
Gabriele Fatigati

Hybrid programming MPI+OpenMP

Introduction to
MPI+OpenMP hybrid

programming
SuperComputing Applications and Innovation Department

Gabriele Fatigati

Hybrid programming MPI+OpenMP

Basic concepts

Gabriele Fatigati

Hybrid programming MPI+OpenMP

Architectural trend

Gabriele Fatigati

Hybrid programming MPI+OpenMP

Architectural trend

• In a nutshell:

– memory per core decreases
– memory bandwidth per core decreases
– number of cores per socket increases
– single core clock frequency decreases

• Programming model should follow the new kind of architectures available
on the market: what is the most suitable model for this kind of machines?

Gabriele Fatigati

Hybrid programming MPI+OpenMP

Programming models

• Distributed parallel computers rely on MPI
– strong
– consolidated
– standard
– enforce the scalability (depending on the algorithm) up to a very large

number of tasks
• but... is it enough when memory is such small amount on each node?

Example: Bluegene/Q has 16GB per node and 16 cores. Can you imagine
to put there more than 16MPI (tasks), i.e. less than 1GB per core?

Gabriele Fatigati

Hybrid programming MPI+OpenMP

Programming models

• On the other side, OpenMP is a standard for shared memory systems
• Pthreads execution models is a lower-level alternative, but OpenMP is

often a better choice for HPC programming
• OpenMP is robust, clear and sufficiently easy to implement but

– depending on the implementation, typically the scaling on the
number of threads is much less effective than the scaling on
number of MPI tasks

• Putting together MPI with OpenMP could permit to exploit the features
of the new architectures, mixing these paradigms

Gabriele Fatigati

Hybrid programming MPI+OpenMP

Hybrid model: MPI+OpenMP
• In a single node you can exploit a shared memory parallelism using

OpenMP
• Across the nodes you can use MPI to scale up

Example: on a Bluegene/Q machine you can put 1 MPI task on each node
and 16 OpenMP threads. If the scalability on threads is good enough, you
can use all the node memory.

Gabriele Fatigati

Hybrid programming MPI+OpenMP

MPI vs OpenMP

Pure MPI Pro:
High scalability
High portability
No false sharing
Scalability out-of-node

Pure MPI Con:
Hard to develop and debug.
Explicit communications
Coarse granularity
Hard to ensure load balancing

Gabriele Fatigati

Hybrid programming MPI+OpenMP

MPI vs OpenMP

Pure MPI Pro:
High scalability
High portability
No false sharing
Scalability out-of-node

Pure MPI Con:
Hard to develop and debug.
Explicit communications
Coarse granularity
Hard to ensure load balancing

Pure OpenMP Pro:
Easy to deploy (often)

Low latency
Implicit communications
Coarse and fine granularity

Dynamic Load balancing

Pure OpenMP Con:
Only on shared memory machines

Intranode scalability
Possible data placement problem
Undefined thread ordering

Gabriele Fatigati

Hybrid programming MPI+OpenMP

MPI+OpenMP

• Conceptually simple and elegant

• Suitable for multicore/multinodes architectures

• Two-level hierarchical parallelism

• In principle, you can alleviate problems related to the scalability of MPI,
reducing the number of tasks and network flooding

Gabriele Fatigati

Hybrid programming MPI+OpenMP

Increasing granularity

• OpenMP introduces fine granularity parallelism

• Loop-based parallelism

• Task construct (OpenMP 3.0): powerful and flexible

• Load balancing can be dynamic or scheduled

• All the work is in charge to the compiler

• No explicit data movement

Gabriele Fatigati

Hybrid programming MPI+OpenMP

Two level parallelism

• Using a hybrid approach means to balance the hierarchy between MPI tasks and
thread.

• MPI in most cases (but not always) occupy the upper level respect to OpenMP
– usually you assign n threads per MPI task, not m MPI tasks per thread

• The choice about the number of threads per MPI task strongly depends on the kind
of application, algorithm or kernel. (this number can change inside the application)

• There's no golden rule. More often this decision is taken a-posteriori after

benchmarks on a given machine/architecture

Gabriele Fatigati

Hybrid programming MPI+OpenMP

Saving MPI tasks

• Using a hybrid approach MPI+OpenMP can lower the number of MPI tasks
used by the application.

