– can be started whether or not a matching receive was posted

– this operation is local and its completion does not depend on the occurrence of a matching receive

● Synchronous mode (MPI_S*)
– the send will complete successfully only if a matching receive is posted and the receive operation has started to receive the 

message sent by the synchronous send

– a send executed in this mode is non-local

● Ready mode (MPI_R*)
– a send in ready mode may be started only if the matching receive is already posted, otherwise the operation is erroneous and its 

outcome is undefined 

● Non blocking (MPI_I*)
– a non blocking call initiates the operation but it does not complete it



Non blocking collective communications

● Non blocking point to point benefits:
– avoid deadlocks

– overlap communication with computation

● Collective communications benefits:
– Optimized routines for one-to-all or all-to-all communications

● Non blocking collective communications:
– Sum of the benefits of both

– Avoid bottlenecks when large number of MPI tasks

– Semantic advantages



Non blocking collective communications

● MPI 3 adds a non blocking variant to all the collective 
communications
– example: MPI_Ibcast(<bcasts args>, MPI_Request *req)

● Semantics:
– it returns no matter what

– no guaranteed progress

– usual completion call

– out of order completion

● Restrictions
– no tags, no ordering, no in-order

– no matching with blocking collectives



Non blocking collective communications

● Semantic advantages:
– Enable asynchronous progression

– Pipelining

– Decouples data transfer and synchronization

– It removes bottlenecks due to a large number of MPI tasks far apart



Non blocking collective communications

● Software pipelining



2-D FFT

● 2D-FFT can be distributed among different processes each of them executes a 1D-FFT
● After the 1D-FFT along, for example, the x-direction is completed, an MPI_Alltoall is 

performed.
● Now, each process can execute a 1D-FFT along the y-direction and a final MPI_Alltoall 

permits to obtain the complete 2D-FFT 



2D-FFT 

● The performance can be improved if we start the transposition 
and, without waiting for the completion, we start working on 

the FFT along the second direction 



Non blocking barrier

● Non blocking barrier? Is it a contradiction?
● Not really...

– Decouple the moment in which processes enter the barrier from the 
moment in which the synchronization actually happens! 

● Example:
– People are called to a meeting. There's a late guy. People is waiting 

for him, but while they're waiting they can keep doing other things. 
When the late guy arrives, they all can start having the meeting.



DSDE

● N-body codes distribute the physical domain across different PEs.
● Computation is divided in two phase: computation of forces and 

particle movement
● Particles may move from one process to another
● Only the originating process knows which particles are leaving its 

area and where they are going
● The destination processes typically don't know how much they will 

receive from the other processes
● This problem is called: Dynamic Sparse Data Exchange



DSDE

● A trivial solution to the DSDE problem is:
– to exchange data sizes with an MPI_Alltoall

– that sets up an MPI_Alltoallv for the communication of the actual data

● This simple solution sends p2 data items for a communicator 
of size p

● Using other approaches, for example using 
MPI_Any_Source/MPI_Probe and then MPI_Scatter/Reduce will 
always require p2 data items to communicate all the 
metadata



DSDE with nonblocking barrier

● First phase:
– each process sends its messages using 

MPI_Issend

● Second phase:
– each process checks the completion of the send 

(with MPI_Iprobe)

● If all the sends are complete the 
process starts a nonblocking barrier 
and then continues to receive 
messages from the other processes in 
the loop

● The processes exit the loop once the 
nonblocking barrier completes 
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Neighborhood collective

● New functions (and their variable buffer and nonblocking 
variants) define collective operations among a process and 
its neighbors:
– MPI_Neighbor_allgather

– MPI_Neighbor_alltoall

● Neighbors are defined by an MPI cartesian or graph virtual 
topology that must be previously set

● These functions are useful, for example, in stencil 
computations that require nearest-neighbor exchanges



Example: MPI_Neighbor_allgather



Example: MPI_Neighbor_allgather
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MPI-2 and one-sided communication

● One-sided communication was introduced in MPI-2 with the basic idea of 
decouple data movement with process synchronization

● It makes possible to move data without requiring that the remote process 
synchronize

● Each process exposes a part of its memory to the other processes 
● Other processes can read or write in the exposed part of the memory (window)



Window creation

● MPI_WIN_ALLOCATE
– You want to create a buffer and directly make it remotely accessible   

● MPI_WIN_CREATE
– You already have an allocated buffer that you would like to make remotely accessible

● MPI_WIN_CREATE_DYNAMIC
– You don't have a buffer yet, but will have one in the future

– You may want to dynamically add/remove buffers to/from the window

● MPI_WIN_ALLOCATE_SHARED
– You may want multiple processes on the same node share a buffer



Example MPI_WIN_ALLOCATE

int main(int argc, char ** argv)

{

  int *a;

  MPI_Win win;

  MPI_Init(&argc, &argv);

/* collectively create remote accessible memory in a window */

  MPI_Win_allocate(1000*sizeof(int), sizeof(int), MPI_INFO_NULL, MPI_COMM_WORLD, &a, &win);

/* Array ‘a’ is now accessible from all processes in MPI_COMM_WORLD */

  MPI_Win_free(&win);

  MPI_Finalize(); 

return 0;

}



Data movement

MPI_Put MPI_Get MPI_Accumulate

Plus many others... (Get_accumulate, Fetch_and_op, Compare_and_swap...)



