
Introduction to the features of the MPI-3 standard

Fabio Affinito

Summary

● Introduction

● Nonblocking collectives

● Neighborhood collectives

● RMA and one-sided communications

Message Passing Interface

● MPI is an open standard interface for message passing on
memory distributed systems

● Version 1.0 was released in 1994, 2.2 in 2009 and 3.0 in 2012
● MPI 3 contains many enhancements wrt MPI 2.2 in many areas
● MPI 3 is already implemented in many different versions by

several vendors
● It tackles problems originating when the number of tasks

increase as it happens on modern supercomputers

Summary

● Introduction

● Nonblocking collectives

● Neighborhood collectives

● RMA and one-sided communications

Communication modes

● Blocking (MPI_*)
– it does not return until the message data and envelope have been safely away

– the sender is free to modify the data send buffer

– depending on the implementation the data can be buffered

● Buffered (MPI_B*)
– can be started whether or not a matching receive was posted

– this operation is local and its completion does not depend on the occurrence of a matching receive

● Synchronous mode (MPI_S*)
– the send will complete successfully only if a matching receive is posted and the receive operation has started to receive the

message sent by the synchronous send

– a send executed in this mode is non-local

● Ready mode (MPI_R*)
– a send in ready mode may be started only if the matching receive is already posted, otherwise the operation is erroneous and its

outcome is undefined

● Non blocking (MPI_I*)
– a non blocking call initiates the operation but it does not complete it

Non blocking collective communications

● Non blocking point to point benefits:
– avoid deadlocks

– overlap communication with computation

● Collective communications benefits:
– Optimized routines for one-to-all or all-to-all communications

● Non blocking collective communications:
– Sum of the benefits of both

– Avoid bottlenecks when large number of MPI tasks

– Semantic advantages

Non blocking collective communications

● MPI 3 adds a non blocking variant to all the collective
communications
– example: MPI_Ibcast(<bcasts args>, MPI_Request *req)

● Semantics:
– it returns no matter what

– no guaranteed progress

– usual completion call

– out of order completion

● Restrictions
– no tags, no ordering, no in-order

– no matching with blocking collectives

Non blocking collective communications

● Semantic advantages:
– Enable asynchronous progression

– Pipelining

– Decouples data transfer and synchronization

– It removes bottlenecks due to a large number of MPI tasks far apart

Non blocking collective communications

● Software pipelining

2-D FFT

● 2D-FFT can be distributed among different processes each of them executes a 1D-FFT
● After the 1D-FFT along, for example, the x-direction is completed, an MPI_Alltoall is

performed.
● Now, each process can execute a 1D-FFT along the y-direction and a final MPI_Alltoall

permits to obtain the complete 2D-FFT

2D-FFT

● The performance can be improved if we start the transposition
and, without waiting for the completion, we start working on

the FFT along the second direction

Non blocking barrier

● Non blocking barrier? Is it a contradiction?
● Not really...

– Decouple the moment in which processes enter the barrier from the
moment in which the synchronization actually happens!

● Example:
– People are called to a meeting. There's a late guy. People is waiting

for him, but while they're waiting they can keep doing other things.
When the late guy arrives, they all can start having the meeting.

DSDE

● N-body codes distribute the physical domain across different PEs.
● Computation is divided in two phase: computation of forces and

particle movement
● Particles may move from one process to another
● Only the originating process knows which particles are leaving its

area and where they are going
● The destination processes typically don't know how much they will

receive from the other processes
● This problem is called: Dynamic Sparse Data Exchange

DSDE

● A trivial solution to the DSDE problem is:
– to exchange data sizes with an MPI_Alltoall

– that sets up an MPI_Alltoallv for the communication of the actual data

● This simple solution sends p2 data items for a communicator
of size p

● Using other approaches, for example using
MPI_Any_Source/MPI_Probe and then MPI_Scatter/Reduce will
always require p2 data items to communicate all the
metadata

DSDE with nonblocking barrier

● First phase:
– each process sends its messages using

MPI_Issend

● Second phase:
– each process checks the completion of the send

(with MPI_Iprobe)

● If all the sends are complete the
process starts a nonblocking barrier
and then continues to receive
messages from the other processes in
the loop

● The processes exit the loop once the
nonblocking barrier completes

Summary

● Introduction

● Nonblocking collectives

● Neighborhood collectives

● RMA and one-sided communications

Neighborhood collective

● New functions (and their variable buffer and nonblocking
variants) define collective operations among a process and
its neighbors:
– MPI_Neighbor_allgather

– MPI_Neighbor_alltoall

● Neighbors are defined by an MPI cartesian or graph virtual
topology that must be previously set

● These functions are useful, for example, in stencil
computations that require nearest-neighbor exchanges

Example: MPI_Neighbor_allgather

Example: MPI_Neighbor_allgather

Summary

● Introduction

● Nonblocking collectives

● Neighborhood collectives

● RMA and one-sided communications

MPI-2 and one-sided communication

● One-sided communication was introduced in MPI-2 with the basic idea of
decouple data movement with process synchronization

● It makes possible to move data without requiring that the remote process
synchronize

● Each process exposes a part of its memory to the other processes
● Other processes can read or write in the exposed part of the memory (window)

Window creation

● MPI_WIN_ALLOCATE
– You want to create a buffer and directly make it remotely accessible

● MPI_WIN_CREATE
– You already have an allocated buffer that you would like to make remotely accessible

● MPI_WIN_CREATE_DYNAMIC
– You don't have a buffer yet, but will have one in the future

– You may want to dynamically add/remove buffers to/from the window

● MPI_WIN_ALLOCATE_SHARED
– You may want multiple processes on the same node share a buffer

Example MPI_WIN_ALLOCATE

int main(int argc, char ** argv)

{

 int *a;

 MPI_Win win;

 MPI_Init(&argc, &argv);

/* collectively create remote accessible memory in a window */

 MPI_Win_allocate(1000*sizeof(int), sizeof(int), MPI_INFO_NULL, MPI_COMM_WORLD, &a, &win);

/* Array ‘a’ is now accessible from all processes in MPI_COMM_WORLD */

 MPI_Win_free(&win);

 MPI_Finalize();

return 0;

}

Data movement

MPI_Put MPI_Get MPI_Accumulate

Plus many others... (Get_accumulate, Fetch_and_op, Compare_and_swap...)