• Memory footprint can be alleviated by a reduction of replicated data on MPI
level

• Speed-up limited due algorithmic issues can be solved (because you're
reducing the amount of communication)

Gabriele Fatigati

Hybrid programming MPI+OpenMP

Reality is bitter

• In real scenarios, mixing MPI and OpenMP, sometimes, can make your code
slower

– If you exceed with the number of OpenMP threads you can encounter
problems with locking of resources

– Sometimes threads can stay in a idle state (spin) for a long time

– Problems with cache coherency and false sharing

– Difficulties in the management of variables scope

Gabriele Fatigati

Hybrid programming MPI+OpenMP

Cache coherency and false sharing

• It is a side effects of the cache-line granularity of cache coherence
implemented in shared memory systems.

• The cache coherency implementation keep track of the status of
cache lines by appending state bits to indicate whether data on
cache line is still valid or outdated.

• Once the cache line is modified, cache coherence notifies other
caches holding a copy of the same line that its line is invalid.

• If data from that line is needed, a new updated copy must to be
fetched.

Gabriele Fatigati

Hybrid programming MPI+OpenMP

False sharing

#pragma omp parallel for
shared(a) schedule(static,1)
for (int i=0; i<n; i++)
 a[i] = i;

Gabriele Fatigati

Hybrid programming MPI+OpenMP

Let's start

• The most simple recipe is:
– start from a serial code and make it a MPI-parallel code
– implement for each of the MPI task a OpenMP-based parallelization

• Nothing prevents to implement a MPI parallelization inside a OpenMP
parallel region
– in this case, you should take care of the thread-safety

• To start, we will assume that only the master thread is allowed to
communicate with others MPI tasks

Gabriele Fatigati

Hybrid programming MPI+OpenMP

A simple hybrid code

 call MPI_INIT (ierr)
 call MPI_COMM_RANK (…)
 call MPI_COMM_SIZE (…)
 … some computation and MPI communication
 call OMP_SET_NUM_THREADS(4)
 !$OMP PARALLEL
 !$OMP DO
 do i=1,n
 … computation
 enddo
 !$OMP END DO
 !$OMP END PARALLEL
 … some computation and MPI communication
 call MPI_FINALIZE (ierr)

Gabriele Fatigati

Hybrid programming MPI+OpenMP

Master-only approach

Advantages:
• Simplest hybrid parallelization (easy to understand and to

manage)
• No message passing inside a SMP node

Disadvantages:
• All other threads are sleeping during MPI communications
• Thread-safe MPI is required

Gabriele Fatigati

Hybrid programming MPI+OpenMP

MPI_Init_thread support

• MPI_INIT_THREAD (required, provided, ierr)
– IN: required, desired level of thread support (integer).
– OUT: provided, provided level (integer).

provided may be less than required.

• Four levels are supported:
– MPI_THREAD_SINGLE: Only one thread will run. Equals to MPI_INIT.
– MPI_THREAD_FUNNELED: processes may be multithreaded, but only the

main thread can make MPI calls (MPI calls are delegated to main thread)
– MPI_THREAD_SERIALIZED: processes could be multi-threaded More than

one thread can make MPI calls, but only one at a time.
– MPI_THREAD_MULTIPLE: multiple threads can make MPI calls, with no

restrictions.

Gabriele Fatigati

Hybrid programming MPI+OpenMP

MPI_Init_thread

• The various implementations differ in levels of thread-safety
• If your application allows multiple threads to make MPI calls

simultaneously, without MPI_THREAD_MULTIPLE, is not
thread-safe

• Using OpenMPI, you have to use –enable-mpi-threads at
configure time to activate all levels
– see more later

• Higher level corresponds to higher thread-safety. Use the
required safety needs.