Ordering

● No guaranteed ordering for put/get 

● Results for concurrent put/accumulate 
are undefined

● For concurrent accumulate operations 
to the same location ordering is 
guaranteed



RMA synchronization models

● MPI provides three synchronization models:
– Fence (active target)

– Post-start-complete-wait (generalized active target)

– Lock/Unlock (passive target)

● Data accesses occur within “epochs” 
– access epoch: contain a set of operation issued by an origin process

– exposure epoch: enable remote processes to update a target window

– Synchronization models provide mechanisms for establishing epochs



Fence: active target synchronization

● MPI_WIN_FENCE starts and 
ends access and exposure 
epoch of all processes in the 
window

● Collective synchronization 
model

● All operations complete at 
the second fence 
synchronization



Post/start/complete/wait: generalized active target synchronization

● More flexible wrt MPI_WIN_FENCE
– origin and target may specify who they 

communicate with, through the definition 
of an MPI_Group

● target side: exposure epoch
– opened with MPI_WIN_Post

– closed with MPI_WIN_Wait

● origin side: access epoch
– opened with MPI_WIN_Start

– closed with MPI_WIN_Complete



Lock/unlock: passive target synchronization

● One sided asynchronous 
communication 

● Target does not participate 
in communication operation

● Shared memory-like model



MPI RMA Memory model

● MPI-3 provides two memory models: separate and unified
● MPI-2 separate model

– Logical public and private copies

– MPI provides software coherency between window copies

– extremely portable to systems that don't provide hardware coherence

● MPI-3 unified model (new!)
– single copy for the window

– system should provide a mechanism for coherency

– it allows concurrent local/remote access



Shared memory with MPI

● MPI-3 permits to manage shared memory access to 
different processes 

● It uses many of the concepts of one-sided communication

● Can be simpler to implement wrt OpenMP threads 

● It can live together with other different MPI parallelization 
layers



MPI and shared memory 



RMA windows vs shared memory windows

● Shared memory windows 
allow application 
processes to directly 
perform load/store 
accesses on all of the 
window memory
– e.g. x[100]=10



Memory allocation and placement

● Shared memory allocation does not need to be uniform across 
processes

–  Processes can allocate a different amount of memory (even zero)

● The MPI standard does not specify where the memory would be 
placed (e.g. which physical memory it will be pinned to)

● The total allocated shared memory on a communicator is 
contiguous by default
– Users can pass an info hint called “noncontig” that will allow the MPI 

implementation to align memory allocations from each process to appropriate 
boundaries to assist with placement 



MPI Shared memory example

int main(int argc, char ** argv)

{

  int buf[100];

  MPI_Init(&argc, &argv);

  MPI_Comm_split_type(..., MPI_COMM_TYPE_SHARED, .., &comm);

  MPI_Win_allocate_shared(comm, ..., &win);

  MPI_Win_lockall(win);

  /* copy data to local part of shared memory */

  MPI_Win_sync(win);

  /* use shared memory */

  MPI_Win_unlock_all(win);

  MPI_Win_free(&win);

  MPI_Finalize();

  return 0;

}



Resources and acknowledgements

● Online resources:
– www.mcs.anl.gov/~thakur/sc15-mpi-tutorial  

– http://www.mpi- forum.org/docs/docs.html

– http://www.mpi‐forum.org/

– http://software.intel.com/en-us/intel‐mpi ‐library/

– http://www.open- mpi.org/

● Books:
– Gropp et al. Using advanced MPI - MIT Press, 2014

● Acknowledgements:
– G.F. Marras (Cineca), H. Bockhorst (Intel) for revision and contribution to these slides

http://www.mcs.anl.gov/~thakur/sc15-mpi-tutorial


Backup slides



Intel NBC benchmarks (IMB)

● Results based on  Intel MPI Library 5.0 Beta3 and Intel MPI Benchmarks 4.0 
Beta (IMB), both of which support the MPI-3 standard.

● In a nutshell, the benchmark flow looks as follows:

1. Measure the time needed for a pure communication call (e.g., 
MPI_Ibcast() followed by MPI_Wait())

2. Start communication (e.g., call MPI_Ibcast() )

3. Start computation with duration equal to the time measured in step 1. 
Thus we ensure that communication and computation parts consume 
approximately the same amount of time.

4. Wait for communication to finish (i.e., call MPI_Wait())



Intel NBC benchmarks (IMB)

● Given the description above, the IMB-NBC benchmarks output four 
timings:
– time_pure is the time for nonblocking operation, which is executed without any concurrent CPU 

activity;

– time_CPU is the time of the test CPU activity (which is supposed to be close to the time_pure 
value);

– time_ovrlp is the time for nonblocking operations concurrent with CPU activity;

– overlap – the estimated overlap percentage obtained by the following formula:

overlap = 100 * max(0, min(1, (time_pure + time_CPU - time_ovrlp) /

max(time_pure, time_CPU)))



Results



Results
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