Ordering

● No guaranteed ordering for put/get

● Results for concurrent put/accumulate
are undefined

● For concurrent accumulate operations
to the same location ordering is
guaranteed

RMA synchronization models

● MPI provides three synchronization models:
– Fence (active target)

– Post-start-complete-wait (generalized active target)

– Lock/Unlock (passive target)

● Data accesses occur within “epochs”
– access epoch: contain a set of operation issued by an origin process

– exposure epoch: enable remote processes to update a target window

– Synchronization models provide mechanisms for establishing epochs

Fence: active target synchronization

● MPI_WIN_FENCE starts and
ends access and exposure
epoch of all processes in the
window

● Collective synchronization
model

● All operations complete at
the second fence
synchronization

Post/start/complete/wait: generalized active target synchronization

● More flexible wrt MPI_WIN_FENCE
– origin and target may specify who they

communicate with, through the definition
of an MPI_Group

● target side: exposure epoch
– opened with MPI_WIN_Post

– closed with MPI_WIN_Wait

● origin side: access epoch
– opened with MPI_WIN_Start

– closed with MPI_WIN_Complete

Lock/unlock: passive target synchronization

● One sided asynchronous
communication

● Target does not participate
in communication operation

● Shared memory-like model

MPI RMA Memory model

● MPI-3 provides two memory models: separate and unified
● MPI-2 separate model

– Logical public and private copies

– MPI provides software coherency between window copies

– extremely portable to systems that don't provide hardware coherence

● MPI-3 unified model (new!)
– single copy for the window

– system should provide a mechanism for coherency

– it allows concurrent local/remote access

Shared memory with MPI

● MPI-3 permits to manage shared memory access to
different processes

● It uses many of the concepts of one-sided communication

● Can be simpler to implement wrt OpenMP threads

● It can live together with other different MPI parallelization
layers

MPI and shared memory

RMA windows vs shared memory windows

● Shared memory windows
allow application
processes to directly
perform load/store
accesses on all of the
window memory
– e.g. x[100]=10

Memory allocation and placement

● Shared memory allocation does not need to be uniform across
processes

– Processes can allocate a different amount of memory (even zero)

● The MPI standard does not specify where the memory would be
placed (e.g. which physical memory it will be pinned to)

● The total allocated shared memory on a communicator is
contiguous by default
– Users can pass an info hint called “noncontig” that will allow the MPI

implementation to align memory allocations from each process to appropriate
boundaries to assist with placement

MPI Shared memory example

int main(int argc, char ** argv)

{

 int buf[100];

 MPI_Init(&argc, &argv);

 MPI_Comm_split_type(..., MPI_COMM_TYPE_SHARED, .., &comm);

 MPI_Win_allocate_shared(comm, ..., &win);

 MPI_Win_lockall(win);

 /* copy data to local part of shared memory */

 MPI_Win_sync(win);

 /* use shared memory */

 MPI_Win_unlock_all(win);

 MPI_Win_free(&win);

 MPI_Finalize();

 return 0;

}

Resources and acknowledgements

● Online resources:
– www.mcs.anl.gov/~thakur/sc15-mpi-tutorial

– http://www.mpi- forum.org/docs/docs.html

– http://www.mpi‐forum.org/

– http://software.intel.com/en-us/intel‐mpi ‐library/

– http://www.open- mpi.org/

● Books:
– Gropp et al. Using advanced MPI - MIT Press, 2014

● Acknowledgements:
– G.F. Marras (Cineca), H. Bockhorst (Intel) for revision and contribution to these slides

http://www.mcs.anl.gov/~thakur/sc15-mpi-tutorial

Backup slides

Intel NBC benchmarks (IMB)

● Results based on Intel MPI Library 5.0 Beta3 and Intel MPI Benchmarks 4.0
Beta (IMB), both of which support the MPI-3 standard.

● In a nutshell, the benchmark flow looks as follows:

1. Measure the time needed for a pure communication call (e.g.,
MPI_Ibcast() followed by MPI_Wait())

2. Start communication (e.g., call MPI_Ibcast())

3. Start computation with duration equal to the time measured in step 1.
Thus we ensure that communication and computation parts consume
approximately the same amount of time.

4. Wait for communication to finish (i.e., call MPI_Wait())

Intel NBC benchmarks (IMB)

● Given the description above, the IMB-NBC benchmarks output four
timings:
– time_pure is the time for nonblocking operation, which is executed without any concurrent CPU

activity;

– time_CPU is the time of the test CPU activity (which is supposed to be close to the time_pure
value);

– time_ovrlp is the time for nonblocking operations concurrent with CPU activity;

– overlap – the estimated overlap percentage obtained by the following formula:

overlap = 100 * max(0, min(1, (time_pure + time_CPU - time_ovrlp) /

max(time_pure, time_CPU)))

Results

Results

Results

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