Gabriele Fatigati

Hybrid programming MPI+OpenMP

MPI_THREAD_SINGLE

• There are no additional user thread in the system
– E.g., there are no OpenMP parallel regions
– MPI_Init_thread with MPI_THREAD_SINGLE is fully equivalent to MPI_Init

int main(int argc, char ** argv)
{
 int buf[100];
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 for (i = 0; i < 100; i++)
 compute(buf[i]);
 /* Do MPI stuff */
 MPI_Finalize();
 return 0;
}

Gabriele Fatigati

Hybrid programming MPI+OpenMP

MPI_THREAD_FUNNELED

• It adds the possibility to make MPI calls inside a parallel region, but
only the master thread is allowed to do so
– All MPI calls are made by the master thread
– The programmer must guarantee that!

Gabriele Fatigati

Hybrid programming MPI+OpenMP

MPI_THREAD_FUNNELED

int main(int argc, char ** argv)
{
int buf[100], provided;
MPI_Init_thread(&argc, &argv, MPI_THREAD_FUNNELED, &provided);
if (provided < MPI_THREAD_FUNNELED) MPI_Abort(MPI_COMM_WORLD,1);
#pragma omp parallel for
for (i = 0; i < 100; i++)
 compute(buf[i]);
/* Do MPI stuff */
MPI_Finalize();
return 0;
}

Gabriele Fatigati

Hybrid programming MPI+OpenMP

MPI_THREAD_FUNNELED

• MPI function calls can be: outside a parallel region or in a
parallel region, enclosed in “omp master” clause

• There is no synchronization at the end of a “omp master”
region, so a barrier is needed before and after to ensure
that data buffers are available before/after the MPI
communication

!$OMP BARRIER
!$OMP MASTER
 call MPI_Xxx(...)
!$OMP END MASTER
!$OMP BARRIER

#pragma omp barrier
#pragma omp master
 MPI_Xxx(...);
#pragma omp barrier

Gabriele Fatigati

Hybrid programming MPI+OpenMP

MPI_THREAD_SERIALIZED

• Multiple threads may make MPI calls, but only one at a time:
– MPI calls are not made concurrently from two distinct threads. MPI calls are ''serialized''
– The programmer must guarantee that!

Gabriele Fatigati

Hybrid programming MPI+OpenMP

MPI_THREAD_SERIALIZED

int main(int argc, char ** argv)
{
int buf[100], provided;
MPI_Init_thread(&argc, &argv, MPI_THREAD_SERIALIZED, &provided);
if (provided < MPI_THREAD_SERIALIZED) MPI_Abort(MPI_COMM_WORLD,1);
#pragma omp parallel for
for (i = 0; i < 100; i++) {
 compute(buf[i]);
#pragma omp critical
 /* Do MPI stuff */
}
MPI_Finalize(); Return 0;
}

Gabriele Fatigati

Hybrid programming MPI+OpenMP

MPI_THREAD_SERIALIZED

• MPI calls can be outside parallel regions, or inside, but
enclosed in a “omp single” region (it enforces the
serialization) or “omp critical” or ...

• Again, a starting barrier may be needed to ensure data
consistency
– But at the end of omp single there is an automatic barrier
– Unless nowait is specified

!$OMP BARRIER
!$OMP SINGLE
 call MPI_Xxx(...)
!$OMP END SINGLE

#pragma omp barrier
#pragma omp single
 MPI_Xxx(...);

Gabriele Fatigati

Hybrid programming MPI+OpenMP

MPI_THREAD_MULTIPLE

• It is the most flexible mode, but also the most complicate
one

• Any thread is allowed to perform MPI communications,
without any restrictions.

Gabriele Fatigati

Hybrid programming MPI+OpenMP

MPI_THREAD_MULTIPLE

int main(int argc, char ** argv)
{
int buf[100], provided;
MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &provided);
if (provided < MPI_THREAD_MULTIPLE) MPI_Abort(MPI_COMM_WORLD,1);
#pragma omp parallel for
for (i = 0; i < 100; i++) {
 compute(buf[i]);
 /* Do MPI stuff */
}
MPI_Finalize();
return 0;
}

Gabriele Fatigati

Hybrid programming MPI+OpenMP

Specs of MPI_THREAD_MULTIPLE

• Ordering: when multiple threads make MPI calls concurrently the
outcome will be as if the calls executed sequentially in some (any)
order
– Ordering is maintained within each thread
– User must ensure that collective operations on the same communicator windows or file handle are correctly

ordered among threads
• E.g. cannot call a broadcast on one thread and a reduce on another thread on the same communicator

– It is the user's responsibility to prevent races when threads in the same application post conflicting MPI calls
• E.g. accessing an info object from one thread and freeing it from another thread

• Blocking: Blocking MPI calls will block only the calling thread and
will not prevent other threads from running or executing MPI
functions

Gabriele Fatigati

Hybrid programming MPI+OpenMP

Ordering in MPI_THREAD_MULTIPLE

• Incorrect example with collectives
– P0 and P1 can have different ordering of Bcase on Barrier
– Here the user must use some kind of synchronization to ensure that either thread 1 or

thread 2 gets scheduled first on both processes
– Otherwise a broadcast may get matched with a barrier on the same communicator, which

is not allowed in MPI

Process 0 Process 1

Thread 0 MPI_Bcast(comm) MPI_Bcast(comm)

Thread 1 MPI_Barrier(comm) MPI_Barrier(comm)

Gabriele Fatigati

Hybrid programming MPI+OpenMP

Ordering in MPI_THREAD_MULTIPLE

• Incorrect example with object Management
– The user has to make sure that one thread is not using an object while another

thread is freeing it
– This is essentially an ordering issue; the object might get freed before it is used

Process 0 Process 1

Thread 0 MPI_Bcast(comm) MPI_Bcast(comm)

Thread 1 MPI_Comm_free(comm) MPI_Comm_free(comm)

Gabriele Fatigati

Hybrid programming MPI+OpenMP

Blocking in MPI_THREAD_MULTIPLE

• Correct example with point-to-point
– An implementation must ensure that the example below never deadlocks for any ordering

of thread execution
– That means the implementation cannot simply acquire a thread lock and block within an

MPI function. It must release the lock to allow other threads to make progress

Process 0 Process 1

Thread 0 MPI_Recv(src=1) MPI_Recv(src=0)

Thread 1 MPI_Send(dst=1) MPI_Send(dst=0)

Gabriele Fatigati

Hybrid programming MPI+OpenMP

Comparison to pure MPI

Funneled
• All threads but the master are sleeping during MPI communications
• Only one thread may not be able to lead up to max inter-node

bandwidth

Pure MPI
• Each CPU can lead up max inter-node bandwidth

Hints: overlap as much as possible communications and
computations

Gabriele Fatigati

Hybrid programming MPI+OpenMP

Overlap communications and computations

• In order to overlap communications with computations, the first step
is using MPI_THREAD_FUNNELED mode

• While the master threads (a master thread for each MPI rank) are
exchanging data, the other threads performs computation

• The tricky part is separating code that can run before or after the
data exchanged are available

 !$OMP PARALLEL
 if (thread_id==0) then
 call MPI_xxx(…)
 else
 do some computation
 endif
 !$OMP END PARALLEL

Gabriele Fatigati

Hybrid programming MPI+OpenMP

MPI collective hybridization

• MPI collectives are highly
optimized

• Several point-to-point
communication in one operations

• They can hide from the
programmer a huge volume of
transfer (MPI_Alltoall generates
almost 1 million point-to-point
messages using 1024 cores)

• There is no non-blocking (no
longer the case in MPI 3.0)

Gabriele Fatigati

Hybrid programming MPI+OpenMP

MPI collective hybridization

• Better scalability by a
reduction of both the number
of MPI messages and the
number of process. Tipically:

• for all-to-all communications,
the number of transfers
decrease by a factor
#threads^2

• the length of messages
increases by a factor #threads

• Allow to overlap
communication and
computation.

Gabriele Fatigati

Hybrid programming MPI+OpenMP

MPI collective hybridization

Restrictions:
• In MPI_THREAD_MULTIPLE mode is
forbidden at any given time two
threads each do a collective call on
the same communicator
(MPI_COMM_WORLD)

• 2 threads calling each a
MPI_Allreduce may produce wrong
results

• Use different communicators for
each collective call

• Do collective calls only on 1
thread per process
(MPI_THREAD_SERIALIZED mode
should be fine)

Gabriele Fatigati

Hybrid programming MPI+OpenMP

Multithreaded libraries

• Introduction of OpenMP into existing MPI codes includes OpenMP
drawbacks (synchronization, overhead, quality of compiler and runtime…)

• A good choice (whenever possible) is to include into the MPI code a
multithreaded, optimized library suitable for the application.

• BLAS, LAPACK, MKL (Intel), FFTW are well known multithreaded
libraries available in the HPC ecosystem.
– Some libraries create their own threads: must be called outside our

“omp parallel” regions
– Otherwise, check “how much” the the library is thread-safe, if at least

can be called by the master thread of your omp region
(MPI_THREAD_FUNNELED)

– Look carefully at the doc of your library, e.g.
http://www.fftw.org/doc/Usage-of-Multi_002dthreaded-FFTW.html

Gabriele Fatigati

Hybrid programming MPI+OpenMP

BGQ benchmark example

Number of
threads / processes

MPI+OpenMP
(TOT= 64 MPI,

1PPN)

MPI_THREAD_MULTI
PLE version

Elapsed time (sec.)

MPI ONLY
(TOT= 1024 MPI,

16,32,64 ppn
Elapsed time (sec.)

1 78.84 N.A

4 19.89 N.A

8 10.33 N.A

16 5.65 5.98

32 3.39 7.12

64 2.70 12.07

 Huge simulation,
30000x30000
points. Stopped
after 100
iterations only
for timing
purposes.

 Huge simulation,
30000x30000
points. Stopped
after 100
iterations only
for timing
purposes.

Up to 64
hardware
threads per
process are
available on
bgq (SMT)

Up to 64
hardware
threads per
process are
available on
bgq (SMT)

Gabriele Fatigati

Hybrid programming MPI+OpenMP

Conclusions

• Better scalability by a reduction of both the number of MPI messages
and the number of processes involved in collective communications
and by a better load balancing.

• Better adeguacy to the architecture of modern supercomputers while
MPI is only a flat approach.

• Optimization of the total memory consumption (through the OpenMP
shared-memory approach, savings in replicated data in the MPI
processes and in the used memory by the MPI library itself).

• Reduction of the footprint memory when the size of some data
structures depends directly on the number of MPI processes.

• It can remove algorithmic limitations (maximum decomposition in one
direction for example).

Gabriele Fatigati

Hybrid programming MPI+OpenMP

Conclusions / 2

Applications that can benefit from hybrid approach:
• Codes having limited MPI scalability (through the use of MPI_Alltoall

for example).
• Codes requiring dynamic load balancing
• Codes limited by memory size and having many replicated data

between MPI processes or having data structures that depends on
the number of processes.

• Inefficient MPI implementation library for intra-node communication.
• Codes working on problems of fine-grained parallelism or on a

mixture of fine and coarse-grain parallelism.
• Codes limited by the scalability of their algorithms.

Gabriele Fatigati

Hybrid programming MPI+OpenMP

Conclusions / 3

• Hybrid programming is complex and requires high level of
expertise.

• Both MPI and OpenMP performances are needed (Amdhal’s law
apply separately to the two approaches).

• Savings in performances are not guaranteed (extra additional
costs).

Gabriele Fatigati

Hybrid programming MPI+OpenMP

Implementations and
cluster usage notes

Gabriele Fatigati

Hybrid programming MPI+OpenMP

MPI implementations and thread support

• An implementation is not required to support levels higher than
MPI_THREAD_SINGLE, that is, an implementation is not required to be thread
safe

• Most MPI implementations support a very low default thread support
– Usually no support (MPI_THREAD_SINGLE)
– And probably MPI_THREAD_FUNNELED (even if not explicitly)
– Which (usually) is ok for cases where MPI communications are called

outside of OMP parallel regions (where MPI_THREAD_FUNNELED would be
strictly required)

– Implementations with thread support are more complicated, error-prone
and sometimes slower

• Checking the MPI_Init_thread provided support is a good programming practice

Gabriele Fatigati

Hybrid programming MPI+OpenMP

MPI implementations: check thread support
 required = MPI_THREAD_MULTIPLE;
 ierr = MPI_Init_thread(&argc,&argv,required,&provided);
 if(required != provided) {
 if(rank == 0) { fprintf(stderr,"incompatible MPI thread support\n");
 fprintf(stderr,"required,provided: %d %d\n", required,provided); }
 ierr = MPI_Finalize(); exit(-1);
 }
 call MPI_Init_thread(required, provided, ierr)
 if(provided /= required) then
 if(rank == 0) then
 print*,'Attention! incompatible MPI thread support'
 print*,'THREAD support required, provided: ',required, provided
 endif
 call MPI_Finalize(ierr); STOP
 endif

Gabriele Fatigati

Hybrid programming MPI+OpenMP

MPI implementations and thread support / 2

• Beware: the lack of thread support may result in subtle errors (not
always clear)

• OpenMPI (1.8.3): when compiling OpenMPI there is a configure option
to specify:
– --enable-mpi-thread-multiple
– [Enable MPI_THREAD_MULTIPLE support (default: disabled)]

• IntelMPI (5.0.2): both thread safe/non-thread safe versions are
available:
– Specify the option -mt_mpi when compiling your program to link

the thread safe version of the Intel(R) MPI Library
– E.g. mpif90 -mt_mpi main.f90

Gabriele Fatigati

Hybrid programming MPI+OpenMP

 MPI and resource allocation

• The problem: how to distribute and control the resource allocation
and usage (MPI processes/OMP threads) within a resource manager
– How to use all the allocated resources: if n cores per node have

been allocated how to run my program using all of that cores
• Not less, maximize performance
• Not more, do not interact with jobs of other users

– How to use at its best the resource
• optimal mapping between MPI processes/OMP threads and

physical cores

Gabriele Fatigati

Hybrid programming MPI+OpenMP

 MPI and resource allocation / 2

• Most MPI implementations allow a tight integration with resource
managers in order to ease the usage of the requested resources

• The integration may enforce some constraints or just give hints to the
programmer
– Strict: only the requested physical resources can be used by my

job
– Soft: the programmer may use resources not explicitly allocated

but only forcing the default settings

Gabriele Fatigati

Hybrid programming MPI+OpenMP

 Cineca Eurora: PBSPro and MPI

• Cineca Cineca cluster assign resources using PBSProfessional
– Strict mode is not guaranteed
– Beware: you can run using all the cores of you node even if you

did not request all that cores (ncpus)

• OpenMPI and IntelMPI implementations available, both supporting
PBS integration
– module load autoload openmpi/1.8.3—gnu--4.8.0
– module load autoload openmpi/1.8.3-threadmultiple--gnu--4.8.0
– module load autoload intelmpi/5.0.1—binary

Gabriele Fatigati

Hybrid programming MPI+OpenMP

 Cineca Galileo: PBSPro and MPI

• Cineca Galileo cluster assign resources using PBSProfessional
– Strict mode is guaranteed through cgroups (control groups, a

feature of Linux kernel which limits, isolate the usage of resources
– CPU, memory, I/O, network, etc.. - of a process group). The
processes can utilize only the resources assigned by the scheduler
(minimizing the interaction with other jobs simultaneously
running)

Gabriele Fatigati

Hybrid programming MPI+OpenMP

 Review on PBS select option

• -lselect=<n_chunks>:ncpus:<n_cores>:mpiprocs:<n_mpi>
– Beware: n_chunks usually means n_nodes but this is not guaranteed provided that two or

more chunks of n_cores can be allocated on a single node
– mpiprocs must be well understood, let us examine the file $PBS_NODEFILE created by PBS

listing the allocated resources for some example cases
– 6 MPI processes per chunk (node) and 6 cores reserved:useful for pure MPI runs

node007 node003 node001 node015

node007 node003 node001 node015

node007 node003 node001 node015

node007 node003 node001 node015

node007 node003 node001 node015

node007 node003 node001 node015

select=4
ncpus=6
mpiprocs=6

Gabriele Fatigati

Hybrid programming MPI+OpenMP

 Review on PBS select option / 2

• 1 MPI process per chunk (node), but 6 cores reserved, useful for hybrid case
(OMP_NUM_THREADS=6)

• 2 MPI processes per chunk (node), but 6 cores reserved, again for hybrid cases
(OMP_NUM_THREADS=3)

node007 node003 node001 node015

select=4
ncpus=6
mpiprocs=2

select=4
ncpus=6
mpiprocs=1

node007 node003 node001 node015

node007 node003 node001 node015

Gabriele Fatigati

Hybrid programming MPI+OpenMP

 OpenMPI and IntelMPI

• Resource allocation is not aware of the MPI implementation which will be used
– But MPI implementations give a different meaning and enforce different constraints
– We will discuss OpenMPI and IntelMPI implementations
– Basically, mpirun <executable> runs MPI processes taken from $PBS_NODEFILE
– But...

• IntelMPI allows to run a number of MPI processes even larger than the requested mpiprocs
(I.e.the number of lines of the file $PBS_NODEFILE)
– But if the PBS strict mode is active, the user will use only the reserved cores
– If the number of MPI processes is larger than ncpus, we are experimenting the so called

oversubscribing
• OpenMPI imposes mpiprocs as the upper limit for the number of MPI processes which can

be run
– Since mpiprocs<ncpus, no oversubscribing is possible

Gabriele Fatigati

Hybrid programming MPI+OpenMP

 OpenMPI and IntelMPI

• It is possible to modify how the $PBS_NODEFILE is interpreted by mpirun
• OpenMPI:

-npernode <n>
– With -npernode it is possible to specify how many MPI processes to run

on each node
• IntelMPI has the options :

-perhost <n> || -ppn <n>
– but these do not work at least on our installations
– Since IntelMPI allows to run more processes than mpiprocs declared to

PBS, you can specify mpiprocs=1 and then launch more processes which
will be allocated round-robin

Gabriele Fatigati

Hybrid programming MPI+OpenMP

 OpenMPI and IntelMPI

• It is also possible to completely override the $PBS_NODEFILE
manually imposing a MPI machine file
– Some limitations still apply
– IntelMPI:

-machine {name} | -machinefile {name}
– OpenMPI

-machinefile {machinefile} || --machinefile {machinefile} ||
-hostname {machinefile}

Gabriele Fatigati

Hybrid programming MPI+OpenMP

 Where is my job running?

• It may seem a silly question but it is not
• How to check which resources have been allocated for my job

– qstat -n1 <job_id> (for completed jobs add the -x flag)
– qstat -f <job_id> |grep exec_host (for completed jobs add the -x flag)
– Cat $PBS_NODEFILE (during the job execution, to be run by the master assigned

node, e.g. in the batch script)
• How to check where am I actually running? Yes, it may be different from the

previous point
– mpirun <mpirun options> hostname
– change the source code calling MPI_Get_processor_name

• Am I really using all the requested cores?
– See more later

Gabriele Fatigati

Hybrid programming MPI+OpenMP

 NUMA architectures

• Many current architectures used on HPC clusters are NUMA
– Non-uniform memory access (NUMA) is a computer memory design used

in multiprocessing, where the memory access time depends on the
memory location relative to the processor. Under NUMA, a processor can
access its own local memory faster than non-local memory (memory
local to another processor or memory shared between processors)

• How to optimize my code and my run?
– Numactl – Linux command to control NUMA policy for processes or

shared memory
– OpenMPI thread assignment
– MPI process assignement

Gabriele Fatigati

Hybrid programming MPI+OpenMP

 OpenMP thread assignment

• Intel compiler: set KMP_AFFINITY to compact/scatter (other options available)
– Specifying compact assigns the OpenMP* thread <n>+1 to a free thread

context as close as possible to the thread context where the <n> OpenMP*
thread was placed.

– Specifying scatter distributes the threads as evenly as possible across the
entire system. scatter is the opposite of compact

– add the modifier “verbose” to have a list of the mapping (threads vs core). For
example: export KMP_AFFINITY=verbose,compact

– More info at: https://software.intel.com/en-us/node/522691

• GCC OpenMP uses the lower level variable GOMP_CPU_AFFINITY.
– For example, GOMP_CPU_AFFINITY="0 3 1-2 4-15:2"

Gabriele Fatigati

Hybrid programming MPI+OpenMP

 OpenMP thread assignment / 2

• OpenMP v4.5 provides OMP_PLACES and OMP_PROC_BIND (it's standard!)
– OMP_PLACES: Specifies on which CPUs the threads should be placed. The

thread placement can be either specified using an abstract name or by an
explicit list of the places. Allowed abstract names: threads, cores and
sockets

– OMP_PROC_BIND: specifies whether theads may be moved between CPUs.
If set to TRUE, OpenMP theads should not be moved; if set to FALSE they
may be moved. Use a comma separated list with the values MASTER,
CLOSE and SPREAD to specify the thread affinity policy for the
corresponding nesting level.

– More from OpenMP recent standards
• Thread assignment can be crucial for manycore architectures (Intel PHI)

Gabriele Fatigati

Hybrid programming MPI+OpenMP

 OpenMP thread assignment / 4

• Example (on a machine with 2 10-core sockets):
export OMP_PLACES=cores;

● export
OMP_PROC_BIND=
master

● export
OMP_PROC_BIND=
close

● export
OMP_PROC_BIND=
spread

● t0 -> c0 ● t0 -> c0 ● t0 -> c0
● t1 -> c0 ● t1 -> c1 ● t1 -> c10
● t2 -> c0 ● t2 -> c2 ● t2 -> c1
● t3 -> c0 ● t3 -> c3 ● t3 -> c11

Gabriele Fatigati

Hybrid programming MPI+OpenMP

 MPI process mapping/binding

• OpenMPI: tuning possible via options of mpirun
– main reference:

https://www.open-mpi.org/doc/v1.8/man1/mpirun.1.php
– beware: mpirun automatically binds processes as of the start of

the v1.8 series. Two binding patterns are used in the absence of
any further directives:
• Bind to core: when the number of processes is <= 2
• Bind to socket: when the number of processes is > 2

– more intuitive syntax still works but deprecated
-npernode <n> / -npersocket <n>

Gabriele Fatigati

Hybrid programming MPI+OpenMP

 MPI process mapping-binding / 2

• But --map-by function is more complete and can reproduce the above
cases

--map-by ppr:<n>:node / --map-by ppr:<n>:socket
• For process binding:

--bind-to <node/socket/core/...>
• To order processes (rank in round-robin fashion according to the specified

object)
--rank-by <foo>

• --report-bindings: useful option to see what is happening wrt bindings
mpirun --map-by ppr:1:socket --rank-by socket --bind-to socket
--report-bindings -np $PROCS ./bin/$PROGRAM

Gabriele Fatigati

Hybrid programming MPI+OpenMP

 MPI process mapping-binding / 3

• “If your application uses threads, then you probably want to ensure that you are
either not bound at all (by specifying --bind-to none), or bound to multiple cores
using an appropriate binding level or specific number of processing elements
per application process.”

• mpirun --map-by ppr:1:socket:PE=10 --rank-by socket --bind-to socket --report-
bindings <PROGRAM> (hybrid, 1 process per socket, 10 threads per process)

• mpirun --map-by ppr:2:socket:PE=5 --rank-by socket --bind-to socket --report-
bindings <PROGRAM>
– r0 -> c0-4
– r1 -> c10-14
– r2 -> c5-9
– r3 -> c15-19

Gabriele Fatigati

Hybrid programming MPI+OpenMP

 MPI process mapping-binding / 4

• IntelMPI: tuning possible via environment variables
– main reference: https://software.intel.com/en-us/node/528816

• I_MPI_PIN: turn on/off process pinning. Default is on
• I_MPI_PIN_MODE: choose the pinning method
• I_MPI_PIN_PROCESSOR_LIST: Define a processor subset and the

mapping rules for MPI processes within this subset.
• I_MPI_PIN_DOMAIN: additional environment variable to control

process pinning for hybrid Intel MPI Library applications
• mpirun -print-rank-map to know the process binding

Gabriele Fatigati

Hybrid programming MPI+OpenMP

References

• MPI documents
– http://www.mpi-forum.org/docs/

• OpenMP specifications
– http://openmp.org/wp/openmp-specifications/

• SuperComputing 2015:
– http://www.mcs.anl.gov/~thakur/sc15-mpi-tutorial/ l

• Intel & GNU compilers

